Données géothermiques du sud-est du Nouveau-Brunswick: répercussions sur les projets éventuels d’énergie géothermique et la séquestration du carbone dans l’est du Canada

Auteurs-es

  • Dave Keighley Département des sciences de la Terre, Université du Nouveau-Brunswick, Fredericton (Nouveau-Brunswick) E3B 5A3, CANADA
  • Joseph DeLuca Département des sciences de la Terre, Université du Nouveau-Brunswick, Fredericton (Nouveau-Brunswick) E3B 5A3, CANADA

DOI :

https://doi.org/10.4138/atlgeo.2024.012

Résumé

L’insuffisance d’information sur les gradients géothermiques a limité l’évaluation de la faisabilité des systèmes géothermiques avancés (SGA) au Nouveau-Brunswick. Les cartes existantes ont incorporé moins d’une douzaine de points de données, la majorité provenant d’investigations spécialisées et adjacente à des terres hautes centrales traversant la province du sud-ouest au nord-est. Pour compléter ces données, on a examiné les dossiers provinciaux faisant état des températures de fond des trous de forage d’exploration et on en a effectué un filtrage grossier pour repérer les données douteuses. La démarche a ajouté dans la moitié sud-est de la province plus d’une centaine de points de données qui ont été convertis en gradients géothermiques enrichissant les cartes antérieures. La carte géothermique mise à jour du sud-est du Nouveau-Brunswick indique que les gradients géothermiques dans la région correspondent en moyenne à environ 20,5 K/km, ce qui est inférieur à la moyenne mondiale de 25 K/km. Il existe toutefois des anomalies locales dans des endroits où les gradients sont très supérieurs à la moyenne mondiale. Les anomalies en question sont associées, en attendant une évaluation plus poussée, à des intrusions de sel à des profondeurs relativement faibles. Ailleurs, la présence de dépôts de sel d’une conductivité géothermique élevée a produit des « cheminées de sel » dans le cas desquelles des roches de subsurface sus-jacentes présentent des gradients géothermiques plus élevés que les régions adjacentes. En conséquence, bien que les valeurs moyennes des gradients géothermiques régionaux ne favorisent pas le recours aux SGA à grande échelle économiques utilisant les technologies existantes et puissent en plus abaisser le potentiel de séquestration économique de CO2 supercritique, l’emploi de systèmes géothermiques peu profonds, de température inférieure, pourrait être envisageable dans les endroits associés à des intrusions de sel, en particulier si une analyse plus poussée corrobore un effet de « cheminée de sel ».

Références

Allen, P.A. and Allen, J.R. 2013. Basin analysis: principles and applications. John Wiley and Sons Ltd., West Sussex, UK, 560 pp.

Artemieva, I.M. and Mooney, W.D. 2001. Thermal thickness and evolution of Precambrian lithosphere: a global study. Journal of Geophysical Research, 106, pp. 16 387–16 414. https://doi.org/10.1029/2000JB900439

Blackwell, D.D. and Spafford, R.E. 1987. Experimental methods in continental heat flow. In: Geophysics, part B, field measurements, Methods of Experimental Physics, 24. Edited by C.G. Sammis and T.L. Henyey. Academic Press, Orlando, pp. 189–226. https://doi.org/10.1016/S0076-695X(08)60599-2

Blöcher, G., Reinsch, T., Henninges, J., Milsch, H., Regenspurg, S., Kummerow, J., Francke, H., Kranz, S., Saadat, A., Zimmermann, G., and Huenges, E. 2016. Hydraulic history and current state of the deep geothermal reservoir Groß Schönebeck. Geothermics, 63, pp. 27–43. https://doi.org/10.1016/j.geothermics.2015.07.008

Breede, K., Dzebisashvili, K., Liu, X., and Falcone, G. 2013. A systematic review of enhanced (or engineered) geothermal systems: past, present and future. Geothermal Energy 1, 27 pp. https://doi.org/10.1186/2195-9706-1-4

Bullard, E.C. 1947. The time necessary for a bore hole to attain temperature equilibrium. Geophysics Journal International, 5, pp. 127–130. https://doi.org/10.1111/j.1365-246X.1947.tb00348.x

Canova, D.P., Fischer, M.P., Jayne, R.S., and Pollyea, R.M. 2018. Advective heat transport and the salt chimney effect: a numeral analysis. Geofluids, 2378710. 18 pp. https://doi.org/10.1155/2018/2378710

Carey, J.S., Skinner, C.H., Giles, P.S., Durling, P., Plourde, A.P., Jauer, C., and Desroches, K. 2023. Preliminary assessment of geological carbon-storage potential of Atlantic Canada. Geological Survey of Canada, Open File 8996, 90 pp. https://doi.org/10.4095/332145

Chabot Bergeron, A., Raymond, J., Malo, M., and Comeau, F.-A. 2016. Évaluation du potentiel de génération d’électricité géothermique en Gaspésie: régions de la vallée de la Matapédia et de Gaspé (No. 1661). Institut national de la recherche scientifique - Centre Eau Terre Environnement, Québec, 69 pp.

