Middle Cambrian (Miaolingian) acritarchs from the Flagg Cove Formation, Grand Manan Island, New Brunswick, Canada: stratigraphic implications and possible correlations
DOI:
https://doi.org/10.4138/atlgeo.2024.004Abstract
The upper Ediacaran to lower Cambrian Castalia Group as originally defined comprises a basal sequence of clastic marine sedimentary rocks assigned to the Great Duck Island and Flagg Cove formations and an upper sequence of mainly mafic volcanic and volcaniclastic rocks of the Ross Island, North Head, Priest Cove, and Long Pond Bay formations. A few previously reported specimens of the long-ranging trace fossil Planolites in the Flagg Cove Formation were not inconsistent with the U–Pb age of 539.0 ± 3.3 Ma age for the Priest Cove Formation or the interpreted intrusive relationship between the Flagg Cove Formation and 535 ± 2 Ma Stanley Brook Granite.
During a recent visit, abundant morphologically simple trace fossils, including Planolites, were recognized in strata south of Stanley Beach in Flagg Cove, together with vertically or obliquely oriented trace fossils more than 10 mm in diameter, and probable Teichichnus. The age of this association of trace fossils is post earliest Fortunian. More significantly, grey silty shale interbedded with the sandstone that contains the traces yielded organic-walled microfossils. The microfossils include the acritarch Micrhystridium spp of a type also found in the King Square Formation in the Saint John area. The microfossils suggest a Miaolingian (middle Cambrian) age for the Flagg Cove Formation, requiring that its relationship with the Stanley Brook Granite and Castalia Group needs to be re-examined. it also raises the possibility of correlation with middle Cambrian clastic sedimentary sequences exposed on mainland southern New Brunswick and elsewhere in the region.
References
Alcock, F.J. 1948. Grand Manan, New Brunswick. Geological Survey of Canada, Map 965A, scale 1:63 360. https://doi.org/10.4095/107704
Barr, S.M. and Mortensen, J.K. 2019. Neoproterozoic U–Pb (zircon) and 40Ar/39Ar (muscovite) ages from granitic pegmatite clasts, basal Ross Island Formation, Grand Manan Island, New Brunswick, Canada. Atlantic Geology, 55, pp. 265–274. https://doi.org/10.4138/atlgeol.2019.009
Barr, S.M. and White, C.E. 1996. Contrasts in late Precambrian–early Paleozoic tectonothermal history between Avalon Composite Terrane sensu stricto and other peri- Gondwanan terranes in southern New Brunswick and Cape Breton Island, Canada. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic. Edited by R.D. Nance and M.D. Thompson. Geological Society of America, Special Paper 304, pp. 95–108. https://doi.org/10.1130/0-8137-2304-3.95
Barr, S.M., Miller, B.V., Fyffe, L.R., and White, C.E. 2003a. New U–Pb Ages from Grand Manan and the Wolves Islands, southern New Brunswick. In Current Research 2002. Edited by B.M.W. Carroll. New Brunswick Department of Energy and Mines, Mineral Resource Report 2003-4, pp. 13–22.
Barr, S.M., White, C.E., and Miller, B.V. 2003b. Age and geochemistry of Late Neoproterozoic and Early Cambrian igneous rocks in southern New Brunswick: similarities and contrasts. Atlantic Geology, 39, pp. 55–73. https://doi.org/10.4138/1050
Barr, S.M., Hamilton, M.A., Samson, S.D., Satkoski, A.M., and White, C.E. 2012. Provenance variations in northern Appalachian Avalonia based on detrital zircon age patterns in Ediacaran and Cambrian sedimentary rocks, New Brunswick and Nova Scotia, Canada. Canadian Journal of Earth Sciences, 49, pp. 533–546. https://doi.org/10.1139/e11-070
Barr, S.M., Johnson, S.C., and White, C.E. 2014. The on-going Saint John geology enigma: Avalonia versus Ganderia in southern New Brunswick. GAC-MAC Fredericton 2014, post-meeting field guide, B6, 52 p.
