Vol. 50 No. 4 (2023)
Articles

Trace Element Composition of Placer Gold Across the Okanagan Fault, Kelowna, British Columbia, Canada

John Greenough
Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Okanagan, 3333 University Way, Kelowna, British Columbia, V1V 1V7
Mikkel Tetland
Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Okanagan, 3333 University Way, Kelowna, British Columbia, V1V 1V7

Publié-e 2023-12-18

Mots-clés

  • AuRM2,
  • LA-ICP-MS,
  • Native Gold,
  • Okanagan, British Columbia,
  • Orogenic,
  • Trace Elements
  • ...Plus
    Moins

Comment citer

Greenough, J., & Tetland, M. (2023). Trace Element Composition of Placer Gold Across the Okanagan Fault, Kelowna, British Columbia, Canada. Geoscience Canada, 50(4), 259–276. https://doi.org/10.12789/geocanj.2023.50.202

##plugins.generic.funding.fundingData##

Résumé

Pendant 100 ans, l'or placérien a joué un rôle important dans le peuplement, le développement économique et, plus récemment, la géologie récréative de la région de Kelowna, en Colombie-Britannique. Il est surtout connu pour se trouver dans les roches sédimentaires modernes de Mission Creek et Lambly Creek, ainsi qu’en tant que gisement paléoplacérien dans les sédiments miocènes de l'ancienne mine de Winfield. Les localités Mission Creek et Winfield sont à l'est de la faille d'Okanagan, une faille normale à faible pendage vers l'ouest et active depuis l'Éocène. Lambly Creek se trouve à l'ouest de la faille. Des roches ignées et métasédimentaires du Paléozoïque supérieur à l’Éocène sont présentes dans le bassin versant de Lambly Creek, mais des unités de gneiss de l'Éocène, exposées par la faille, se trouvent du côté est de la vallée d'Okanagan. Cette étude teste l'hypothèse selon laquelle les compositions de l'or natif placérien varient le long de la faille d'Okanagan, reflétant différentes sources et histoires pour l'or. Un nombre restreint d'analyses d'Au et d’Ag (23 analyses) dans des échantillons représentatifs d'or placérien ont été effectuées au microscope électronique à balayage avec un spectromètre à dispersion d'énergie (MEB-EDS). Les zones analysées pour l’Au et l’Ag ont également été analysées pour 19 éléments traces à l'aide d'un spectromètre de masse à plasma induit par couplage inductif par ablation au laser (LA-ICP-MS). Le mercure a été déterminé de manière semi-quantitative dans des grains d'or « inconnus » en estimant d'abord sa concentration (~3,69 ppm) dans l'étalon externe AuRM2. Les proportions d’Au, d’Ag et de Cu dans les noyaux des grains indiquent que tout l'or provient de gîtes mésothermaux/hypogènes ou éventuellement de gisements rocheux porphyriques aurifères, bien que les signatures primaires aient pu être masquées par du métamorphisme ou de l'altération. Les grains de Winfield et Mission Creek ont tendance à avoir des concentrations plus élevées en éléments sidérophiles Fe, Ni, Pd et Pt et en éléments chalcophiles As, Se, Te, Hg, Pb et Bi, mais des concentrations plus faibles en Cu et Sb que l'or de Lambly Creek. Le mercure est nettement plus élevé dans l'or de Winfield et Mission Creek que dans l'or de Lambly Creek du côté ouest de la vallée; l'élément semble particulièrement utile pour le traçage de l'or. Les compositions aurifères de Lambly Creek indiquent une origine de deux sources orogéniques/hypogènes provenant des roches vertes et des roches plutoniques/hydrothermales présentes dans le bassin versant. Les grains modernes de Mission Creek et des grains paléoplacériens du Miocène de Winfield ont une signature d'éléments traces hypogènes similaire, mais il n'existe aucune source d'or connue dans la roche-mère locale. Les noyaux des grains d'or de Mission Creek et de Winfield sont entourés de bordures de moins de 10 µm de large, riches en Au et pauvres en Ag et en éléments traces. Les grains de Lambly Creek ne présentent pas de telles bordures. Les bordures riches en Au sur l'or moderne de Mission Creek et l’or miocène de Winfield peuvent refléter une exposition prolongée près de la surface avec une dissolution électrochimique superficielle des éléments traces hypogènes ou la précipitation biologique de l'or. La faible teneur en Ag et la coloration rouge à la surface des grains soutiennent l’hypothèse d’une précipitation biologique. La signature commune en éléments traces, ainsi que les bordures riches en Au, indiquent que l'or placérien moderne de Mission Creek a été remanié à plusieurs reprises à partir de paléoplacers du Miocène similaires à ceux de Winfield, résultant du soulèvement et de l'érosion des roches du côté est de la faille d'Okanagan.

