Microbial components and metamorphic grade of Miaolingian (Cambrian) black shales from the Burin Peninsula, Newfoundland, Canada

Authors

DOI:

https://doi.org/10.4138/atlgeo.2025.008

Abstract

The analysis of microbial and palynological remains in Cambrian shales is useful for biostratigraphic and palaeoecological purposes but, in outcrops affected by contact metamorphism, also for discriminating burial and metamorphic temperatures. The microbial composition of the Miaolingian black shales from the Pleasant View Formation (Inlet Group) in the Burin Peninsula consists of monospecific cyanobacterial associations of Bavlinella faveolata, a cosmopolitan taxon that characterized eutrophication episodes in Neoproterozoic to Miaolingian times. The specimens show varying degrees of degradation under thin-section (2D) and Field Emission Gun Scanning Electron Microscopy (FEGSEM, 3D). Raman Spectra of Carbonaceous Materials (RSCM) thermometry applied to both the acritarchs and meshworks of amorphous organic matter has reported average metamorphic temperatures of 300 to 343 ºC, whereas the standardized Crystallinity Index Standard value of 0.35 suggests temperatures slightly below the anchizone-epizone boundary, established at 300 ºC. The most likely fit for the peak metamorphic contact temperature recorded in Miaolingian black-shale samples, collected close to the Upper Devonian St. Lawrence granitic intrusions, is within the 300-350 ºC interval.

References

Abrámoff, M.D., Magalhaes, P.J., and Ram, S.J. 2004. Image processing with ImageJ. Biophotonics International 11, pp. 36–42.

Álvaro, J.J. 2021. Cambrian syn‐rift tectonic pulses at unconformity‐bounded carbonates in the Avalon Zone of Newfoundland, Canada. Basin Research, 33, pp. 1520–1545. https://doi.org/10.1111/bre.12525

Álvaro, J.J. and Mills, A. 2024. Carbonate production and reef building under ferruginous seawater conditions in the Cambrian rift branches of the Avalon Zone, Newfoundland. Sedimentology, 71(4), pp. 1–25. https://doi.org/10.1111/sed.13172

Álvaro, J.J., Ortiz, J.E., Neto de Carvalho, C., López-Cilla, I., Sánchez-Palencia, Y., and Torres, T. 2024. Biogenicity of amorphous organic matter and bacteriomorph acritarchs preserved in wrinkle structures from the Ediacaran Cíjara Formation, Spain. The Depositional Record, 10, pp. 51–69. https://doi.org/10.1002/dep2.258

Aoyagi, K. and Asakawa, T. 1984. Paleotemperature analysis by authigenic minerals and its application to petroleum exploration. American Association of Petroleum Geologists Bulletin, 68, pp. 903–913. https://doi.org/10.1306/AD461444-16F7-11D7-8645000102C1865D

Arouri, K.R., Greenwood, P.F., and Walter, M.R. 2000. Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation. Organic Geochemistry, 31, pp. 75–89. https://doi.org/10.1016/S0146-6380(99)00145-X

Austermann, G., Kling, M., Ifrim, C., Emondt, P.S., Hildebrand, A. 2021. Quantifying the diagenetic impact in the late Ediacaran and early Palaeozoic of the Avalon Peninsula using illite "crystallinity". Canadian Journal of Earth Sciences, 9, pp. 1187–1208. https://doi.org/10.1139/cjes-2020-0207

Bengtson, S. and Fletcher, T. P. 1983. The oldest sequence of skeletal fossils in the Lower Cambrian of southeastern Newfoundland. Canadian Journal of Earth Sciences, 20, pp. 525–536. https://doi.org/10.1139/e83-050

Beny-Bassez, C. and Rouzaud, J.N. 1985. Characterization of carbonaceous materials by correlated electron and optical microscopy and raman microspectroscopy. Scanning Electron Microscopy, 1, pp. 119–132.