Barr, S.M., van Rooyen, D., Miller, B.V., White, C.E., and Johnson, S.C. 2019. Detrital zircon signatures in Precambrian and Paleozoic sedimentary units in Ganderia and Avalonia of southern New Brunswick—more pieces of the puzzle. Atlantic Geology, 55, pp. 275–299. https://doi.org/10.4138/atlgeol.2019.010
Black, R. 2005. Pre-Mesozoic geology of Grand Manan Island, New Brunswick. Unpublished M.Sc. Thesis, Acadia University, Wolfville, Nova Scotia, 227 p.
Black, R.S., Barr, S.M., Fyffe, L.R., and Miller, B.V. 2004. Pre-Mesozoic rocks of Grand Manan Island, New Brunswick: Field relationships, new U–Pb ages, and petrochemistry. In Geological Investigations in New Brunswick for 2003. Edited by G.L. Martin. New Brunswick Department of Energy and Mines, Mineral Resource Report 2004-4, pp. 21–40.
Boyce, W.D. and Johnson, S. 2004. Early Cambrian trilobites from the Hanford Brook Formation, Public Landing, southern New Brunswick, Canada. Geological Association of Canada, Paleontology Division, Canadian Paleontology Conference Proceedings, 2, p. 14.
Fyffe, L.R. 2014. The Grand Manan terrane of New Brunswick: Tectonostratigraphy and relationship to the Gondwanan margin of the Iapetus Ocean. Geoscience Canada, 41, pp. 483–502. https://doi.org/10.12789/geocanj.2014.41.051
Fyffe, L.R. and Grant, R.H. 2000. Geology of Grand Manan Island (parts of NTS 21B/10 and B/15), New Brunswick. New Brunswick Department of Natural Resources and Energy, Minerals and Energy Division, Plate 2000-29, scale 1:50 000.
Fyffe, L.R. and Grant, R.H. 2001. Precambrian and Paleozoic geology of Grand Manan Island. In Guidebook to Field Trips in New Brunswick and Western Maine. Edited by D. Lentz and R. Pickerill. New England Intercollegiate Geological Conference, Fredericton, New Brunswick, Trip A-5, 13 p.
Fyffe, L.R., Barr, S.M., Johnson, S.C., McLeod, M.J., McNicoll, V.J., Valverde-Vaquero, P., van Staal, C.R., and White, C.E. 2009. Detrital zircon ages from Neoproterozoic and Early Paleozoic conglomerate and sandstone units of New Brunswick and coastal Maine: implications for the tectonic evolution of Ganderia. Atlantic Geology, 45, pp. 110–144. https://doi.org/10.4138/atlgeol.2009.006
Fyffe, L.R., Johnson, S.C., and van Staal, C.R. 2011a. A review of Proterozoic to Early Paleozoic lithotectonic terranes in the northeastern Appalachian orogen of New Brunswick, Canada, and their tectonic evolution during Penobscot, Taconic, Salinic, and Acadian orogensis. Atlantic Geology, 47, pp. 211–248. https://doi.org/10.4138/atlgeol.2011.010
Fyffe, L.R., van Staal, C.R., Valverde-Vaquero, P., and McNicoll, V.J. 2011b. U–Pb Age of the Stanley Brook Granite, Grand Manan Island, New Brunswick, Canada. Atlantic Geology, 47, pp. 1–8. https://doi.org/10.4138/atlgeol.2011.001
Gougeon, R.C., Mángano, M.G., Buatois, L.A., Narbonne, G.M., and Laing, B.A. 2018. Early Cambrian origin of the shelf sediment mixed layer. Nature Communications, 9, 1909. https://doi.org/10.1038/s41467-018-04311-8
Hewitt, M.D. 1993. Geochemical constraints on the sources of sedimentary and volcanic sequences, Grand Manan Island, New Brunswick. Unpublished B. Sc. thesis, Department of Geology, Hartwick College, Oneonta, New York, U.S.A., 20 p.