Clauser, C. and Huenges, E. 1995. Thermal conductivity of rocks and minerals. In Rock physics and phase relations: a handbook of physical constants. Edited by T.J. Ahrens. American Geosciences Institute, Shelf 3, pp.105–126. https://doi.org/10.1029/RF003p0105

Cloetingh, S., Van Wees, J.D., Ziegler, P., Lenkey, L., Beekman, F., Tesauro, M., Förster, A., Norden, B., Kaban, M., Hardebol, N., Bonte, D., Genter, A., Guillou-Frottier, L., Ter Voorde, M., Sokoutis, D., Willingshofer, E., Cornu, T., and Worum, G. 2010. Lithosphere tectonics and thermos-mechanical properties: an integrated modelling approach for enhanced geothermal systems exploration in Europe. Earth-Science Reviews, 102, pp. 159–206. https://doi.org/10.1016/j.earscirev.2010.05.003

Comeau, F-A., Séjourné, S., and Raymond, J. 2020. Assessment of geothermal resources in onshore Nova Scotia. Report for the Offshore Energy Research Association, 214 pp.

Craggs, S., Keighley, D., Waldron, J.W.F., and Park, A. 2017. Salt tectonics in an intracontinental transform setting: Cumberland and Sackville basins, southern New Brunswick, Canada. Basin Research, 29, pp. 266–283. https://doi.org/10.1111/bre.12152

Crowell, A.M., Ochsner, A.T., and Gosnold, W. 2012. Correcting bottom-hole temperatures in the Denver Basin: Colorado and Nebraska. Geothermal Resources Council Transactions, 36, pp. 201–206.

Daniilidis, A. and Herber, R. 2017. Salt intrusions providing a new geothermal exploration target for higher energy recovery at shallow depths. Energy, 118, pp. 658–670. https://doi.org/10.1016/j.energy.2016.10.094

DeLuca, J., Keighley, D., Hinds, S., Park, A., Bateman, R., and Harris, A. 2021. New Brunswick geothermal maps and databases: an update. Exploration, Mining and Petroleum New Brunswick 2021 Conference. Abstract volume GR2021, p. 6.

Drury, M.J., Jessop, A.M., and Lewis, T.J. 1987. The thermal nature of the Canadian Appalachian crust. Tectonophysics, 133, pp. 1–14. https://doi.org/10.1016/0040-1951(87)90276-9

Falcon-Lang, H.J., Fensome, R.A., and Venugopal, D.V. 2003. The Cretaceous age of the Vinegar Hill silica sand deposit, southern New Brunswick. Atlantic Geology, 39, pp. 39–46. https://doi.org/10.4138/1048

Ferguson, G. 2013. Subsurface energy footprints. Environmental Research Letters, 8, 014037, 6 pp. https://doi.org/10.1088/1748-9326/8/1/014037

Fyffe, L.R., Johnson, S.C., and van Staal, C.R. 2011. A review of Proterozoic to early Paleozoic lithotectonic terranes in the northeastern Appalachian orogen of New Brunswick, Canada, and their tectonic evolution during Penobscot, Taconic, Salinic, and Acadian orogenies. Atlantic Geology, 47, pp. 211–248. https://doi.org/10.4138/atlgeol.2011.010

Fyffe, L.R., van Staal, C.R., Wilson, R.A., and Johnson, S.C. 2023. An overview of early Paleozoic arc systems in New Brunswick, Canada, and eastern Maine, USA. Atlantic Geology, 59, pp. 1–28. https://doi.org/10.4138/atlgeo.2023.001

Goes, S., Hasterok, D., Schutt, D.L., and Klöcking, M. 2020. Continental lithospheric temperatures: a review. Physics of the Earth and Planetary Interiors, 306, 106509, 18 pp. https://doi.org/10.1016/j.pepi.2020.106509

Government of Canada. 2024. Canadian climate normal and averages. URL <https://climate.weather.gc.ca/climate_normals/index_e.html>, 15 May 2024.