Beranek, L.P., Hutter, A.D., Pearcey, S., James, C., Langor, V., Pike, C., Goudie, D., Oldham, L. 2023. New evidence for the Baltican cratonic affinity and Tonian to Ediacaran tectonic evolution of West Avalonia in the Avalon Peninsula, Newfoundland, Canada. Precambrian Research, 390. Article no. 107046, 19 pp. https://doi.org/10.1016/j.precamres.2023.107046

Beyssac, O., Goffé, B., Chopin, C., and Rouzaud, J.N. 2002. Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of Metamorphic Geology, 20, pp. 859–871. https://doi.org/10.1046/j.1525-1314.2002.00408.x

Botting, J.P., Muir, L.A., Wang, W., Qie, W., Tan, J., Zhang, L., and Zhang, Y. 2018. Sponge-dominated offshore benthic ecosystems across South China in the aftermath of the end-Ordovician mass extinction. Gondwana Research, 61, pp. 150–171. https://doi.org/10.1016/j.gr.2018.04.014

Bower, D.M., Steele, A., Fries, M.D., and Kater, L. 2013. Micro Raman spectroscopy of carbonaceous material in microfossils and meteorites: improving a method for life detection. Astrobiology, 13, pp. 103–113.https://doi.org/10.1089/ast.2012.0865

Canfield, D.E. and Thamdrup, B.O. 2009. Towards a consistent classification scheme for geochemical environments, or, why we wish the term 'suboxic' would go away. Geobiology, 7, pp. 385–392. https://doi.org/10.1111/j.1472-4669.2009.00214.x

Chiglino, L., Gaucher, C., Sial, A.N., and Ferreira, V.P. 2015. Acritarchs of the Ediacaran Frecheirinha Formation, Ubajara Group, northeastern Brazil. Anais da Academia Brasileira de Ciências, 87, pp. 635–649. https://doi.org/10.1590/0001-3765201520140430

Crimes, T.P. and Anderson, M.M. 1985. Trace fossils from Late Precambrian–Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. Journal of Paleontology, pp. 310–343.

Den Uyl, P.A., Harrison, S.B., Godwin, C.M., Rowe, M.D., Strickler, J.R., and Vanderploeg, H.A. 2021. Comparative analysis of Microcystis buoyancy in western Lake Erie and Saginaw Bay of Lake Huron. Harmful Algae, 108. Article no. 102102, 11 pp. https://doi.org/10.1016/j.hal.2021.102102

Douglas, J.L. 1983. Geochemistry of the Cambrian manganese deposits of eastern Newfoundland. Unpublished PhD thesis, Memorial University, St. John's, Newfoundland and Labrador, 328 p.

Downie, C., Lister, T.R., Harris, A.L., and Fettes, D.J. 1971. A palynological investigation of the Dalradian rocks of Scotland. Report of the Institute of Geological Sciences Report, 71, 1–29.

Fletcher, T.P. 2006. Bedrock geology of the Cape St. Mary's Peninsula, southwest Avalon Peninsula, Newfoundland (includes parts of NTS map sheets 1M/1, 1N/4, 1L/16 and 1K/13). Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Report 06-2, pp. 1–137.

Foster, C.B., Cernovskis, A., and O'Brien, G.W. 1985. Organic-walled microfossils from the Early Cambrian of South Australia. Alcheringa: an Australasian Journal of Palaeontology, 9, pp. 259–268. https://doi.org/10.1080/03115518508618972

Frei, R., Gaucher, C., Stolper, D., and Canfield, D.E. 2013. Fluctuations in late Neoproterozoic atmospheric oxidation - Cr isotope chemostratigraphy and iron speciation of the late Ediacaran lower Arroyo del Soldado Group (Uruguay). Gondwana Research, 23, pp. 797–811. https://doi.org/10.1016/j.gr.2012.06.004

Gaucher, C. 2000. Sedimentology, palaeontology and stratigraphy of the Arroyo del Soldado Group (Vendian to Cambrian, Uruguay). Beringeria, 608, 62 pp.

Gaucher, C. and Germs, G. J. B. 2006. Recent advances in South African Neoproterozoic–Early Palaeozoic biostratigraphy: correlation of the Cango Caves and Gamtoos groups and acritarchs of the Sardinia Bay Formation, Saldania Belt. South African Journal of Geology, 109, pp. 193–214. https://doi.org/10.2113/gssajg.109.1-2.193

Gaucher, C. and Sprechmann, P. 1999. Upper Vendian skeletal fauna of the Arroyo del Soldado Group, Uruguay. Beringeria, 23, pp. 55–91.