Hilyard, M. 1992. The geologic significance of Grand Manan Island, New Brunswick. Unpublished B. Sc. Thesis, Department of Geology, Hartwick College, Oneonta, New York, U.S.A., 26 p.
Hodgins, M.L. 1994. Trace elements, REE and Nd isotopic variations in metavolcanic and metasedimentary sequences, Grand Manan Island, New Brunswick. Unpublished B. Sc. thesis, Department of Geology, Hartwick College, Oneonta, New York, U.S.A., 33 p.
Johnson S.C. 2001. Contrasting geology in the Pocologan River and Long Reach areas: implications for the New River belt and correlations in southern New Brunswick and Maine. Atlantic Geology, 37, pp. 61–79. https://doi.org/10.4138/1972
Johnson, S.C., McLeod, M.J., Fyffe, L.R., and Dunning, G.R. 2009. Stratigraphy, geochemistry, and geochronology of the Annidale and New River belts, and the development of the Penobscot arc in southern New Brunswick. In Geological Investigations in New Brunswick for 2008. Edited by G.L. Martin. New Brunswick Department of Natural Resources; Minerals, Policy, and Planning Division, Mineral Resource Report 2009–2, pp. 141–218.
Johnson, S.C., Fyffe, L.R., McLeod, M.J., and Dunning, G.R. 2012. U–Pb ages, and tectonomagmatic history of the Cambro–Ordovician Annidale group: a remnant of the Penobscot arc system in southern New Brunswick. Canadian Journal of Earth Sciences, 49, pp. 166–188. https://doi.org/10.1139/e11-031
Johnson, S.C., Dunning, G.R., and Miller, B.V. 2018. U–Pb geochronology and geochemistry from the northeastern New River belt, southern New Brunswick, Canada: significance of the Almond Road Group to the Ganderian platformal margin. Atlantic Geology, 54, pp. 147–176. https://doi.org/10.4138/atlgeol.2018.005
Klein, G de V. 1962. Triassic sedimentation. Maritime Provinces, Canada. Geological Society of America Bulletin, 73, pp. 1127–1146. https://doi.org/10.1130/0016-7606(1962)73[1127:TSMPC]2.0.CO;2
Landing, E. and Westrop, S.R. 1996. Upper Lower Cambrian depositional sequence in Avalonian New Brunswick. Canadian Journal of Earth Sciences, 33, pp. 404–417. https://doi.org/10.1139/e96-030
Landing, E., Johnson, S.C., and Geyer, G. 2008. Faunas and Cambrian volcanism on the Avalonian marginal platform, southern New Brunswick. Journal of Paleontology, 82, pp. 884–905. https://doi.org/10.1666/07-007.1
Mángano, M.G. and Buatois, L.A. 2020. The rise and early evolution of animals: where do we stand from a trace-fossil perspective? Interface Focus, 10. https://doi.org/10.1098/rsfs.2019.0103
Marzoli, A., Callegaro, S., Dal Corso, J., Davies, J.H., Chiaradia, F.L., Youbi, M., et al. 2018. The Central Atlantic Magmatic Province (CAMP): a review. In The Late Triassic World. Topics in Geobiology, 46. Edited by L.H. Tanner. pp. 91–125. https://doi.org/10.1007/978-3-319-68009-5_4
McCutcheon, S.R. and Robinson, P.T. 1987. Geological constraints on the genesis of the Maritimes Basin, Atlantic Canada. In Sedimentary Basins and Basin-forming Mechanisms, Edited by C. Beaumont and A.J. Tankard, Canadian Society of Petroleum Geology, Memoir 12, pp. 287–297.
