Petrography, geochemistry, age, and stratigraphic significance of the Mississippian Boyd Creek tuff, southern New Brunswick, Canada

Authors

  • Adrian F. Park Geological Surveys Branch, New Brunswick Department of Natural Resource and Energy Development, Fredericton, New Brunswick E3B 5H1, Canada
  • Steven J. Hinds Geological Surveys Branch, New Brunswick Department of Natural Resource and Energy Development, Fredericton, New Brunswick E3B 5H1, Canada
  • Christopher R.M. McFarlane Department of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
  • Brandan Boucher Department of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
  • Matthew R. Stimson Department of Natural Sciences, New Brunswick Museum, Saint John, New Brunswick E2K 1E5, Canada
  • Perry Clark Department of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada

DOI:

https://doi.org/10.4138/atlgeo.2024.002

Abstract

The Boyd Creek tuff consists of two pyroclastic flow deposits and more widespread air-fall tuff within a Mississippian red bed sequence located in outcrop and boreholes around Weldon and Pre d’en Haut, Albert and Westmorland counties, New Brunswick. Long recognized as an important stratigraphic marker, it has been placed in either the Tournaisian Weldon Formation or Visean Hillsborough Formation by previous workers, with a position in the upper Tournaisian Weldon Formation being the most recent interpretation. A Visean laser ablation-inductively coupled plasma-mass spectrometry U–Pb zircon age of 336.9 ± 2.0 Ma is consistent with the interpretation that the tuff is part of the Windsor Group and within a fine-grained red and grey sequence of the Hillsborough Formation. Although the tuff is altered and contains abundant xenoliths and xenocrysts, petrography and chemistry are consistent with rhyolite or dacite composition. Its composition and age suggest that the Boyd Creek tuff is one of several volcanic units interpreted to be in the Windsor Group or its temporal equivalents, including rhyolite-trachyte lavas of Cumberland Hill (Cumberland Hill Formation, Mabou Group), tuff in carbonate-evaporite sequence at the Picadilly Mine (Penobsquis), and the red bed Shin Formation (Mabou Group) at Hurley Creek near Minto. Locating and dating other ‘ash beds’ in the Windsor Group offers a way to resolve long-standing issues of correlation in the Visean of New Brunswick and Nova Scotia.

References

Barr, S.M., White, C.E., and Hamilton, M.A. 2007. Lower Coverdale and Gaytons: Middle Devonian and possibly older anorthosite-ferronorite, gabbro, and quartz monzonite intrusions in southeastern New Brunswick. Atlantic Geology, 43, pp. 163–179. https://doi.org/10.4138/5647

Barr, S.M., van Rooyen, D., Miller, B.V., White, C.E., and Johnson, S.C. 2019. Detrital zircon signatures in Precambrian and Paleozoic sedimentary units in Ganderia and Avalonia of southern New Brunswick, Canada – more pieces of the puzzle. Atlantic Geology, 55, pp. 275–322. https://doi.org/10.4138/atlgeol.2019.010

Bell, W.A. 1927. Outline of the Carboniferous stratigraphy and geologic history of the Maritime Provinces of Canada. Royal Society of Canada Transactions, Section IV, 21, pp. 75–108.

Cas, R.A.F. and Wright, J.V. 1988. Volcanic Successions: Modern and Ancient. Unwin Hyman, London, 528 p. https://doi.org/10.1007/978-94-009-3167-1

Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J-X. 2013 (updated 2023). The ICS International Chronostratigraphic Chart. Episodes, 36, pp. 199–204. https://doi.org/10.18814/epiiugs/2013/v36i3/002

Davydov, V.I., Korn, D., Schmitz, M.D., Gradstein, F.M., and Hammer, O. 2012. The Carboniferous Period. In The Geologic Time Scale 2012. Edited by F.M. Gradstein, J.G. Ogg, M. Schmidtz, and G. Ogg. Elsevier, pp. 603–651. https://doi.org/10.1016/B978-0-444-59425-9.00023-8

Globensky, Y. 1967. Middle and Upper Mississippian conodonts from the Windsor Group of the Atlantic Provinces of Canada. Journal of Paleontology, 41(2), pp. 432–448.

Globensky, Y. 1970. Arenaceous foraminifera from the Windsor Group (Middle and Upper Mississippian) of the Atlantic Provinces of Canada. Canadian Journal of Earth Sciences, 7, pp. 768–785. https://doi.org/10.1139/e70-077

Gray, T.R., Dostal, J., McLeod, M.J., Keppie, D., and Zhang, Y. 2010. Geochemistry of Carboniferous peralkaline felsic volcanic rocks, central New Brunswick, Canada: examination of uranium potential. Atlantic Geology, 46, pp. 173–184. https://doi.org/10.4138/atlgeol.2010.010

Gussow, W.C. 1953. Carboniferous stratigraphy and structural geology of New Brunswick, Canada. American Association of Petroleum Geologists Bulletin, 37, pp. 1713–1816. https://doi.org/10.1306/5CEADD4F-16BB-11D7-8645000102C1865D

Hounsell, C.D. 1986. Modes of emplacement of the Boyd Creek tuff, Hillsborough sub-basin, southeastern New Brunswick. Unpublished B. Sc. Thesis, Mt Allison University, Sackville, New Brunswick, 70 p.