Gaucher, C., Boggiani, P., Sprechmann, P., Sial, A., and Fairchild, T. 2003. Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumbá groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Research, 120, pp. 241–278. https://doi.org/10.1016/S0301-9268(02)00140-7

Gaucher, C., Chiglino, L., and Peçoits, E. 2004. Southernmost xxposures of the Arroyo del Soldado Group (Vendian to Cambrian, Uruguay): palaeogeographic implications for the amalgamation of W-Gondwana. Gondwana Research, 7, pp. 701–714. https://doi.org/10.1016/S1342-937X(05)71057-1

Gaucher, C., Frimmel, H.E., and Germs, G. J. B. 2005. Organic-walled microfossils and biostratigraphy of the upper Port Nolloth Group (Namibia): implications for latest Neoproterozoic glaciations. Geological Magazine, 142, pp. 539–559. https://doi.org/10.1017/S0016756805001123

Gaucher, C., Blanco, G., Chiglino, L., Poiré, D., and Germs, G.J. 2008. Acritarchs of Las Ventanas Formation (Ediacaran, Uruguay): implications for the timing of coeval rifting and glacial events in western Gondwana. Gondwana Research, 13, pp. 488–501. https://doi.org/10.1016/j.gr.2007.05.008

German, T.N., Mikhajlova, N.S., and Yankauskas, T.V. 1989. Sistematicheskoe opisanie mikrofossilij [Systematic description of microfossils]. In Mikrofossilii Dokembriya SSSR [Precambrian Microfossils of the USSR]. Edited by T.V. Yankauskas. Leningrad, Nauka, pp. 34–151.

Hagenfeldt, S.E., Palmlöv, E., Amantov, A., Hagström, J., Ghalayini, R., and Liljedahl, T. 2023. The development of dark shales from the middle and late Cambrian to early Ordovician on the East European Platform-with focus on Gotland. GFF, 145, pp. 30–49. https://doi.org/10.1080/11035897.2023.2251154

Hayes, J.M., Kaplan, I.R., and Wedeking, W. 1983. Precambrian organic geochemistry, preservation of the record. In Earth's Earliest Biosphere. Edited by J.W. Schopf. Princeton University Press, pp. 93–134

Henry, D.G., Jarvis, I., Gillmore, G., and Stephenson, M. 2019. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: application to sedimentary, metamorphic and structural geology. Earth-Science Reviews, 198. Article no. 102936, 19 pp. https://doi.org/10.1016/j.earscirev.2019.102936

Hutchinson, R.D. 1962. Cambrian stratigraphy and trilobite faunas of southeastern Newfoundland. Geological Survey of Canada, Department of Mines and Technical Surveys, 43 pp. https://doi.org/10.4095/123902

Johnson, S., White, C.E., Palacios, T., Jensen, S., and Barr, S.M. 2024. Middle Cambrian (Miaolingian) acritarchs from the Flagg Cove Formation, Grand Manan Island, New Brunswick, Canada: stratigraphic implications and possible correlations. Atlantic Geoscience, 60, pp. 63–75. https://doi.org/10.4138/atlgeo.2024.004.

Kelly, L. J., Fauria, K.E., Mittal, T., El Kassar, J., Bennartz, R., Nicholson, D., Subramaniam, A., and Gupta, A.K. 2023. Ash deposition triggers phytoplankton blooms at Nishinoshima volcano, Japan. Geochemistry, Geophysics, Geosystems, 24, pp. 1–22. https://doi.org/10.1029/2023GC010914

Kennedy, M.J., Pevear, D.R., and Hill, R.J. 2002. Mineral surface control of organic carbon in black shale. Science, 295, pp. 657–660. https://doi.org/10.1126/science.1066611

Kerr, A., Dunning, G.R., and Tucker, R.D. 1993. The youngest Paleozoic plutonism of the Newfoundland Appalachians: U-Pb ages from the St. Lawrence and François granites. Canadian Journal of Earth Sciences, 30, pp. 2328–2333. https://doi.org/10.1139/e93-202

Kisch, H.J. 1991. Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. Journal of Metamorphic Geology, 9, pp. 665–670. https://doi.org/10.1111/j.1525-1314.1991.tb00556.x

Kübler, B. 1967. La cristallinité de l'illite et les zones tout á fait supérieures du métamorphisme. Etages Tectoniques, Colloque de Neuchâtel 1966. Univ. Neuchâtel à la Baconnière, Suisse, pp. 105–121.