Références

  1. Antweiler, J.C., and Campbell, W.L., 1977, Application of gold compositional analyses to mineral exploration in the United States: Journal of Geochemical Exploration, v. 8, p. 17–29, https://doi.org/10.1016/0375-6742(77)90041-3. DOI: https://doi.org/10.1016/0375-6742(77)90041-3
  2. Antweiler, J.C., and Campbell, W.L., 1982, Gold in exploration geochemistry, in Levinson, A.L., ed., Precious Metals in the Northern Cordillera: Association of Exploration Geochemistry, Calgary, AB, p. 33–44.
  3. Armstrong, R., 1988, Mesozoic and early Cenozoic magmatic evolution of the Canadian Cordillera, in Clark, S.P., Jr., and Burchfiel, B.C., eds., Processes in Continental Lithospheric Deformation: Geological Society of America Special Papers, v. 218, p. 55–91, https://doi.org/10.1130/SPE218-p55. DOI: https://doi.org/10.1130/SPE218-p55
  4. Banks, D.A., Chapman, R.J., and Spence-Jones, C., 2018, Detrital gold as a deposit-specific indicator mineral by LA-IPS-MS analysis: Geoscience Report 2018–21, 49 p. Available at: https://cdn.geosciencebc.com/project_data/GBCReport2018-21.pdf.
  5. BC Ministry of Energy and Mines, 1993, MINFILE detail report for Winfield (Eley/Hall) occurrence: British Columbia Geologic Survey, MINFILE Report: 082LSW093.
  6. BC Ministry of Energy and Mines, 1996, MINFILE detail report for Mission Creek occurrence: British Columbia Geologic Survey MINFILE Report: 082ENW105.
  7. Boyle, D.R., 1982, The formation of basal-type uranium deposits in south central British Columbia: Economic Geology, v. 77, p. 1176–1209, https://doi.org/10.2113/gsecongeo.77.5.1176. DOI: https://doi.org/10.2113/gsecongeo.77.5.1176
  8. Boyle, R.W., 1979, The geochemistry of gold and its deposits (together with a chapter on geochemical prospecting for the element): Energy, Mines and Resources Canada, Geological Survey 280, 584 p. Available at: https://publications.gc.ca/site/eng/9.817728/publication.html. DOI: https://doi.org/10.4095/105577
  9. Brostoff, L.B., González, J.J., Jett, P., and Russo, R.E., 2008, Trace element fingerprinting of ancient Chinese gold with femtosecond laser ablation-inductively coupled mass spectrometry: Journal of Archaeological Science, v. 36, p. 461–466, https://doi.org/10.1016/j.jas.2008.09.037. DOI: https://doi.org/10.1016/j.jas.2008.09.037
  10. Chapman, R., Mortensen, J.K., and Murphy, R., 2023a, Compositional signatures of gold from different deposit types in British Columbia, Canada: Minerals, v. 13, 1072, https://doi.org/10.3390/min13081072. DOI: https://doi.org/10.3390/min13081072
  11. Chapman, R., Torvela, T., and Savastano, L., 2023b, Insights into regional metallogeny from detailed compositional studies of alluvial gold: An example from the Loch Tay area, central Scotland: Minerals, v. 13, 140, https://doi.org/10.3390/min13020140. DOI: https://doi.org/10.3390/min13020140
  12. Chapman, R.J., Mortensen, J.K., Allan, M.M., Walshaw, R.D., Bond, J., and MacWilliam, K., 2022, A new approach to characterizing deposit type using mineral inclusion assemblages in gold particles: Economic Geology, v. 117, p. 361–381, https://doi.org/10.5382/econgeo.4863. DOI: https://doi.org/10.5382/econgeo.4863
  13. Fryer, B.J., Jackson, S.E., and Longerich, H.P., 1995, The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma–mass spectrometer (LAM-ICP-MS) in the Earth sciences: Canadian Mineralogist, v. 33, p. 303–312.