Jutras, P., Dostal, J., Kamo, S., and Matheson, Z. 2018. Tectonostratigraphic and petrogenetic setting of late Mississippian volcanism in eastern Canada. Canadian Journal of Earth Sciences, 55, pp. 356–372. https://doi.org/10.1139/cjes-2017-0176

Kramers, J.D. and Tolstikhin, I.N. 1997. Two terrestrial lead isotope paradoxes, forward transport modeling, core formation and the history of the continental crust. Chemical Geology, 139, pp. 75–110. https://doi.org/10.1016/S0009-2541(97)00027-2

LeMaitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M.J., Sabine, P.A., Schmid, R., Sorensen, H., Streckeisen, A., Wooley, A.R., and Zanettin, B. 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 193 p.

Ludwig, K.R. 2012. Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Centre Special Publication no. 5, 75 p.

MacRae, R.A., Stimson, M.R., Hinds, S.J., Park, A.F., King, O.A., Waldron, J W.F., and Eggleston, L.K. 2017. Re-examination of the Gautreau Formation and its stratigraphic position, Weldon, New Brunswick. Atlantic Geoscience Society, 43rd Colloquium and Annual Meeting, Fredericton, New Brunswick. Atlantic Geology, 53, p. 157–158.

Mamet, B.L. 1970. Carbonate microfacies of the Windsor Group (Carboniferous), Nova Scotia and New Brunswick. Geological Survey of Canada Paper 70-21, 120 p. https://doi.org/10.4095/102359

McCutcheon, S.R. 1981. Stratigraphy and paleogeography of the Windsor Group in southern New Brunswick. New Brunswick Department of Natural Resources, Mineral Resources Division, Open File 81-31, 208 p.

McDonough, W.F. and Sun, S-S. 1995. The composition of the Earth. Chemical Geology, 120, pp. 223–253. https://doi.org/10.1016/0009-2541(94)00140-4

McFarlane, C.R.M., Roulston, B., and MacDonald, C. 2015. Carboniferous volcanic rocks in the Picadilly Mine, Sussex, New Brunswick, Canada (abstract). Atlantic Geology, 51, p. 124–125.

McLeod, M.J. 1980. Geology and mineral deposits of the Hillsborough area, map-area V-22 and V-23 (parts of 21 H/15E and 21 H/15W). New Brunswick Department of Natural Resources; Mineral Resources Branch, Map Report No. 79-6, 35 p.

Menning, M., Alekseev, A.S., Chuvashov, B.I., Davydov, V.I., Devuyst, F-X., Forke, H.C., Grunt, T.A., Hance, L., Heckel, P.H., Izokh, N.G., Jin, Y-G., Jones, P.J., Kotlyar, G.V., Kozur, H.W., Nemyrovska, T.I., Schneider, J.W., Wang, X-D., Weddige, K., Weyer, D., and Work, D.M. 2006. Global time scale and regional stratigraphic reference scales of central and west Europe, east Europe, Tethys, south China, and North America as used in the Devonian-Carboniferous-Permian Correlation Chart 2003 (DCP 2003). Palaeogeography, Palaeoclimatology, Palaeoecology, 240, pp. 318–372. https://doi.org/10.1016/j.palaeo.2006.03.058

Miller, B.V. and Barr, S.M. 2000. Petrology and isotopic composition of a Grenvillian Basement fragment in the northern Appalachian orogen: Blair River Inlier, Nova Scotia. Journal of Petrology, 41, pp. 1777–1804. https://doi.org/10.1093/petrology/41.12.1777

Miller, B.V., Barr, S.M., Tesfai, F., and White, C.E. 2018. Tonian Fe-Ti-P ferronorite and alkali anorthosite in the northern Appalachian orogen, southern New Brunswick, Canada: Amazonian basement in Ganderia? Precambrian Research, 317, pp. 77–88. https://doi.org/10.1016/j.precamres.2018.08.006

New Brunswick Department of Natural Resources. 2008. Bedrock Geology of New Brunswick. Minerals, Policy, and Planning Division Map NR-1 (2008 Edition), scale 1:500 000.

Norman, G.W.H. 1941. Hillsborough map sheet, Albert and Westmorland counties, New Brunswick. Geological Survey of Canada Map 647A, scale 1:63 360. https://doi.org/10.4095/107716

Paces, J.B. and Miller, J.D. 1993. Precise U–Pb Ages of Duluth Complex and related mafic intrusions, northeastern Minnesota - geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. Journal of Geophysical Research-Solid Earth, 98(B8), pp. 13997–14013. https://doi.org/10.1029/93JB01159

Park, A.F., Hinds, S.J., McFarlane, C., Stimson, M., and Clark, P. 2019. Petrography, geochemistry, age, and stratigraphic significance of the Boyd Creek tuff, Mississippian, New Brunswick, Canada: Atlantic Geoscience Society 45th Colloquium and Annual General Meeting, Fredericton, New Brunswick. Atlantic Geology, 55, p. 197–198.

