Géochronologie et géochimie du zircon de roches volcaniques et plutoniques granitiques du Dévonien précoce à moyen provenant de la suite ignée Cashes Ledge, dans le centre du golfe du Maine, États-Unis

Auteurs-es

  • Yvette D. Kuiper Département de géologie et de géologie appliquée, École des mines du Colorado, Golden, Colorado 80401, ÉTATS-UNIS https://orcid.org/0000-0002-8506-8180
  • Sandra M. Barr Département des sciences de la terre et de l’environnement, Université Acadia, Wolfville (Nouvelle-Écosse) B4P 2R6 CANADA
  • James L. Crowley Département des géosciences, Université d’État de Boise, Boise, Idaho 83725-1535, ÉTATS-UNIS
  • A. Kate Souders United States Geological Survey, Denver Federal Center, Denver, Colorado 80225-0046, ÉTATS-UNIS

DOI :

https://doi.org/10.4138/atlgeo.2023.005

Résumé

De nouvelles données de datation U–Pb sur zircon, d’analyse d’éléments traces et de spectrométrie de masse à plasma inductif et ablation par laser (LA-ICP-MS) à des fins de datation par le Lu–Hf sont présentées par rapport à cinq roches granitiques et volcanofelsiques du Dévonien précoce à moyen provenant de la suite ignée Cashes Ledge, dans le centre du golfe du Maine, aux États-Unis. Les échantillons en question avaient précédemment été analysés par les méthodes de l’étude géochimique sur roche totale et LA-ICP-MS de datation U–Pb, et les nouvelles données corroborent de façon générale les résultats antérieurs. Le granite alcalo-feldspathique à gros grains de l’anomalie magnétique du nord-ouest de Fundy, limite interprétée de la faille au large entre les microcontinents gondwaniens de Ganderia au nord-ouest et d’Avalonia au sud-est, a accusé un âge de cristallisation de 414 ± 2 Ma. Au sud-est de la faille inférée, les âges de la cristallisation sont de 385 ± 3 Ma et 386 ± 3 Ma dans le cas de deux échantillons de tuf cristallin près de la faille, 403 ± 3 Ma dans le cas d’un granite alcalo-feldspathique à une cinquantaine de kilomètres au sud-est de la faille, et 399 ± 5 Ma dans le cas du syénogranite à environ 25 km au sud-est de la faille, qui a aussi livré des grains hérités d’environ 1,3 Ga et d’entre 613 ± 15 Ma et 558 ± 9 Ma. Les données LA-ICP-MS de datation par le Lu–Hf du zircon révélant les âges de la cristallisation ignée situent les âges entre 2,9 et 13,1 s’inspirant de sources felsiques entre 0,52 et 1,04 Ga, ce qui témoigne d’un mélange d’une fusion primitive et d’une fusion du socle tardive mésoprotérozoïque (avalonienne?), possiblement dans un milieu d’extension. Les rapports Nb/Hf sur zircon généralement supérieurs à 0,001 signalent un milieu intraplaque/anorogénique/de rift correspondant à la composition chimique de sa roche totale. Des schémas de discrimination des milieux tectoniques U/Yb-Nb/Yb et U/Yb-Hf affichent des signatures d’îles océaniques à et des arcs continentaux dans le cas du syénogranite. La majorité des grains de zircon présentent des concentrations d’Eu/Eu* de moins de 0,1 témoignant d’une épaisseur de la croûte d’une trentaine de kilomètres ou moins au moment de leur cristallisation.

Biographie de l'auteur-e

Yvette D. Kuiper, Département de géologie et de géologie appliquée, École des mines du Colorado, Golden, Colorado 80401, ÉTATS-UNIS

Dr. Yvette D. Kuiper is an Associate Professor of structural geology at the Colorado School of Mines. She earned a M.Sc. (incl. B.Sc.) at Utrecht University in the Netherlands in 1997, and a Ph.D. at the University of New Brunswick in Canada in 2004. She was a Postdoctoral fellow at the University of Waterloo in Canada from 2003 to 2005. She then was Assistant Professor, at Boston College from 2006 to 2011, after which she joined the Colorado School of Mines. Her research is mostly field based and is focused on structural geology and tectonic processes. Current research areas include the Colorado Front Range, the northern Appalachians and Morocco.