Kützing, F.T. 1833. Synopsis diatomearum oder Versuch einer systematischen Zusammenstellung der Diatomeen. Linnaea, 8, pp. 529–620. https://doi.org/10.5962/bhl.title.65634

Lahfid, A., Beyssac, O., Deville, E., Negro, F., Chopin, C., and Goffé, B. 2010. Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova, 22, pp. 354–360. https://doi.org/10.1111/j.1365-3121.2010.00956.x

Landing, E. and Westrop, S.R. 1998. Avalon 1997-The Cambrian Standard. The international field conference of the Cambrian Chronostratigraphy Working Group. IGCP Project 366 (Ecological aspects of the Cambrian radiation). New York State Museum Bulletin 492, 92 p.

Landis, C.A. 1971. Graphitization of dispersed carbonaceous material in metamorphic rocks. Contributions to Mineralogy and Petrology, 30, pp. 34–45. https://doi.org/10.1007/BF00373366

Large, R.R., Halpin, J.A., Lounejeva, E., Danyushevsky, L.V., Maslennikov, V.V., Gregory, D., Sack, P., Haines, P.W., Long, J.A., Makoundi, C., Stepanov, A.S. 2015. Cycles of nutrient trace elements in the Phanerozoic ocean. Gondwana Research, 28, 1282–1293. https://doi.org/10.1016/j.gr.2015.06.004

Le Hérissé, A., Vecoli, M., Guidat, C., Not, F., Vecoli, M., Breuer, P., Wellman, C., and Steemans, P. 2017. Middle Ordovician acritarchs and problematic organic-walled microfossils from the Saq-Hanadir transitional beds in the QSIM-801 well, Saudi Arabia. Revue de Micropaléontologie, 60, pp. 289–318. https://doi.org/10.1016/j.revmic.2017.08.001

Longman, J., Mills, B.J., Manners, H.R., Gernon, T.M., and Palmer, M.R. 2021. Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply. Nature Geoscience, 14, pp. 924–929. https://doi.org/10.1038/s41561-021-00855-5

Love, L.G. 1958. Micro-organisms and the presence of syngenetic pyrite. Quarterly Journal of the Geological Society of London, 113, pp. 429–440. https://doi.org/10.1144/GSL.JGS.1957.113.01-04.18

MacLean, L.C.W., Tyliszczak, T., Gilbert, P.U.P.A., Zhou, D., Pray, T.J., Onstott, T.C., and Southam, G. 2008. A high‐resolution chemical and structural study of framboidal pyrite formed within a low‐temperature bacterial biofilm. Geobiology, 6, pp. 471–480. https://doi.org/10.1111/j.1472-4669.2008.00174.x

Magyarosi, Z., Sparkes, B.A., Conliffe, J., and Dunning, G.R. 2019. The AGS fluorite deposit, St. Lawrence: paragenetic sequence, fluid inclusion analysis, structural control, host rock geochronology and implications for ore genesis. In Current Research. Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Report 19-1, pp. 59–83.

Mansuy, C. and Vidal, G. 1983. Late Proterozoic Brioverian microfossils from France: taxonomic affinity and implications of plankton productivity. Nature, 302, pp. 606–607. https://doi.org/10.1038/302606a0

Marshall, C.P., Javaux, E.J., Knoll, A.H., and Walter, M. . 2005. Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to Palaeobiology. Precambrian Research, 138, pp. 208–224. https://doi.org/10.1016/j.precamres.2005.05.006

Martin, R.E. 1996. Secular increase in nutrient levels through the Phanerozoic: Implications for productivity, biomass, and diversity of the marine biosphere. Palaios, 11, pp. 209–219. https://doi.org/10.2307/3515230