Park, A.F., St. Peter, C.J., Keighley, D.K., and Wilson, P. 2010. Overstep and imbrications along a sidewall ramp and its relationship to a hydrocarbon play in Tournaisian rocks of the Moncton Basin: the Peck Creek section, Albert Mines area, southeastern New Brunswick, Bulletin Canadian Petroleum Geology, 58, pp. 268–282. https://doi.org/10.2113/gscpgbull.58.3.268

Pearce, J.A., Harris, N.B.W., and Tindle, A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, pp. 956–983. https://doi.org/10.1093/petrology/25.4.956

Shroder, J.F. 1963. Stratigraphy and tectonic history of the Moncton Group of non-marine red beds of New Brunswick, Canada. Unpublished M. Sc. Thesis, University of Massachusetts, Amherst, Massachusetts, 83 p.

Sláma, J., Kosler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., and Whitehouse, M.J. 2008. Plesovice zircon - A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2), pp. 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005

Smith, E.A. 2007. Bedrock geology of the Chipman area (NTS 21 I/04), Sunbury and Queens counties, New Brunswick. New Brunswick Department of Natural Resources; Minerals, Policy and Planning Division, Plate 2007-50, scale 1:250 000.

Smith, E.A. and Fyffe, L.R. 2006. Bedrock geology of the Minto area (NTS 21 J/01), York, Sunbury and Queens counties, New Brunswick. New Brunswick Department of Natural resources. Minerals, Policy and Planning Division. Plate 2006-2, scale 1:50 000.

St. Peter, C.J. 1992. Lithologic facies, seismic facies and strike-slip setting of the lower Carboniferous alluvial/fluvial/lacustrine Albert Formation of New Brunswick. New Brunswick Department of Natural Resources and Energy, Mineral Resources Division, Geoscience Report 92-2, 145 p.

St. Peter, C.J., Johnson, C.J., Barr, S.M., and White, C.E. 2005. Bedrock geology of the Hillsborough area (NTS 21 H/15), Albert and Westmorland counties, New Brunswick. New Brunswick Department of Natural Resources; Minerals, Policy and Planning Division, Plate 2005-48, scale 1:50 000.

St. Peter, C.J. and Johnson, S.C. 2009. Stratigraphy and structural history of the late Paleozoic Maritimes Basin in southeastern New Brunswick, Canada. New Brunswick Department of Natural Resources; Minerals, Policy and Planning Division, Memoir 3, 348 p.

van Breeman, O. and St. Peter, C.J. 1999. Zircon analyses from felsic volcanic rocks in New Brunswick. Unpublished report for New Brunswick Department of Natural Resources.

von Bitter, P.H., Giles, P.S., and Utting, J. 2007. Biostratigraphic correlation of major cycles in the Windsor and Codroy groups of Nova Scotia and Newfoundland, Atlantic Canada, with the Mississippian substages of Britain and Ireland. In Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy. Edited by T.E. Wong. Utrecht, Netherlands, pp. 513–534.

Waldron, J.W.F, Giles, P.S., and Thomas A.K. 2017. Correlation chart for Late Devonian to Permian strati.fied rocks of the Maritimes Basin, Atlantic Canada. Nova Scotia Department of Energy Open File Report 2017-02, with supporting notes.

Webb, T.C. 1977 (updated in 1980). Geology of New Brunswick glauberite deposits. New Brunswick Department of Natural Resources, Mineral Resources Division, Open File Report 77-15, 26 p.

White, J.C., Benker, S.C., Ren, M., Urbanczyk, K.M., and Corrick, D.W. 2006. Petrogenesis and tectonic setting of the peralkaline Pine Canyon caldera, Trans-Pecos Texas, USA. Lithos, 91, pp. 74–94. https://doi.org/10.1016/j.lithos.2006.03.015

Wilson, P., White, J.C., Park, A.F., Keighley, D., and Gingras, M.K. 2004. Strain features and deformation features in syn-sedimentary high-strain zones. Geological Association of Canada Annual Meeting, St. Catherine's, Ontario. Abstracts 2004, p. 134.

Winchester, J.A. and Floyd, P.A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, pp. 325–343. https://doi.org/10.1016/0009-2541(77)90057-2

Wright, W.J. 1922. Geology of the Moncton map-area. Canada Department of Mines, Geological Survey, Memoir No. 129, 69 p. https://doi.org/10.4095/101688

Published

2024-03-06

How to Cite

Park, A. F., Hinds, S. J., McFarlane, C. R., Boucher, B., Stimson, M. R., & Clark, P. (2024). Petrography, geochemistry, age, and stratigraphic significance of the Mississippian Boyd Creek tuff, southern New Brunswick, Canada. Atlantic Geoscience, 60, 015–035. https://doi.org/10.4138/atlgeo.2024.002

Issue

Section

Articles