Références

Allen, C.M. and Campbell, I.H. 2012. Identification and elimination of a matrix-induced systematic error in LA–ICP–MS 206Pb/238U dating of zircon. Chemical Geology 332–333, pp. 157–165. https://doi.org/10.1016/j.chemgeo.2012.09.038 DOI: https://doi.org/10.1016/j.chemgeo.2012.09.038

Andersen, T., Andersson, U.B., Graham, S., Aberg, G., and Simonsen, S.L. 2009. Granitic magmatism by melting of juvenile continental crust: New constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. Journal of the Geological Society, 166, pp. 233–247. https://doi.org/10.1144/0016-76492007-166 DOI: https://doi.org/10.1144/0016-76492007-166

Ballard, R.D. 1974. Summary of the geologic dives conducted in the Gulf of Maine during 1971 and 1972 by the research submersible Alvin. Woods Hole Oceanographic Institution, Technical report WHOI-74-29, unpublished manuscript. DOI: https://doi.org/10.1575/1912/877

Barr, S.M., Mortensen, J.K., Thompson, M.D., Hermes, O.D., and White, C.E. 2011. Early to Middle Devonian granitic and volcanic rocks from the central Gulf of Maine. Lithos, 126, pp. 455–465. https://doi.org/10.1016/j.lithos.2011.06.009 DOI: https://doi.org/10.1016/j.lithos.2011.06.009

Belousova, E., Griffin, W., O'Reilly, S.Y., and Fisher, N. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143, pp. 602–622. https://doi.org/10.1007/s00410-002-0364-7 DOI: https://doi.org/10.1007/s00410-002-0364-7

Bouvier, A., Vervoort, J.D., and Patchett, P.J. 2008. The Lu–Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, pp. 48–57. https://doi.org/10.1016/j.epsl.2008.06.010 DOI: https://doi.org/10.1016/j.epsl.2008.06.010

Chu, N.C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A., German, C.R., Bayon, G., and Burton, K. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytica Atomic Spectrometry, 17, pp. 1566-1674. https://doi.org/10.1039/b206707b DOI: https://doi.org/10.1039/b206707b

Dhuime, B., Hawkesworth, C., and Cawood, P. 2011. When continents formed. Science, 331, 154–155. https://www.science.org/doi/10.1126/science.1201245 DOI: https://doi.org/10.1126/science.1201245

Elliott, T., Plank, T., Zindler, A., White, W., and Bourdon, B. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research, 102, pp. 14991–15019. https://doi.org/10.1029/97JB00788 DOI: https://doi.org/10.1029/97JB00788

Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O’Reilly, S.Y., and Shee, S.R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64, pp. 133–147. https://doi.org/10.1016/S0016-7037(99)00343-9 DOI: https://doi.org/10.1016/S0016-7037(99)00343-9

Grimes, C.B., Wooden, J.L., Cheadle, M.J., and John, B.E. 2015. “Fingerprinting” tectono‑magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology, 170, pp. 1–26. https://doi.org/10.1007/s00410-015-1199-3 DOI: https://doi.org/10.1007/s00410-015-1199-3

Hermes, O.D., Ballard, R.D., and Banks, P.O. 1978. Upper Ordovician peralkalic granites from the Gulf of Maine. Geological Society of America Bulletin, 89, pp. 1761–1774. https://doi.org/10.1130/0016-7606(1978)89<1761:UOPGFT>2.0.CO;2 DOI: https://doi.org/10.1130/0016-7606(1978)89<1761:UOPGFT>2.0.CO;2

Hibbard, J.P., van Staal, C.R., Rankin, D., and Williams H. 2006. Lithotectonic map of the Appalachian orogen (north), Canada-United States of America. Geological Survey of Canada Map 02041A, 1 sheet, scale 1:1 500 000. https://doi.org/10.4095/221912 DOI: https://doi.org/10.4095/221932

Hutchinson, D.R., Klitgord, K.D., Lee, M.W., and Trehu, A.M. 1988. U.S. Geological Survey deep seismic profile across the Gulf of Maine. Geological Society of America Bulletin, 100, 172–184. https://doi.org/10.1130/0016-7606(1988)100<0172:USGSDS>2.3.CO;2 DOI: https://doi.org/10.1130/0016-7606(1988)100<0172:USGSDS>2.3.CO;2