McHone, J. G. 2011. Triassic basin stratigraphy at Grand Manan, New Brunswick, Canada. Atlantic Geology 47, pp. 125–137. https://doi.org/10.4138/atlgeol.2011.006
McHone, J. G. and Fyffe, L.R. 2014. Geology of the Island of Grand Manan, New Brunswick: Precambrian to Early Cambrian and Triassic formations. Field Trip Guidebook. Geological Association of Canada/Mineralogical Association of Canada, Joint Annual Meeting, Fredericton, New Brunswick, Trip B3, 76 p. https://doi.org/10.12789/geocanj.2013.40.027
McLeod, M.J., Johnson, S.C., and Ruitenberg, A.A. 1994. Geological map of southwestern New Brunswick. New Brunswick Department of Natural Resources and Energy, Mineral Resources, Map NR-5, scale 1:250 000.
Miller, B.V., Barr, S.M., and Black, R.S. 2007. Neoproterozoic and Cambrian U–Pb (zircon) ages from Grand Manan Island, New Brunswick: Implications for stratigraphy and northern Appalachian terrane correlations. Canadian Journal of Earth Sciences, 44, pp. 911–923. https://doi.org/10.1139/e06-132
Olsen, P.E. 1997. Stratigraphic record of the early Mesozoic breakup of Pangea in the Laurasia–Gondwana rift system. Annual Reviews of Earth and Planetary Sciences, 25, pp. 337–401. https://doi.org/10.1146/annurev.earth.25.1.337
Palacios, T. 2015. Acritarch assemblages from the Oville and Barrios Formations, northern Spain: a pilot proposal of a middle Cambrian (Series 3) acritarch biozonation in northwestern Gondwana. Review of Palaeobotany & Palynology, 219, pp. 71–105. https://doi.org/10.1016/j.revpalbo.2015.03.008
Palacios, T., Jensen, S., White, C. E., and Barr, S.M. 2012. Cambrian acritarchs from the Bourinot belt, Cape Breton Island, Nova Scotia: age and stratigraphic implications. Canadian Journal of Earth Sciences, 49, pp. 289–307. https://doi.org/10.1139/e11-010
Palacios, T., Högström, A.E.S., Jensen, S., Ebbestad, J.O.R., Agić, H., Høyberget, M., Meinhold, G., and Taylor, W.L. 2022. Organic-walled microfossils from the Kistedalen Formation, Norway: acritarch chronostratigraphy of the Baltic Miaolingian and evolutionary trends of placoid acritarchs. Papers in Palaeontology, 8, e1457. https://doi.org/10.1002/spp2.1457
Pe-Piper, G. and Wolde, B. 2000. Geochemistry of metavolcanic rocks of the Ross Island and Ingalls Head formations, Grand Manan Island, New Brunswick. Atlantic Geology, 36, pp. 103–116. https://doi.org/10.4138/2014
Reusch, D.N., Holm-Denoma, C.S., and Slack, J.F. 2018. U–Pb zircon geochronology of Proterozoic and Paleozoic rocks, North Islesboro, coastal Maine (USA): links to West Africa and Penobscottian orogenesis in southeastern Ganderia? Atlantic Geology, 54, pp. 189–224. https://doi.org/10.4138/atlgeol.2018.007
Stewart, D.B., Tucker, R.D., Ayuso, R.A., and Lux, D.R. 2001. Minimum age of the Neoproterozoic Seven Hundred Acre Island Formation and the tectonic setting of the Islesboro Formation, Islesboro block, Maine. Atlantic Geology, 37, pp. 41–59. https://doi.org/10.4138/1971
Stringer, P. and Pajari, G.E. 1981. Deformation of pre-Triassic rocks of Grand Manan, New Brunswick. In Current Research, Part C. Geological Survey of Canada, Paper 81-1C, pp. 9–15. https://doi.org/10.4095/116045
Tanoli, S. K. and PickerillL, R. K. 1988. Lithostratigraphy of the Cambrian–Lower Ordovician Saint John Group, southern New Brunswick. Canadian Journal of Earth Sciences, 25, pp. 669–690. https://doi.org/10.1139/e88-064
Tanoli, S.K. and Pickerill, R.K. 1989. Cambrian shelf deposits of the King Square Formation, Saint John Group, southern New Brunswick. Atlantic Geology, 25, pp. 129–141. https://doi.org/10.4138/1678
van Staal, C.R. 2005. The Northern Appalachians, In Encyclopedia of Geology, 4. Edited by R.C. Selley, L.R.M. Cocks, M., and I.R. Plimer. Elsevier, Oxford, pp. 81–91. https://doi.org/10.1016/B0-12-369396-9/00407-X
van Staal, C.R. and Barr, S.M. 2012. Lithospheric architecture and tectonic evolution of the Canadian Appalachians and associated Atlantic margin. Chapter 2 In Tectonic styles in Canada: the LITHOPROBE perspective. Edited by J.A. Percival, F.A. Cook, and R.M. Clowes. Geological Association of Canada, Special Paper 49, pp.41–95.
