Note sur la découverte d’ambre du Carbonifère associé à la fougère à graines Linopteris obliqua, terrain houiller de Sydney, Nouvelle-Écosse, Canada
DOI :
https://doi.org/10.4138/atlgeo.2022.006Résumé
Nous rapportons une découverte d’ambre dans les roches sédimentaires carbonifères du terrain houiller de Sydney, en Nouvelle-Écosse, Canada. L’ambre se manifeste sous forme de gouttelettes ainsi que de figures linéaires, et il a une teinte variant du brun pâle au mauve foncé. L’ambre a été découvert in situ dans de la siltite au-dessus du filon de charbon du Pennsylvanien moyen Hub, où il est associé à des pinnules abondamment falsifiées de la fougère à graines Linopteris obliqua. Les spécimens d’ambre ont été analysés par spectrométrie infrarouge et leurs caractéristiques spectrochimiques ont été comparées à celles d’autres ambres fossiles. Cette découverte élargit non seulement l’inventaire de l’ambre à une période remontant à environ 300 millions d’années, mais documente également la capacité des fougères à graines carbonifères d’utiliser des mécanismes biosynthétiques pour produire des exsudats résineux.
Références
Anderson, K.B., Winans, R.E., and Botto, R.E. 1992. The nature and fate of natural resins in the geosphere, II. Identification, classification, and nomenclature of resinite. Organic Geochemistry, 18, pp. 829–841. https://doi.org/10.1016/0146-6380(92)90051-X
Bray, P.S. and Anderson, K.B. 2009. Identification of Carboniferous (320 million years old) class Ic amber. Science, 326, pp. 132–134. https://doi.org/10.1126/science.1177539
Broughton, P.L. 1972. Conceptual framework for geographical-botanical affinities of fossil resins. Canadian Journal of Earth Sciences, 11, pp. 583–594. https://doi.org/10.1139/e74-053
Bunbury, C.J.F. 1847. On fossil plants from the Coal Formation of Cape Breton. Quarterly Journal of the Geological Society of London, 3, pp. 423–438. https://doi.org/10.1144/GSL.JGS.1847.003.01-02.44
Clifford, D.J. and Hatcher, P.G. 1995a. Maturation of Class 1b (polylabdanoid) resinites. In Amber, resinite, and fossil resins. Edited by K.B. Anderson and J.C. Crelling. American Chemical Society Symposium Series 617. American Chemical Society, Washington DC, pp. 92–104. https://doi.org/10.1021/bk-1995-0617.ch005
Clifford, D.J. and Hatcher, P.G. 1995b. Structural transformation of polylabdanoid resinites during maturation. Organic Geochemistry, 23, pp. 407–418. https://doi.org/10.1016/0146-6380(95)00022-7
Crelling, J.C. 1995. The petrology of resinite in American coals. In Amber, resinite, and fossil resins. Edited by K.B. Anderson and J.C. Crelling. American Chemical Society Symposium Series 617. American Chemical Society, Washington DC, pp. 218–233. https://doi.org/10.1021/bk-1995-0617.ch012
Crelling, J.C. and Kruge, M. 1998. Petrographic and chemical properties of Carboniferous resinite from the Herrin #6 coal seam. International Journal of Coal Geology, 37, pp. 55–71. https://doi.org/10.1016/S0166-5162(98)00021-4
Edwards, H.G.M., Brown, D.R., Dale, J.A., and Plant, S. 2000. Raman spectroscopy of sulfonated polystyrene resins. Vibrational Spectroscopy, 24, 213–224. https://doi.org/10.1016/S0924-2031(00)00070-9
Goodarzi, F. and McFarlane, R.A. 1991. Chemistry of fresh and weathered resinites - an infrared photoacoustic spectroscopic study. International Journal of Coal Geology, 19, pp. 283–301. https://doi.org/10.1016/0166-5162(91)90024-D
Grimaldi, D. 2009. Pushing back amber production. Science, 326, pp. 51–52. https://doi.org/10.1126/science.1179328
Kister, J., Guiliano, M., Mille, G., and Dou, H. 1988. Changes in the chemical structure of low rank coal after low temperature oxidation or demineralization by acid treatment. Fuel, 67, pp. 1076–1082. https://doi.org/10.1016/0016-2361(88)90373-0
Langenheim, J.H. 2003. Plant resins. chemistry, evolution, ecology, ethnobotany. Timber Press, Portland, USA and Cambridge, UK, 586 p.
Langenheim, J.H. and Beck, C.W. 1965. Infrared spectra as a means of determining botanical sources of amber. Science, New Series, 149, pp. 52–55. https://doi.org/10.1126/science.149.3679.52
Lin, R. and Ritz, G.P. 1993. Studying individual macerals using IR microspectroscopy, and implications on oil versus gas/condensate proneness and "low-rank" generation. Organic Geochemistry, 20, pp. 695–706. https://doi.org/10.1016/0146-6380(93)90055-G
Lis, G.P., Mastalerz, M., Schimmelmann, A., Lewan, M.D., and Stankiewicz, B.A. 2005. FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R0 in type-II kerogens from Devonian black shales. Organic Geochemistry, 36, pp. 1533–1552. https://doi.org/10.1016/j.orggeochem.2005.07.001
Lucas, A. and Harris, J.R. 1962. Ancient Egyptian materials and industries. 4th Edition, Edward Arnold, London, 523 p.