  14. Fulton, R.J., and Smith, G.W., 1978, Late Pleistocene stratigraphy of south-central British Columbia: Canadian Journal of Earth Sciences, v. 15, p. 971–980, https://doi.org/10.1139/e78-105. DOI: https://doi.org/10.1139/e78-105
  15. Gabrielse, H., and Yorath, C.J., 1991, Tectonic synthesis, in Gabrielse, H., and Yorath, C.J., eds., Geology of the Cordilleran Orogen in Canada: Geological Survey of Canada, Series no. 4, p. 679–705, https://doi.org/10.4095/134123. DOI: https://doi.org/10.1130/DNAG-GNA-G2.677
  16. Garnett, R.H.T., and Bassett, N.C., 2005, Placer deposits, in Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P., eds., One Hundredth Anniversary Volume: Economic Geology, p. 813–843, https://doi.org/10.5382/AV100.25. DOI: https://doi.org/10.5382/AV100.25
  17. Gourlay, A., 1989, Assessment report for the QPX Minerals Inc. spod claim: British Columbia Geologic Survey, Assessment Report: 18499.
  18. Grant, A.H., Lavin, O.P., and Nichol, I., 1991, The morphology and chemistry of transported gold grains as an exploration tool: Journal of Geochemical Exploration, v. 40, p. 73–94, https://doi.org/10.1016/0375-6742(91)90032-P. DOI: https://doi.org/10.1016/0375-6742(91)90032-P
  19. Greenough, J.D., and Roed, M.A., 1995, History of bedrock in the Kelowna area, in Roed, M.A., and Dobson, D.A., eds., Geology of the Kelowna Area and Origin of the Okanagan Valley, British Columbia: Kelowna Geology Committee, p. 27–39.
  20. Greenough, J.D., and Roed, M.A., 2014, Geological history of bedrock in the Kelowna area, in Greenough, J.D., and Roed, M.A., eds., Okanagan Geology, British Columbia, 3rd Edition: Kelowna Geology Committee, p. 27–39.
  21. Greenough, J.D., Hughes, B., Capstick, D., and Roed, M.A., 2004, Mineral resources, in Roed, M.A., and Greenough, J.D., eds., Okanagan Geology, British Columbia: Kelowna Geology Committee, p. 131–146.
  22. Greenough, J.D., Dostal, J., and Mallory-Greenough, L.M., 2007, Incompatible element ratios in French Polynesia basalts: describing mantle component fingerprints: Australian Journal of Earth Sciences, v. 54, p. 947–958, https://doi.org/10.1080/08120090701488271. DOI: https://doi.org/10.1080/08120090701488271
  23. Greenough, J.D., Velasquez, A., Shaheen, M.E., Gagnon, J., Fryer, B.J., Tetland, M., Chen, Y., and Mossman, D., 2021, Laser ablation ICP-MS trace element composition of native gold from the Abitibi Greenstone belt, Timmins, Ontario: Canadian Journal of Earth Sciences, v. 58, p. 593–609, https://doi.org/10.1139/cjes-2019-0134. DOI: https://doi.org/10.1139/cjes-2019-0134
  24. Groen, J.C., Craig, J.R., and Rimstidt, J.D., 1990, Gold-rich rim formation on electrum grains in placers: Canadian Mineralogist, v. 28, p. 207–228.