van Staal, C.R., Dewey, J. E, Mac Niocaill, C., and McKerrow, W.S., 1998. The Cambrian–Silurian tectonic evolution of the northern Appalachians and British Caledonides: history of a complex, west and southwest Pacific-type segment of Iapetus. In Lyell: the Past is the Key to the Present. Edited by D.J. Blundell and A. C. Scott. Geological Society, London, Special Publications, 143, pp. 199–242. https://doi.org/10.1144/GSL.SP.1998.143.01.17
van Staal, C.R., Barr, S.M., McCausland, P.J., Thompson, M.D., and White, C.E. 2021a. Tonian–Ediacaran tectonomagmatic evolution of West Avalonia and its Ediacaran–early Cambrian interactions with Ganderia: an example of terrane transfer due to arc-arc collision? In Pannotia to Pangaea: Neoproterozoic and Paleozoic orogenic cycles in the circum-Atlantic region. Edited by J.B. Murphy, R.A. Strachan, and C. Quesada. Geological Society, London, Special Publications, 503, pp. 143–167. https://doi.org/10.1144/SP503-2020-23
van Staal, C.R., Barr, S.M.,Waldron, J.W.F., Schofield, D.I., Zagorevski, A., and White, C.E. 2021b. Provenance and Paleozoic tectonic evolution of Ganderia and its relationships with Avalonia and Megumia in the Appalachian–Caledonide orogen, Gondwana Research, 98, pp. 212–243. https://doi.org/10.1016/j.gr.2021.05.025
Volkova, N.A. and Kir’yanov, V.V. 1995. Regional Middle–Upper Cambrian stratigraphic scheme of the East European Platform. Stratigraphy and Geological Correlation, 34, pp. 484–492.
Wade, J.A., Brown, D.E., Traverse, A., and Fensome, R.A. 1996. The Triassic–Jurassic Fundy Basin, eastern Canada: regional setting, stratigraphy, and hydrocarbon potential. Atlantic Geology, 32, pp. 189–231. https://doi.org/10.4138/2088
Waldron, J.W F., McCausland, P. J.A., Barr, S.M., Schofield, D.I., Reusch, D., and Wu, L. 2022. Terrane history of the Iapetus Ocean as preserved in the northern Appalachians and western Caledonides. Earth Science Reviews, 233, 104163. https://doi.org/10.1016/j.earscirev.2022.104163
Williams, H., 1979. Appalachian Orogen in Canada. Canadian Journal of Earth Sciences, 16, pp. 792–807. https://doi.org/10.1139/e79-070
Published
How to Cite
Issue
Section
License
As of January 1, 2025, Atlantic Geoscience is adopting Creative Commons Attribution 4.0 International (CC BY 4.0) This license requires that reusers give credit to the creator. It allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, even for commercial purposes.
Copyright to material published in Atlantic Geoscience is normally retained by the author. Alternate arrangements can be made on request for government employees.
Permission to use a single graphic for which the author owns copyright is considered “fair dealing” under the Canadian Copyright Act and “fair use” by the journal, and no other permission need be granted, subject to the image being appropriately cited in all reproductions. The same fair dealing/fair use policy applies to sections of text up to 100 words in length.