Kay, A., Hepburn, J.C., Kuiper, Y.D., and Baxter, E.F. 2017. Geochemical evidence for a Ganderian arc/back-arc remnant in the Nashoba terrane, SE New England, USA. American Journal of Science, 317, pp. 413–448. https://doi.org/10.2475/04.2017.01 DOI: https://doi.org/10.2475/04.2017.01

Kuiper, Y.D., Murray, D.P., Ellison, S., and Crowley, J.L. 2022. U–Pb detrital zircon analysis of sedimentary rocks of the southeastern New England Avalon terrane in the U.S. Appalachians: Evidence for a separate crustal block. In New Developments in the Appalachian-Caledonian-Variscan Orogen. Edited by Y.D. Kuiper, J.B. Murphy, R.D. Nance, R.A. Strachan and M.D. Thompson, Geological Society of America, Special Paper, 554, pp. 93–119. https://doi.org/10.1130/2021.2554(05) DOI: https://doi.org/10.1130/2021.2554(05)

Ludwig, K.R. 2003. User’s Manual for Isoplot 3.00. Berkeley Geochronology Center. Berkeley, CA, 70 p. https://searchworks.stanford.edu/view/6739593

McLennan, S.M. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary process. In Chapter 7, Reviews in Mineralogy, 21, pp. 169–200. https://doi.org/10.1515/9781501509032-010 DOI: https://doi.org/10.1515/9781501509032-010

Murphy, J.B. and Nance, R.D. 2002. Sm–Nd isotopic systematics as tectonic tracers: An example from West Avalonia in the Canadian Appalachians. Earth-Science Reviews, 59, pp. 77–100. https://doi.org/10.1016/S0012-8252(02)00070-3 DOI: https://doi.org/10.1016/S0012-8252(02)00070-3

Murphy, J.B., Nance, R.D., and Wu, L. 2023. The provenance of Avalonia and its tectonic implications: a critical reappraisal. In The Consummate Geoscientist: A Celebration of the Career of Maarten de Wit. Edited by A.J. Hynes and J.B. Murphy. Geological Society, London, Special Publications 531, pp. 176–197. https://doi.org/10.1144/SP531-2022-176 DOI: https://doi.org/10.1144/SP531

Nance, R.D., Murphy, B.J., Strachan, R.A., Keppie, J.D., Gutiérrez-Alonso, G., Fernández-Suárez, J., Quesada, C., Linnemann, U., D’lemos, R., and Pisarevsky, P.A. 2008. Neoproterozoic-early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian,West African connections. Geological Society of London, Special Publications, 297, pp. 345–383. https://doi.org/10.1144/SP297.17 DOI: https://doi.org/10.1144/SP297.17

Patchett, P.J., Kouvo, O., Hedge, C.E., and Tatsumoto, M. 1982. Evolution of continental crust and mantle heterogeneity: evidence from Hf isotope. Contributions to Mineralogy and Petrology, 78, pp. 279–297. https://doi.org/10.1007/bf00398923 DOI: https://doi.org/10.1007/BF00398923

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J. 2011. Iolite: Freeware for the visualization and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, pp. 2508–2518. https://doi.org/10.1039/c1ja10172b DOI: https://doi.org/10.1039/c1ja10172b

Pietranik, A.B., Hawkesworth, C.J., Storey, C.D., Kemp, A.I.S., Sircombe, K.N., Whitehouse, M.J., and Bleeker, W. 2008. Episodic, mafic crust formation from 4.5 to 2.8 Ga: New evidence from detrital zircons, Slave craton, Canada. Geology, 36, pp. 875–878. https://doi.org/10.1130/G24861A.1 DOI: https://doi.org/10.1130/G24861A.1

Pollock, J.C., Hibbard, J.P., and van Staal, C.R. 2012. A paleogeographical review of the peri-Gondwanan realm of the Appalachian orogeny. Canadian Journal of Earth Sciences, 49, pp. 259–288. https://doi.org/10.1139/e11-049 DOI: https://doi.org/10.1139/e11-049

Pollock, J.C., Barr, S.M., van Rooyen, D., and White, C.E. 2022. Insights from Lu–Hf zircon isotopic data on the crustal evolution of Avalonia and Ganderia in the northern Appalachian orogen. In New Developments in the Appalachian-Caledonian-Variscan Orogen. Edited by Y.D. Kuiper, J.B. Murphy, R.D. Nance, R.A. Strachan and M.D. Thompson, Geological Society of America, Special Paper, 554, pp. 173–207. https://doi.org/10.1130/2021.2554(08) DOI: https://doi.org/10.1130/2021.2554(08)