  25. Hastie, E.C.G., Kontak, D.J., and Lafrance, B., 2020, Gold remobilization: Insights from gold deposits in the Archean Swayze greenstone belt, Abitibi Subprovince, Canada: Economic Geology, v. 115, p. 241–277, https://doi.org/10.5382/econgeo.4709. DOI: https://doi.org/10.5382/econgeo.4709
  26. Hastie, E.C.G., Kontak, D.J., Lafrance, B., Petrus, J.A., Sharpe, R., and Fayek, M., 2023, Evaluating geochemical discriminants in Archean gold deposits: A Superior Province perspective with an emphasis on the Abitibi greenstone belt: Economic Geology, v. 118, p. 123–155, https://doi.org/10.5382/econgeo.4979. DOI: https://doi.org/10.5382/econgeo.4979
  27. Hough, R.M., Butt, C.R.M., and Fischer-Bühner, J., 2009, The crystallography, metallography and composition of gold: Elements, v. 5, p. 297–302, https://doi.org/10.2113/gselements.5.5.297. DOI: https://doi.org/10.2113/gselements.5.5.297
  28. Jochum K.P., Weis U., Stoll B., Kuzmin D., Yang Q., Raczek I., Jacob D.E., Stracke A., Birbaum K., Frick D.A., Günther, D., and Enzweiler, J., 2011, Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines: Geostandards and Geoanalytical Research, v. 35, p. 397–429, https://doi.org/10.1111/j.1751-908X.2011.00120.x. DOI: https://doi.org/10.1111/j.1751-908X.2011.00120.x
  29. Kamenov, G.D., Melchiorre, E.B., Ricker, F.N., and DeWitt, E., 2013, Insights from Pb isotopes for native gold formation during hypogene and supergene processes at Rich Hill, Arizona: Economic Geology, v. 108, p. 1577–1589, https://doi.org/10.2113/econgeo.108.7.1577. DOI: https://doi.org/10.2113/econgeo.108.7.1577
  30. Large, R.R., Meffre, S., Burnett, R., Guy, B., Bull, S., Gilbert, S., Goemann, K., and Danyushevsky, L., 2013, Evidence for an intrabasinal source and multiple concentration processes in the formation of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa: Economic Geology, v. 108, p. 1215–1241, https://doi.org/10.2113/econgeo.108.6.1215. DOI: https://doi.org/10.2113/econgeo.108.6.1215
  31. Lenard, N., 1987a, Assessment report for the Lenard, N Bond 1 claim: British Columbia Geologic Survey, Assessment Report: 16027.
  32. Lenard, N., 1987b, Assessment report for the Lenard, N Shear 1-7 claims: British Columbia Geologic Survey, Assessment Report: 16094.
  33. Lenard, N., 1996, Assessment report for the Lenard, N Host claim: British Columbia Geologic Survey, Assessment Report: 24594.
  34. Liu, H., and Beaudoin, G., 2021, Geochemical signatures in native gold derived from Au-bearing ore deposits: Ore Geology Reviews, v. 132, 104066, https://doi.org/10.1016/j.oregeorev.2021.104066. DOI: https://doi.org/10.1016/j.oregeorev.2021.104066
  35. Liu, H., Beaudoin, G., Makvandi, S., Jackson, S.E., and Huang, X., 2021, Multivariate statistical analysis of trace element compositions of native gold from orogenic gold deposits: Implication for mineral exploration: Ore Geology Reviews, v. 131, 104061, https://doi.org/10.1016/j.oregeorev.2021.104061. DOI: https://doi.org/10.1016/j.oregeorev.2021.104061
  36. Madsen, J.K., Thorkelson, D.J., Friedman, R.M., and Marshall, D.D., 2006, Cenozoic to Recent plate configurations in the Pacific Basin: Ridge subduction and slab window magmatism in western North America: Geosphere, v. 2, p. 11–34, https://doi.org/10.1130/GES00020.1. DOI: https://doi.org/10.1130/GES00020.1
  37. Mank, A.J.G., and Mason, P.R.D., 1999, A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples: Journal of Analytical Atomic Spectrometry, v. 14, p. 1143–1153, https://doi.org/10.1039/a903304a. DOI: https://doi.org/10.1039/a903304a
  38. Mark, D., 1988, Assessment report for the Parkwood Resources Bluehawk 1 claim: British Columbia Geologic Survey Assessment Report Report: 17501.