Lyons, P.C., Mastalerz, M., and Orem, W.H. 2009. Organic geochemistry of resins from modern Agathis australis and Eocene resins from New Zealand: diagenetic and taxonomic implications. International Journal of Coal Geology, 80, pp. 61–62. https://doi.org/10.1016/j.coal.2009.07.015
McFarlane, R.A., Gentzis, T., Goodarzi, F., Hanna, J.V., and Vassallo, A.M. 1993. Evolution of the chemical structure of Hat Creek resinite during oxidation: a combined FT-IR photoacoustic, NMR and optical microscopic study. International Journal of Coal Geology, 22, pp. 119–149. https://doi.org/10.1016/0166-5162(93)90021-2
McKellar, R.C. and Wolfe, A.P. 2010. Canadian amber. In Biodiversity of fossils in amber from the major world deposits. Edited by D. Penney. Siri Scientific Press, pp. 96−113 (includes Appendix: arthropod families recorded from Canadian amber).
Painter, P.C., Snyder, R.W., Starsinic, M., Coleman, M.M., Kuehn, D.W., and Davis, A. 1981. Concerning the application of FTIR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs. Applied Spectroscopy, 35, pp. 475–485. https://doi.org/10.1366/0003702814732256
Poinar, G.O. and Mastalerz, M. 2000. Taphonomy of fossilized resins: determining the biostratinomy of amber. Acta Geologica Hispanica, 35, pp. 171–182.
Pradier, B., Landis, P., Rochdi, A., and Davis, A. 1992. Chemical basis of fluorescence alteration of crude oils and kerogens - II. Fluorescence and infrared microspectrometric analyses of vitrinite and liptinite. Organic Geochemistry, 18, pp. 241–249. https://doi.org/10.1016/0146-6380(92)90065-6
Streibl, V., Vasickova, S., Herout, V., and Bouska, V. 1976. Chemical composition of Cenomanian fossil resins from Moravia. Collection of Czechoslovak Chemical Communications., 41, pp. 3138–3145. https://doi.org/10.1135/cccc19763138
Van Bergen, P.F., Collinson, M.E., Scott, A.C., and Leeuw de, J.W. 1995. Unusual resin chemistry from Upper Carboniferous pteridosperm resin rodlets. In Amber, resinite, and fossil resins. Edited by K.B. Anderson and J.C. Crelling. American Chemical Society Symposium Series 617. American Chemical Society, Washington DC, pp. 149–169. https://doi.org/10.1021/bk-1995-0617.ch008
Vasallo, A.M., Lui, Y.L., Pang, L.S.K., and Wilson, M.A. 1991. Infrared spectroscopy of coal maceral concentrates at elevated temperatures. Fuel, 70, pp. 635–639. https://doi.org/10.1016/0016-2361(91)90178-D
Wang, S.H. and Griffith, P.R. 1985. Resolution enhancement of reflectance IR spectra of coals by Fourier self-deconvolution, 1. C-H stretching and bending modes. Fuel, 64, pp. 229–236. https://doi.org/10.1016/0016-2361(85)90223-6
Zeiller, R. 1899. Étude sur le flore fossile du Bassin houiller d'Héraclée. Memoires de la Societé Géologique de la France. Paléontologie, 21, pp. 1–91. https://doi.org/10.5962/bhl.title.110944
Zodrow, E.L. and McCandlish, K. 1978. Distribution of Linopteris obliqua in the Sydney Coalfield of Cape Breton, Nova Scotia. Palaeontographica B, 168, pp. 1–16.
Zodrow, E.L., Tenchov, Y.G., and Cleal, C.J. 2007. The arborescent Linopteris obliqua plant (Medullosales, Pennsylvanian). Bulletin of Geosciences, 82, pp. 51–84. https://doi.org/10.3140/bull.geosci.2007.01.51
Téléchargements
Publié-e
Comment citer
Numéro
Rubrique
Licence
As of January 1, 2025, Atlantic Geoscience is adopting Creative Commons Attribution 4.0 International (CC BY 4.0) This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, even for commercial purposes.
Copyright to material published in Atlantic Geoscience is normally retained by the author. Alternate arrangements can be made on request for government employees.
Permission to use a single graphic for which the author owns copyright is considered “fair dealing” under the Canadian Copyright Act and “fair use” by the journal, and no other permission need be granted, subject to the image being appropriately cited in all reproductions. The same fair dealing/fair use policy applies to sections of text up to 100 words in length.