Samson, S.D., Barr, S.M., and White, C.E. 2000. Nd isotopic characteristics of terranes within the Avalon zone, southern New Brunswick. Canadian Journal of Earth Sciences, 37, p. 1039–1052. https://doi.org/10.1139/e00-015 DOI: https://doi.org/10.1139/e00-015

Severson, A.R., Kuiper, Y.D., Eby, G.N., Lee, H.-Y., and Hepburn, J.C. 2022. New detrital zircon U–Pb ages and Lu–Hf isotopic data from metasedimentary rocks along the western boundary of the composite Avalon terrane in the southeastern New England Appalachians. In New Developments in the Appalachian-Caledonian-Variscan Orogen. Edited by Y.D. Kuiper, J.B. Murphy, R.D. Nance, R.A. Strachan and M.D. Thompson, Geological Society of America, Special Paper, 554, pp. 73–91. https://doi.org/10.1130/2021.2554(04) DOI: https://doi.org/10.1130/2021.2554(04)

Skehan, J.W. and Rast, N. 1990. Pre-Mesozoic evolution of Avalon terranes of southern New England. In Geology of the Composite Avalon Terrane of Southern New England. Edited by A.D. Socci, J.W. Skehan, and G.W. Smith. Geological Society of America, Special Paper, 245, pp. 13–53. https://doi.org/10.1130/SPE245-p13 DOI: https://doi.org/10.1130/SPE245-p13

Sláma, J., Košler, J, Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B. Tubrett, M.N., and Whitehouse, M.J. 2008. Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249, pp. 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005 DOI: https://doi.org/10.1016/j.chemgeo.2007.11.005

Söderlund, U., Isachsen, C.E., Bylund, G., Heaman, L.M., Patchett, P.J., Vervoort, J.D., and Andersson, U.B. 2005. U–Pb baddeleyite ages and Hf, Nd isotope chemistry constraining repeated mafic magmatism in the Fennoscandian Shield from 1.6 to 0.9 Ga. Contributions to Mineralogy and Petrology, 150, pp. 174–194. https://doi.org/10.1007/s00410-005-0011-1 DOI: https://doi.org/10.1007/s00410-005-0011-1

Souders A.K., Sylvester P.J., and Myers J.S. 2013. Mantle and crustal sources of Archean anorthosite: a combined in situ isotopic study of Pb–Pb in plagioclase and Lu–Hf in zircon. Contributions to Mineralogy and Petrology, 165, 1–24. https://doi.org/10.1007/s00410-012-0789-6 DOI: https://doi.org/10.1007/s00410-012-0789-6

Sun S. and McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the ocean basins. Edited by A.D. Saunders and M J. Norry. Geological Society Special Publications, 42, pp. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 DOI: https://doi.org/10.1144/GSL.SP.1989.042.01.19

Swanson-Hysell, N.L., Hoaglund, S.A., Crowley, J.L., Schmitz, M.D., Zhang, Y., and Miller, J.D. 2020. Rapid emplacement of massive Duluth Complex intrusions within the North American Midcontinent Rift. Geology, 49, pp. 185–189. https://doi.org/10.1130/G47873.1 DOI: https://doi.org/10.1130/G47873.1

Tang, M., Ji, W.-Q., Chu, X, Wu, A., and Chen, C. 2020. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology, 49, pp. 76–80. https://doi.org/10.1130/G47745.1 DOI: https://doi.org/10.1130/G47745.1

Thompson, M.D., Barr, S.M., and Grunow, A.M. 2012. Avalonian perspectives on Neoproterozoic paleogeography: Evidence from Sm-Nd isotope geochemistry and detrital zircon geochronology in SE New England, USA. Geological Society of America Bulletin, 124, pp. 517–531. https://doi.org/10.1130/B30529.1 DOI: https://doi.org/10.1130/B30529.1