  39. Massey, N.W.D, MacIntyre, D.G., Desjardins, P.J., and Cooney, R.T., 2005, Digital geology map of British Columbia: British Columbia Ministry of Energy and Mines, GeoFile 2005-1.
  40. Mathews, W.M., 1988, Neogene geology of the Okanagan Highland, British Columbia: Canadian Journal of Earth Science, v. 25, p. 725–731, https://doi.org/10.1139/e88-068. DOI: https://doi.org/10.1139/e88-068
  41. McCandless, T.E., Baker, M.E., and Ruiz, J., 1997, Trace element analysis of natural gold by laser ablation ICP-MS: A combined external/internal standardisation approach: Geostandards Newsletter, v. 21, p. 271–278, https://doi.org/10.1111/j.1751-908X.1997.tb00675.x. DOI: https://doi.org/10.1111/j.1751-908X.1997.tb00675.x
  42. McClenaghan, M.B., and Cabri, L.J., 2011, Review of gold and platinum group element (PGE) indicator minerals methods for surficial sediment sampling: Geochemistry: Exploration, Environment, Analysis, v. 11, p. 251–263, https://doi.org/10.1144/1467-7873/10-im-026. DOI: https://doi.org/10.1144/1467-7873/10-IM-026
  43. McCready, A.J., Parnell, J., and Castro, L., 2003, Crystalline placer gold from the Rio Neuquen, Argentina: Implications for the gold budget in placer gold formation: Economic Geology, v. 98, p. 623–633, https://doi.org/10.2113/gsecongeo.98.3.623. DOI: https://doi.org/10.2113/gsecongeo.98.3.623
  44. McInnes, M., Greenough, J.D., Fryer, B.J., and Wells, R., 2008, Trace elements in native gold by solution ICP-MS and their use in mineral exploration: A British Columbia example: Applied Geochemistry, v. 23, p. 1076–1085, https://doi.org/10.1016/j.apgeochem.2007.12.027. DOI: https://doi.org/10.1016/j.apgeochem.2007.12.027
  45. Melo-Gómez, J.D., Hastie, E.C.G., Gibson, H.L., Tait, K.T., and Petrus, J.A., 2021, Gold fineness across Ontario: An update on the Gold Fingerprinting Project, in Summary of Field Work and Other Activities, 2021: Ontario Geological Survey, Open File Report 6380, p. 13-1 to 13-9.
  46. Melo-Gómez, J.D., Hastie, E.C.G., Gibson, H.L., Tait, K.T., and Petrus, J.A., 2022, Trace element content of gold across Ontario: An update on the Gold Fingerprinting Project, in Summary of Field Work and Other Activities, 2022: Ontario Geological Survey, Open File Report 6390, p. 15-1 to 15-11.
  47. Mernagh, T.P., Heinrich, C.A., Leckie, J.F., Carville, D.P., Gilbert, D.J., Valenta, R.K., and Wyborn, L.A.I., 1994, Chemistry of low temperature hydrothermal gold, platinum, and palladium (+ or – uranium) mineralization at Coronation Hill, Northern Territory, Australia: Economic Geology, v. 89, p. 1053–1073, https://doi.org/10.2113/gsecongeo.89.5.1053. DOI: https://doi.org/10.2113/gsecongeo.89.5.1053
  48. Milidragovic, D., Beaudoin, G., and Jackson, S.E., 2016, In-situ trace element characterization of three gold reference materials using EPMA and LA-ICP-MS: Geological Survey of Canada, Open File 8096, 26 p., https://doi.org/10.4095/299097. DOI: https://doi.org/10.4095/299097
  49. Miller, D., Desai, N., Grigorova, D., and Smith, W., 2001, Trace-element study of gold from southern African archaeological sites: South Africa Journal of Science, v. 97, p. 297–300, https://hdl.handle.net/10520/EJC97347.