Martin, F. and Dean, W.T. 1981. Middle and Upper Cambrian and Lower Ordovician acritarchs from Random Island, eastern Newfoundland. Canada Geological Survey Bulletin, 343, pp.1–43. https://doi.org/10.4095/124915

McCartney, W.D. 1967. Whitbourne map-area, Newfoundland. Geological Survey of Canada, Memoir, 341, pp. 1–135. https://doi.org/10.4095/123895

Menges, F. 2022. Spectragryph - optical spectroscopy software, Version 1.1.16.1, 2022, http://www.effemm2.de/spectragryph/

Mills, A. and Álvaro, J.J. 2023. Lithogeochemical features of Cambrian basalts from western Avalon Peninsula, Avalon Terrane, Newfoundland: alkaline magmatism along an inherited fault zone. Current Research, 23, pp. 1–24.

Mills, A. and Jones, V. 2024. New structural observations on the southern Burin Peninsula, Avalon zone, Newfoundland. Newfoundland and Labrador Department of Industry, Energy and Technology Geological Survey, 24-1, pp. 181–204. http://doi.org/10.13140/RG.2.2.34217.61282

Moorman, M. 1974. Microbiota of the Late Proterozoic Hector Formation, southwestern Alberta, Canada. Journal of Paleontology, 48, pp. 524–539.

Muir, M.D. 1977. Late Precambrian microfossils. Geological Magazine, 114, pp. 395–397. https://doi.org/10.1017/S0016756800036712

Nagy, R.M., Porter, S.M., Dehler, C.M., and Shen, Y. 2009. Biotic turnover driven by eutrophication before the Sturtian low-latitude glaciation. Nature Geoscience, 2, pp. 415–418. https://doi.org/10.1038/ngeo525

Nance, R.D., Murphy, J.B., and Keppie, J.D. 2002. A Cordilleran model for the evolution of Avalonia. Tectonophysics, 352, pp. 11–31. https://doi.org/10.1016/S0040-1951(02)00187-7

Nance, R.D., Murphy, J.B., Strachan, R.A., Keppie, J.D., Gutiérrez-Alonso, G., Fernández-Suárez, J., Quesada, C., Linnemann, U., D'lemos, R., and Pisarevsky, S.A. 2008. Neoproterozoic-early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian v. West African connections. Geological Society, London, Special Publications, 297, pp. 345–383. https://doi.org/10.1144/SP297.17

Narbonne, G.M., Myrow, P.M., Landing, E., and Anderson, M.M. 1987. A candidate stratotype for the Precambrian-Cambrian boundary, Fortune head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences, 24, pp. 1277–1293. https://doi.org/10.1139/e87-124

Nielsen, A.T. and Schovsbo, N.H. 2007 Cambrian to basal Ordovician lithostratigraphy in southern Scandinavia. Bulletin of the Geological Society of Denmark, 53, pp. 47–92. https://doi.org/10.37570/bgsd-2006-53-04

O'Brien, S.J., Strong, P.G., and Evans, J.L. 1977. The geology of the Grand Bank (1M/4) and Lamaline (1L/13) map areas, Burin Peninsula, Newfoundland. Government of Newfoundland and Labrador, Department of Mines and Energy, Mineral Development Division, Report 77-7, pp. 1–20.

O'Brien, S.J., Strong, D.G., and King, A.F. 1990. The Avalon zone type area: southeastern Newfoundland Appalachians. In Avalonian and Cadomian geology of the North Atlantic. Edited by R.A. Strachan andG.K. Taylor. Glasgow, Blackies and Son, pp. 166–194. https://doi.org/10.1007/978-94-009-0401-9_9

O'Brien, S.J., O'Brien, B.H., Dunning, G.R., and Tucker, R.D. 1996. Late Neoproterozoic Avalonian and related peri-Gondwanan rocks of the Newfoundland Appalachians. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic. Edited by R.D. Nance and M.D. Thompson. Geological Society of America Memoir, pp. 9–28. https://doi.org/10.1130/0-8137-2304-3.9

Palacios, T. 1983. Primeros microfósiles de pared orgánica extraídos en el Olistostroma del Membrillar (Proterozoico Superior del Centro de España). Revista Española de Micropaleontología, 15, pp. 511–517.