Thompson, M.D., Ramezani, J., and Grunow, A.M. 2018. Within-Plate Setting of Paleozoic Alkalic Suites in Southeastern New England, USA: Constraints from Chemical Abrasion–TIMS U–Pb Geochronology and Paleomagnetism. The Journal of Geology, 126, pp. 41–61. https://doi.org/10.1086/694867 DOI: https://doi.org/10.1086/694867

Thompson, M.D., Barr, S.M., and Pollock, J.C. 2022. Evolving views of West Avalonia: Perspectives from southeastern New England, USA. In New Developments in the Appalachian-Caledonian-Variscan Orogen. Edited by Y.D. Kuiper, J.B. Murphy, R.D. Nance, R.A. Strachan and M.D. Thompson, Geological Society of America, Special Paper, 554, pp. 47–72. https://doi.org/10.1130/2022.2554(03) DOI: https://doi.org/10.1130/2022.2554(03)

Van Staal, C.R., Whalen, J.B., Valverde-Vaquero, P., Zagorevski, A., and Rogers, N. 2009. Pre-Carboniferous, episodic accretion-related, orogenesis along the Laurentian margin of the northern Appalachians. In Ancient orogens and modern analogues. Edited by J.B. Murphy, J.D. Keppie and A.J. Hynes. Geological Society, London, Special Publications, 327, pp. 271–316. https://doi.org/10.1144/SP327.13 DOI: https://doi.org/10.1144/SP327.13

Van Staal, C.R., Barr, S.M., McCausland, P.M., Thompson, M.D., and White, C.E. 2021a. Tonian-Ediacaran tectonomagmatic evolution of West Avalonia and its Ediacaran-Early Cambrian interactions with Ganderia: an example of complex terrane transfer due to arc-arc collision? In Pannotia to Pangaea: Neoproterozoic and Paleozoic Orogenic Cycles in the Circum-Atlantic Region. Edited by J.B. Murphy, R.A. Strachan, and C. Quesada. Geological Society, London, Special Publications, 503, 143–167. https://doi.org/10.1144/SP503-2020-23 DOI: https://doi.org/10.1144/SP503-2020-23

Van Staal, C.R., Barr, S.M., Waldron, J.W.F., Schofield, D.I., Zagorevski, A., and White, C.E. 2021b. Provenance and Paleozoic tectonic evolution of Ganderia and its relationships with Avalonia and Megumia in the Appalachian-Caledonide orogen. Gondwana Research, 98, pp. 212–243. https://doi.org/10.1016/j.gr.2021.05.025 DOI: https://doi.org/10.1016/j.gr.2021.05.025

Watson, E.B., Wark, D.A., and Thomas, J.B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, pp. 413–433. https://doi.org/10.1007/s00410-006-0068-5 DOI: https://doi.org/10.1007/s00410-006-0068-5

White, C.E., Barr, S.M., Hamilton, M.A., and Murphy, J.B. 2021. Age and tectonic setting of Neoproterozoic granitoid rocks, Antigonish Highlands, Nova Scotia, Canada: Implications for Avalonia in the northern Appalachian orogen. Canadian Journal of Earth Sciences, 58, pp. 396–412. https://doi.org/10.1139/cjes-2020-0110 DOI: https://doi.org/10.1139/cjes-2020-0110

Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. , Meier, M., Oberli, F., Quadt, A.V., Roddick, J., and Spiegel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE Analyses. Geostandards Newsletter, 19, pp. 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x DOI: https://doi.org/10.1111/j.1751-908X.1995.tb00147.x

Yang, J., Cawood, P.A., Du, Y., Huang, H., Huang, H., and Tao, P. 2012. Large Igneous Province and magmatic arc sourced Permian–Triassic volcanogenic sediments in China. Sedimentary Geology, 261–262, pp. 120–131. https://doi.org/10.1016/j.sedgeo.2012.03.018 DOI: https://doi.org/10.1016/j.sedgeo.2012.03.018

Téléchargements

Publié-e

2023-07-04

Comment citer

Kuiper, Y. D., Barr, S. M., Crowley, J. L., & Souders, A. K. (2023). Géochronologie et géochimie du zircon de roches volcaniques et plutoniques granitiques du Dévonien précoce à moyen provenant de la suite ignée Cashes Ledge, dans le centre du golfe du Maine, États-Unis. Atlantic Geoscience, 59, 109–121. https://doi.org/10.4138/atlgeo.2023.005

Numéro

Rubrique

Articles

##plugins.generic.funding.fundingData##