  50. Monger, J.W.H., and Price, R.A., 1979, Geodynamic evolution of the Canadian Cordillera – progress and problems: Canadian Journal of Earth Sciences, v. 16, p. 770–791, https://doi.org/10.1139/e79-069. DOI: https://doi.org/10.1139/e79-069
  51. Morrison, G.W., Rose, W.J., and Jaireth, S., 1991, Geological and geochemical controls on the silver content (fineness) of gold in gold-silver deposits: Ore Geology Reviews, v. 6, p. 333–364, https://doi.org/10.1016/0169-1368(91)90009-V. DOI: https://doi.org/10.1016/0169-1368(91)90009-V
  52. Morrison, M., 1989, Assessment report for the Jubilation 1-2 claims: British Columbia Geologic Survey Assessment Report: 19110.
  53. Murray, J., 1991, Assessment report for the Amarado Res. Zumar 2-4 claims: British Columbia Geologic Survey Assessment Report: 21600.
  54. Murray, S., 2009, LBMA certified reference materials: Gold project final update: Alchemist, v. 55, p. 11–12.
  55. Nesbitt, B.E., and Muehlenbachs, K., 1995, Geochemical studies of the origins and effects of synorogenic crustal fluids in the southern Omineca Belt of British Columbia, Canada: Geological Society of America Bulletin, v. 107, p. 1033–1050, https://doi.org/10.1130/0016-7606(1995)107<1033:GSOTOA>2.3.CO;2. DOI: https://doi.org/10.1130/0016-7606(1995)107<1033:GSOTOA>2.3.CO;2
  56. Northcote, B., 2022, Exploration and mining in the south central region, British Columbia, in Provincial Overview of Exploration and Mining in British Columbia, 2021: Ministry of Energy, Mines and Low Carbon Innovation, British Columbia Geological Survey, Information Circular 2022-01, p. 85–104.
  57. Okulitch, A.V., (compiler), 2013, Geology, Okanagan Watershed, British Columbia: Geological Survey of Canada, Open File 6839, scale 1:100,000, https://doi.org/10.4095/292220. DOI: https://doi.org/10.4095/292220
  58. Osatenko, M., 1980, Assessment report for the Cominco Ltd. Woodsdale claim: British Columbia Geologic Survey Assessment Report: 08922.
  59. Outridge, P.M., Doherty, W., and Gregoire, D.C., 1998, Determination of trace elemental signatures in placer gold by laser ablation-inductively coupled plasma-mass spectrometry as a potential aid for gold exploration: Journal of Geochemical Exploration, v. 60, p. 229–240, https://doi.org/10.1016/S0375-6742(97)00049-6. DOI: https://doi.org/10.1016/S0375-6742(97)00049-6
  60. Pautler, J., 1988, Assessment report for the Kerr Addison Mines Lamb 1-8 claims: British Columbia Geologic Survey Assessment: 17854.
  61. Penney, G., 2001, Fingerprinting gold using laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS): An exploration tool: Unpublished Honours Thesis, Memorial University of Newfoundland, NL, 65 p.
  62. Pooley, R., Lomas, S., Hawthorn, G., and Alexander, R., 2011, NI 43-101 technical report for a preliminary economic assessment on the Elk Gold Project, Merritt, British Columbia, Canada: Almaden Minerals, Vancouver, BC, Project Code: ALM003.