Grasby, S.E., Allen, D.M., Bell, S., Chen, Z., Ferguson, G., Jessop, A., Kelman, M., Ko, M., Majorowicz, J., Moore, M., Raymond, J., and Therrien, R. 2012. Geothermal energy resource potential of Canada. Geological Survey of Canada, Open File Report 6914, 301 pp. https://doi.org/10.4095/291488

Guo, X., Song, H., Killough, J., Du, L., and Sun, P. 2018. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China. Environmental Science and Pollution Research, 25, pp. 4690–4706. https://doi.org/10.1016/j.tecto.2017.01.024

Gupta, H. K. and Roy, S. 2006. Geothermal energy: an alternative resource for the 21st Century. Elsevier Science & Technology, 279 pp.

Huang, K., Dehghani-Sanij, A., Hickson, C., Grasby, S.E., Smejkal, E., Miranda, M.M., Raymond, J., Fraser, D., Harbottle, K., Torres, D.A., Ebell, J., Dixon, J., Olsen, E., Vany, J., Marci, K., Colpron, M., Wigston, A., Brasnett, G., Unsworth, M., and Harms, P. 2024. Canada’s geothermal energy update in 2023. Energies, 17, 1807, 34 pp. https://doi.org/10.3390/en17081807

Hyndman, R.D., Jessop, A.M., Judge, A.S., and Rankin, D.S. 1979. Heat flow in the Maritime Provinces of Canada. Canadian Journal of Earth Sciences, 16, pp. 1154–1165. https://doi.org/10.1139/e79-102

Jessop, A.M. 1968. Three measurements of heat flow in eastern Canada. Canadian Journal of Earth Sciences, 5, pp. l–8. https://doi.org/10.1139/e68-006

Kaiser, M.J. 2007. A survey of drilling cost and complexity estimation models. International Journal of Petroleum Science and Technology, 1, pp. 1–22. https://doi.org/10.2118/98401-PA

Keighley, D. 2008. A lacustrine shoreface succession in the Albert Formation, Moncton Basin, New Brunswick. Bulletin of Canadian Petroleum Geology, 56, pp. 235–258. https://doi.org/10.2113/gscpgbull.56.4.235

Keighley, D. and Maher, C. 2015. A preliminary assessment of carbon storage suitability in deep underground geological formations of New Brunswick. Special Series: Environmental Geosciences. Atlantic Geology, 51, pp. 269–286. https://doi.org/10.4138/atlgeol.2015.011

Kolawole, F. and Evenick, J.C. 2023. Global distribution of geothermal gradients in sedimentary basins. Geoscience Frontiers, 14, 101685, 18 pp. https://doi.org/10.1016/j.gsf.2023.101685

Kontak, D.J. 2008. On the edge of CAMP: geology and volcanology of the Jurassic North Mountain Basalt, Nova Scotia. Lithos, 101, pp. 74–101. https://doi.org/10.1016/j.lithos.2007.07.013

Lavoie, D., Pinet, N., Dietrich, J., Hannigan, P., Castonguay, S., Hamblin, A.P., and Giles, P. 2009. Petroleum resource assessment, Paleozoic successions of the St. Lawrence Platform and Appalachians of eastern Canada. Geological Survey of Canada, Open File 6174, 273 pp. https://doi.org/10.4095/248071

Lu, S-M. 2018. A global review of enhanced geothermal system (EGS). Renewable and Sustainable Energy Reviews, 81, pp. 2902–2921. https://doi.org/10.1016/j.rser.2017.06.097

Lukawski, M.Z., Anderson, B.J., Augustine, C., Capuano, L.E., Jr, Beckers, K.F., Livesay, B., and Tester, J.W. 2014. Cost analysis of oil, gas, and geothermal well drilling. Journal of Petroleum Science and Engineering, 118, pp. 1–14. https://doi.org/10.1016/j.petrol.2014.03.012

Michael, K., Whittaker, S., Varma, S., Bekele, E., Langhi, L., Hodgkinson, J., and Harris, B. 2016. Framework for the assessment of interaction between CO2 geological storage and other sedimentary basin resources. Environmental Science Processes and Impacts, 18, pp. 164–175. https://doi.org/10.1039/C5EM00539F

Moore, K.R. and Holländer, H.M. 2020. Feasibility of low-temperature geothermal systems: considerations of thermal anomalies, geochemistry, and local assets. Applied Energy, 275, 115412. 13 pp. https://doi.org/10.1016/j.apenergy.2020.115412

