Interpretation of lineaments and faults near Summerville, South Carolina, USA, using LiDAR data: implications for the cause of the 1886 Charleston, South Carolina, earthquake
DOI:
https://doi.org/10.4138/atlgeol.2020.003Abstract
LiDAR (light detection and ranging) data acquired near Summerville, South Carolina, reveal numerous lineaments trending in various directions across the Middleton Place-Summerville seismic zone (MPSSZ) and surrounding area. These lineaments are defined by linear depressions and stream valleys that are developed within late Eocene to Holocene marine, marginal marine, and fluvial sediments of the Atlantic Coastal Plain. The 40-kmlong, ENE-WSW-oriented Deer Park lineament coincides with the Woodstock epicenter of the 1886 Charleston earthquake, suggesting that the main shock may have occurred along a fault associated with this lineament. The proximity of the 17-km-long, ENE-WSW-oriented Middleton Place lineament to the Middleton Place epicenter suggests that it too may have ruptured in 1886. Several E-W-oriented topographic scarps are also located near the area of modern seismicity, including the 3- to 5-km-long, south-facing McChune and Summerwood scarps. The McChune scarp is aligned with the E-W-trending portion of the Summerville scarp to the west, suggesting that both scarps may be from uplift to the north along the same fault. The McChune scarp and the Otranto and Middleton Place lineaments coincide with faults interpreted from previously acquired seismic-reflection profiles, suggesting that these features are surface expressions of Quaternary faults. Other lineaments east of the MPSSZ are associated with Neogene structural domes, indicating that the interpreted faults along these lineaments have been active during the late Cenozoic. The LiDAR data also revealed a ~350-m dextral offset of a middle Pleistocene beach ridge along the Woodstock fault and a ~20-km-long, NW-SE-oriented lineament to the east (Canterhill
lineament) that appears to be the surface expression of the Charleston fault.
Published
How to Cite
Issue
Section
License
As of January 1, 2025, Atlantic Geoscience is adopting Creative Commons Attribution 4.0 International (CC BY 4.0) This license requires that re-users give credit to the creator. It allows re-users to distribute, remix, adapt, and build upon the material in any medium or format, even for commercial purposes.
Copyright to material published in Atlantic Geoscience is normally retained by the author. Alternate arrangements can be made on request for government employees.
Permission to use a single graphic for which the author owns copyright is considered “fair dealing” under the Canadian Copyright Act and “fair use” by the journal, and no other permission need be granted, subject to the image being appropriately cited in all reproductions. The same fair dealing/fair use policy applies to sections of text up to 100 words in length.