  63. Potts, P.J., Bowles, J.F.W., Reed, S.J.B., and Cave, M.R., (editors), 1995, Microprobe Techniques in the Earth Sciences (1st edition): Springer New York, NY, 419 p., https://doi.org/10.1007/978-1-4615-2053-5. DOI: https://doi.org/10.1007/978-1-4615-2053-5
  64. Putnis, A., 2009, Mineral replacement reactions: Reviews in Mineralogy and Geochemistry, v. 70, p. 87–124, https://doi.org/10.2138/rmg.2009.70.3. DOI: https://doi.org/10.2138/rmg.2009.70.3
  65. Rasmussen, K.L., Mortensen, J.K., and Falck, H., 2006, Morphological and compositional analysis of placer gold in the South Nahanni River drainage, Northwest Territories, in Emond, D.S., Lewis, L.L., and Weston, L.H., eds., Yukon Exploration and Geology 2006: Yukon Geological Survey, p. 237–250. DOI: https://doi.org/10.4095/224565
  66. Reith, F., Fairbrother, L., Nolze, G., Wilhelmi, O., Clode, P.L., Gregg, A., Parsons, J.E., Wakelin, S.A., Pring, A., Hough, R., Southam, G., and Brugger, J., 2010, Nanoparticle factories: Biofilms hold the key to gold dispersion and nugget formation: Geology, v. 38, p. 843–846, https://doi.org/10.1130/G31052.1. DOI: https://doi.org/10.1130/G31052.1
  67. Reith, F., Brugger, J., Zammit, C.M., Nies, D.H., and Southam, G., 2013, Geobiological cycling of gold: From fundamental process understanding to exploration solutions: Minerals, v. 3, p. 367–394, https://doi.org/10.3390/min3040367. DOI: https://doi.org/10.3390/min3040367
  68. Roed, M.A., 1995, Groundwater resources, in Roed, M.A., and Dobson, D.A., eds., Geology of the Kelowna Area and Origin of the Okanagan Valley, British Columbia: Kelowna Geology Committee, p. 131–134.
  69. Roed, M.A., 2004, Gold mining, Gallagher’s Canyon, in Roed, M.A., and Greenough, J.D., eds., Okanagan Geology, British Columbia: Kelowna Geology Committee, p. 131–132.
  70. Roed, M.A., 2014a, Addendum, new geologic discoveries and projects in the Okanagan, in Greenough, J.D., and Roed, M.A., eds., Okanagan Geology, British Columbia, 3rd Edition: Kelowna Geology Committee, p. 205–226.
  71. Roed, M.A., 2014b, Groundwater resources, in Greenough, J.D., and Roed, M.A., eds., Okanagan Geology, British Columbia, 3rd Edition: Kelowna Geology Committee, p. 145–148.
  72. Roed, MA., Barendregt, R.W., Benowitz, J.A., Smith, C.A.S., Sanborn, P.T., Greenough, J.D., Huscroft, C., Layer, P.W., Mathewes, R.W., and Tessler, D., 2014, Evidence for an Early Pleistocene glaciation in the Okanagan Valley, southern British Columbia: Canadian Journal of Earth Sciences, v. 51, p. 125–141, https://doi.org/10.1139/cjes-2013-0106. DOI: https://doi.org/10.1139/cjes-2013-0106
  73. Scott, A., and Osatenko, M., 1980, Assessment report for the Cominco Ltd. Esperon claim: British Columbia Geologic Survey Assessment Report: 08664.
  74. Tempelman-Kluit, D., and Parkinson, D., 1986, Extension across the Eocene Okanagan crystal[sic] shear in southern British Columbia: Geology, v. 14, p. 318–321, https://doi.org/10.1130/0091-7613(1986)14<318:EATEOC>2.0.CO;2. DOI: https://doi.org/10.1130/0091-7613(1986)14<318:EATEOC>2.0.CO;2
  75. Tempelman-Kluit, D.J., 1989, Geology, Penticton, west of sixth meridian, British Columbia: Geological Survey of Canada, “A” Series Map 1736A, https://doi.org/10.4095/127379. DOI: https://doi.org/10.4095/127379
  76. Tetland, M., 2015, Trace element analysis of placer gold: Unpublished MSc Thesis, University of British Columbia, Okanagan, BC, 206 p.