Oelkers, E.H. and Gislason, S.R. 2023. Carbon capture and storage: from global cycles to global solutions. Geochemical Perspectives, 12, pp. 179–349. https://doi.org/10.7185/geochempersp.12.2

Procesi, M., Ciotoli, G., Mazzini, A., and Etiope, G. 2019. Sediment-hosted geothermal systems: review and first global mapping. Earth-Science Reviews, 192, pp. 529–544. https://doi.org/10.1016/j.earscirev.2019.03.020

Raymond, J., Langevin, H., Comeau, F.A., Malo, M. 2022. Temperature dependence of rock salt thermal conductivity: implications for geothermal exploration. Renewable Energy, 184, pp. 26–35. https://doi.org/10.1016/j.renene.2021.11.080

Reiter, M. and Jessop, A.M. 1985. Estimates of terrestrial heat flow in offshore eastern Canada. Canadian Journal of Earth Sciences, 22, pp. 1503–1517. https://doi.org/10.1139/e85-156

Shamoushaki, M., Fiaschi, D., Manfrida, G., Niknam, P.H., and Talluri, L. 2021. Feasibility study and economic analysis of geothermal well drilling. International Journal of Environmental Studies, 78, pp. 1022–1036. https://doi.org/10.1080/00207233.2021.1905309

Skinner, C. and Wach, G. 2021. Geothermal potential of positive temperature anomalies above salt structures in Nova Scotia. Abstract, First European Association of Geoscientists and Engineers Workshop on Geothermal Energy in Latin America, August 2021, v. 2021, pp.1–3. https://doi.org/10.3997/2214-4609.202182005

Span, R. and Wagner, W. 1996. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25, pp. 1509–1596. https://doi.org/10.1063/1.555991

Sues, H-D. and Olsen, P.E. 2015. Stratigraphic and temporal context and faunal diversity of Permian–Jurassic continental tetrapod assemblages from the Fundy rift basin, eastern Canada. Atlantic Geology, 51, pp. 139–205. https://doi.org/10.4138/atlgeol.2015.006

Tester, J.W., Anderson, B.J., Batchelor, A.S., Blackwell, D.D., DiPippo, R., Drake, E.M., Garnish, J., Livesay, B., Moore, M.C., Nichols, K., Petty, S., Toksoz, M.N., Veatch, R.W., Baria, R., Augustine,C., Murphy, E., Negraru, P., and Richards, M. 2007. Impact of enhanced geothermal systems on US energy supply in the Twenty-First Century. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 365, pp. 1057–1094. https://doi.org/10.1098/rsta.2006.1964

Town of Sussex, 2024. Geothermal feasibility study. URL <https://sussex.ca/documents/geothermal-feasibility-study/>, 15 May 2024.

Vilarrasa, V. and Rutqvist, J. 2017. Thermal effects on geologic carbon storage. Earth-Science Reviews, 165, pp. 245–256. https://doi.org/10.1016/j.earscirev.2016.12.011

Waldron, J.W.F., McCausland, P.J.A., Barr, S.M., and Schofield, D.I. 2022. Terrane history of the Iapetus Ocean as preserved in the northern Appalachians and western Caledonides. Earth-Science Reviews, 233, 104163, 75 pp. https://doi.org/10.1016/j.earscirev.2022.104163

Wilson, P. and White, J.C. 2006. Tectonic evolution of the Moncton Basin, New Brunswick, eastern Canada: new evidence from field and sub-surface data. Bulletin of Canadian Petroleum Geology, 54, pp. 319–336. https://doi.org/10.2113/gscpgbull.54.4.319

Withjack, M.O., Schlische, R.W., and Baum, M.S. 2009. Extensional development of the Fundy rift basin, southeastern Canada. Geological Journal, 44, pp. 631–651. https://doi.org/10.1002/gj.1186

Zhuo Q.G., Meng, F.W., Zhao, M.J., Li, Y., Lu, X.S., and Ni, P. 2016. The salt chimney effect: delay of thermal evolution of deep hydrocarbon source rocks due to high thermal conductivity of evaporites. Geofluids, 16, pp. 440–451. https://doi.org/10.1111/gfl.12162

Publié-e

2024-12-02

Comment citer

Keighley, D., & DeLuca, J. (2024). Données géothermiques du sud-est du Nouveau-Brunswick: répercussions sur les projets éventuels d’énergie géothermique et la séquestration du carbone dans l’est du Canada. Atlantic Geoscience, 60, 243–251. https://doi.org/10.4138/atlgeo.2024.012

Numéro

Rubrique

Special Series: Geoscience in support of a net zero in Atlantic Canada (and beyond)