Skip to main navigation menu Skip to main content Skip to site footer


Vol 50 (2014)

The Appledore Island pluton of the Rye Complex, coastal New Hampshire and Maine, USA: geochronological and chemical evidence for the affinity of an enigmatic terrane

March 20, 2014
October 18, 2014


The Rye Complex of coastal New Hampshire and Maine is a peri-Gondwanan terrrane that up to now had an uncertain origin. An offshore portion of the complex, Appledore Island of the Isles of Shoals, hosts a mainly dioritic intrusion that yielded an U-Pb zircon age of 361.09 ± 0.14 Ma, allowing comparison of its geochemical characteristics with mafic rocks of similar age across the northern Appalachian orogen. The Appledore Island diorite has similar major, trace, and isotopic compositions as continental rift tholeiite in the Narragansett Basin in southern New England and in the Maritimes Basin of Canada. These intraplate volcanic rocks range from 375 to 330 Ma, bracketing the age of the Appledore Island diorite. Their intraplate tectonic setting reflects regional extension during the Late Devonian to Early Carboniferous which produced successor basins after the Acadian orogeny. The geochemical and age similarities of the Appledore Island diorite and the mafic rocks of the successor basins suggest that the Rye Complex is a basement fragment of a successor basin block. Further evidence of the identity of the Rye Complex is provided by the isotopic composition of intermingled, comagmatic granitic rocks associated with the Appledore Island diorite. The granite has a Ganderian isotopic signature, suggesting that the Rye Complex is a Ganderian basement block that was transposed by movement along the Norumbega Fault System to its position adjacent to the Merrimack Trough of New Hampshire and Maine.