Palacios, T., Jensen, S., White, C.E., and Barr, S.M. 2011. Cambrian acritarchs from the Bourinot belt, Cape Breton Island, Nova Scotia: age and stratigraphic implications. Canadian Journal of Earth Sciences, 49, pp. 1–19. https://doi.org/10.1139/e11-010

Palacios, T., Högström, A.E.S., Jensen, S., Ebbestad, J.O.R., Agić, H., Høyberget, M., Meinhold, G., and Taylor, W. L. 2022. Organic-walled microfossils from the Kistedalen Formation, Norway: acritarch chronostratigraphy of the Baltic Miaolingian and evolutionary trends of placoid acritarchs. Papers in Palaeontology, 8, pp. 41–57. https://doi.org/10.1002/spp2.1457

Papezik, V.S. 1974. Prehnite-pumpellyite facies metamorphism of late Precambrian rocks of the Avalon Peninsula, Newfoundland. The Canadian Mineralogist, 12, pp. 463–468.

Pasteris, J.D. and Wopenka, B. 2003. Necessary, but not sufficient: Raman identification of disordered carbon as a signature of ancient .ife. Astrobiology, 3, pp. 727–738. https://doi.org/10.1089/153110703322736051

Pflug, H. D. and Reitz, E. 1992. Palynostratigraphy in Phanerozoic and Precambrian metamorphic rocks. In Early organic evolution: implications for mineral and energy resources. Edited by M. Schidlowski, S. Golubic, M.M. Kimberley, D.M. McKirdy, and P.A. Trudinger. Berlin, Heidelberg, Springer, pp. 509–518. https://doi.org/10.1007/978-3-642-76884-2_41

Plotnick, R.E. and Wagner, P.J. 2006. Round up the usual suspects: common genera in the fossil record and the nature of wastebasket taxa. Paleobiology, 32, pp. 126–146. https://doi.org/10.1666/04056.1

Prasad, B., Asher, R., and Borgohai, B. 2010. Late Neoproterozoic (Ediacaran) –Early Paleozoic (Cambrian) acritarchs from the Marwar Supergroup, Bikaner-Nagaur Basin, Rajasthan. Journal of the Geological Society of India, 75, pp. 415–431. https://doi.org/10.1007/s12594-010-0038-4

Rahl, J.M., Anderson, K.M., Brandon, M.T., and Fassoulas, C. 2005. Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks: Calibration and application to tectonic exhumation in Crete, Greece. Earth and Planetary Science Letters, 240, pp. 339-354. https://doi.org/10.1016/j.epsl.2005.09.055

Reitz, E. 1991. Acritarchen des Unter-Tremadoc aus dem westlichen Frankenwald, NE-Bayern (Acritarchs of early Tremadoc sediments in the western Frankenwald area, NE Bavaria). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2, pp. 97–104. https://doi.org/10.1127/njgpm/1991/1991/97

Rees, A.J., Thomas, A.T., Lewis, H.E., Hughes, W., and Turner, P. 2014. The Cambrian of SW Wales: towards a unified Avalonian stratigraphy. Geological Society of London, Memoir 12, 640 pp. https://doi.org/10.1144/M42.0

Rushton, A.W.A. 2011. Chronostratigraphical subdivisions of the Cambrian Period. In: A revised correlation of the Cambrian rocks in the British Isles. Edited by A.W.A. Rushton, P.M. Brück, S.G. Molyneux, M. Williams, and N.H. Woodcock. Geological Society, Special Reports, 25, pp. 3–5. https://doi.org/10.1144/SR25.2

Sageman, B.B., Murphy, A.E., Werne, J.P., Ver Straeten, C.A., Hollander, D.J., and Lyons, T.W. 2003. A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian basin. Chemical Geology, 195, pp. 229–273. https://doi.org/10.1016/S0009-2541(02)00397-2