  77. Tetland, M., Greenough, J., Fryer, B., Hinds, M., and Shaheen, M.E., 2017, Suitability of AuRM2 as a reference material for trace element micro-analysis of native gold: Geostandards and Geoanalytical Research, v. 41, p. 689–700, https://doi.org/10.1111/ggr.12171. DOI: https://doi.org/10.1111/ggr.12171
  78. Townley, B.K., Hérail, G., Maksaev, V., Palacios, C., de Parseval, P., Sepulveda, F., Orellana, R., Rivas, P., and Ulloa, C., 2003, Gold grain morphology and composition as an exploration tool: application to gold exploration in covered areas: Geochemistry: Exploration, Environment, Analysis, v. 3, p. 29–38, https://doi.org/10.1144/1467-787302-042. DOI: https://doi.org/10.1144/1467-787302-042
  79. van Achterbergh, E., Ryan, C.G., and Griffin, W.L., 2004, GLITTER user’s manual on-line interactive data reduction for the LA-ICP-MS microprobe: GEMOC National Key Centre, Macquarie University, p. 1–72.
  80. Watling, R.J., 1999, Novel application of laser ablation inductively coupled plasma mass spectrometry in forensic science and forensic archaeology: Spectroscopy, v. 14, p. 16–34.
  81. Watling, R.J., Herbert, H.K., Delev, D., and Abell, I.D., 1994, Gold fingerprinting by laser ablation inductively coupled plasma mass spectrometry: Spectrochimica Acta, Part B: Atomic Spectroscopy, v. 49, p. 205–219, https://doi.org/10.1016/0584-8547(94)80019-7. DOI: https://doi.org/10.1016/0584-8547(94)80019-7
  82. Watling, R.J., Herbert, H.K., and Abell, I.D., 1995, The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to the analysis of selected sulphide minerals: Chemical Geology, v. 124, p. 67–81, https://doi.org/10.1016/0009-2541(95)00025-H. DOI: https://doi.org/10.1016/0009-2541(95)00025-H
  83. Watling, R.J., Scadding, C.J., and May, C.D., 2014, Chemical fingerprinting of gold using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS): Journal of the Royal Society of Western Australia, v. 97, p. 87–96.
  84. Weeks, R.M., Bradburn, R.G., Flintoff, B.C., Harris, G.R., and Malcolm, G., 1995, The Brenda Mine: the life of a low-cost porphyry copper-molybdenum producer (1970–1990), southern British Columbia: Porphyry Copper Deposits of the Canadian Cordillera, Canadian Institute of Mining Special, v. 46, p. 192–200.
  85. White, G., 1968, Assessment report for the Agricola Mines Deer and Tick claims: British Columbia Geologic Survey Assessment Report: 01694.
  86. Wilde, A.R., Bloom, M.S., and Wall, V.J., 1989, Transport and deposition of gold, uranium, and platinum-group elements in unconformity-related uranium deposits, in Keays, R.R., Ramsay, W.R.H., and Groves, D.I., eds., The Geology of Gold Deposits: The Perspective in 1988: Economic Geology Monograph, 6, p. 637–660, https://doi.org/10.5382/Mono.06.49. DOI: https://doi.org/10.5382/Mono.06.49
  87. Wilkinson, L., Hill, M., and Vang, E., 1992, SYSTAT: statistics, Version 5.2 edition: Systat, Evanston, Illinois, USA.
  88. Zhang, X., Nesbitt, B.E., and Muehlenbachs, K., 1989, Gold mineralization in the Okanagan Valley, southern British Columbia; fluid inclusion and stable isotope studies: Economic Geology, v. 84, p. 410–424, https://doi.org/10.5382/Mono.06.49. DOI: https://doi.org/10.2113/gsecongeo.84.2.410