Satkoski, A.M., Barr, S.M., and Samsom, S.D. 2010. Provenance of Late Neoproterozoic and Cambrian sediments in Avalonia: constraints from detrital zircon ages and Sm–Nd isotopic compositions in southern New Brunswick, Canada. Journal of Geology, 118, pp. 187–200. https://doi.org/10.1086/649818

Savitzky, A. and Golay, M.J.E. 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, pp. 1627–1639. https://doi.org/10.1021/ac60214a047

Schils, T. 2012. Episodic eruptions of volcanic ash trigger a reversible cascade of nuisance species outbreaks in pristine coral habitats. PLoS ONE, 7, pp. 1–7. https://doi.org/10.1371/journal.pone.0046639

Schopf, J.W. 1992. Atlas of representative Proterozoic microfossils. In The Proterozoic biosphere-a multidisciplinary study. Edited by J.W. Schopf and C. Klein. Cambridge University Press, Cambridge, pp. 1054–1117. https://doi.org/10.1017/CBO9780511601064

Shepeleva, E.D. 1962. Rastilel'nyye(?) ostatki neizvestnoy sistematicheskoy prinadlezhnosti iz otlozheniy bavlinskoy serii Volgo-Ural'skoy neftenosnoy provintsii. [(Plant? fossils of unknown taxonomic position from deposits of the Bavlinskaya Series in the Volga-Urals oil province)] Dokl. Akad. Nauk. SSR, 142, pp. 456–457.

Shkrebta, G.P., Antipov, V.I., and Lashmanova, R.M. 1973. New data on the age of ancient deposits in the Dnieper Donetzs Basin. Byulleten Moskovskogo Obshchestva Ispytatelei Prirody, Otdel Geologicheskii (Bulletin of the Moscow Nature Researchers' Society, Geological Department), 48, pp. 59–65 [in Russian].

Sparkes, G. and Dunning, G. 2014. Late Neoproterozoic epithermal alteration and mineralization in the western Avalon zone: a summary of mineralogical investigations and new U–Pb geochronological results. Current Research Newfoundland and Labrador Department of Natural Resources, Geological Survey, Report, 14-1, pp. 99–128.

Srodon, J. 1979. Correlation between coal and clay diagenesis in the Carboniferous of the Upper Silesian Coal Basin. Developments in sedimentology, 27, pp. 251–260. https://doi.org/10.1016/S0070-4571(08)70721-0

Stanevich, A.M., Nemerov, V.K., Sovetov Yu, K., Chatta, E.N., Mazukabzov, A.M., Perelyaev, V.I. and Kornilova, T.A. 2005. Precambrian microfossil-characterized biotopes from the southern margin of the Siberian craton. Russian Journal of Earth Sciences, 7, pp. 1–28. https://doi.org/10.2205/2005ES000183

Stanier, R.Y., Sistrom, W.R., Hansen, T.A. et al. 1978. Proposal to place the nomenclature of the cyanobacteria (blue-green algae) under the rules of the International Code of Nomenclature of Bacteria. International Journal of Systematic and Evolutionary Microbiology, 28, pp. 335–336. https://doi.org/10.1099/00207713-28-2-335

Strong, D.F., O'Brien, S.J., Strong, P.G., Taylor, S.W., and Wilton, D.H. 1976. Geology of the St. Lawrence and Marystown map sheets (1L/14, 1M/3), Newfoundland. Government of Newfoundland and Labrador, Department of Mines and Energy, Mineral Development Division, Open File Report, 895, pp. 1–44.

Strong, D.F., O'Brien, S.J., Taylor, S.W., Strong, P.G., and Wilton, D.H. 1978. Geology of Marystown (1M/3) and St. Lawrence (1L/14) map areas, Newfoundland. Government of Newfoundland and Labrador, Department of Mines and Energy, Mineral Development Division, Report, 77-8, pp. 1–81.

Tuinstra, F. and Koenig, J.L. 1970. Raman spectrum of graphite. The Journal of Chemical Physics, 53, pp. 1126–1130. https://doi.org/10.1063/1.1674108

Van Alstine, R.E. 1948. Geology and mineral deposits of the St. Lawrence area, Burin Peninsula, Newfoundland. Geological Survey of Newfoundland Bulletin, 43, pp. 1–64.

van Staal, C.R., Barr, S.M., McCausland, P.M., Thompson, M.D., and White, C.E. 2020. Tonian–Ediacaran tectonomagmatic evolution of West Avalonia and its Ediacaran–Early Cambrian interactions with Ganderia: an example of complex terrane transfer due to arc-arc collision? In Pannotia to Pangaea: Neoproterozoic and Paleozoic orogenic cycles in the circum-Atlantic region. Edited by J.B. Murphy, R.A. Strachan, and C. Quesada. Geological Society, London, Special Publications, 503, pp. 143–167. https://doi.org/10.1144/SP503-2020-23

Vavrdová, M. 2008. Proterozoic acritarchs from the Precambrian–Cambrian transition in southern Moravia. Bulletin of Geosciences, 83, pp. 85–92. https://doi.org/10.3140/bull.geosci.2008.01.085

Vidal, G. 1976. Late Precambrian microfossils from the Visingsö Beds in southern Sweden. Fossils and Strata, 9, pp. 1–57. https://doi.org/10.18261/8200094189-1976-01

Vidal, G. 1988. A palynological preparation method. Palynology, 12, pp. 215–220. https://doi.org/10.1080/01916122.1988.9989345

Vidal, G. and Nystuen, J.P. 1990. Micropaleontology, depositional environment and biostratigraphy of the upper Proterozoic Hedmark Group, southern Norway. American Journal of Science, 290-A, pp. 261–294.

Warr, L.N. 2018. A new collection of clay mineral 'Crystallinity'Index Standards and revised guidelines for the calibration of Kübler and Árkai indices. Clay Minerals, 53, pp. 339–350. https://doi.org/10.1180/clm.2018.42

Warr, L.N. and Rice, A.H.N. 1994. Interlaboratory standardization and calibration of day mineral crystallinity and crystallite size data. Journal of metamorphic Geology, 12, pp. 141–152. https://doi.org/10.1111/j.1525-1314.1994.tb00010.x

Warr, L.N. and Ferreiro-Mählmann, R.F. 2015. Recommendations for Kübler index standardization. Clay Minerals, 50, pp. 283–286. https://doi.org/10.1180/claymin.2015.050.3.02

Wopenka, B. and Pasteris, J.D. 1993. Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. American mineralogist, 78, pp. 533–557.

Wu, X., Luo, H., Zhang, J., Chen, Q., Fang, X., Wang, W., Li, W., Shi, Z., and Zhang, Y. 2023. Volcanism-driven marine eutrophication in the end-Ordovician: evidence from radiolarians and trace elements of black shale in South China. Journal of Asian Earth Sciences, 253, pp. 1–12. https://doi.org/10.1016/j.jseaes.2023.105687

Yin, L. and Yuan, X. 2007. Radiation of Meso-Neoproterozoic and early Cambrian protists inferred from the microfossil record of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254, pp. 350–361. https://doi.org/10.1016/j.palaeo.2007.03.028

Yin, L.M., Singh, B.P., Bhargava, O.N., Zhao, Y.L., Negi, R.S., Meng, F.W., and Sharma, C.A. 2018. Palynomorphs from the Cambrian Series 3, Parahio valley (Spiti), Northwest Himalaya. Palaeoworld, 27, pp. 30–41. https://doi.org/10.1016/j.palwor.2017.05.004

Zhang, J., Li, W., Fang, X., Wu, X., Li, C., and Zhang, Y. 2024. Marine eutrophication within the Tarim Platform in sync with Middle to Late Ordovician climatic cooling. Journal of the Geological Society, 181, pp.1–8. https://doi.org/10.1144/jgs2023-078

Editorial responsibility: Chris E. White

Downloads

Published

2025-05-17

How to Cite

Martínez-Benítez, B., Mills, A. J., & Álvaro, J. (2025). Microbial components and metamorphic grade of Miaolingian (Cambrian) black shales from the Burin Peninsula, Newfoundland, Canada. Atlantic Geoscience, 61, 207–223. https://doi.org/10.4138/atlgeo.2025.008

Issue

Section

Special Series: In Recognition of the Geological Career of Sandra M. Barr