Trace Element Composition of Placer Gold Across the Okanagan Fault, Kelowna, British Columbia, Canada
Published 2023-12-18
Keywords
- AuRM2,
- LA-ICP-MS,
- Native Gold,
- Okanagan, British Columbia,
- Orogenic
- Trace Elements ...More
How to Cite
Abstract
For 100 years, placer gold has been important to the settlement, economic development, and, recently, recreational geology of the Kelowna, British Columbia, area. It is best-known to occur in modern-day, Mission Creek and Lambly Creek sedimentary rocks, as well as a paleoplacer occurrence in Miocene sediments of the historical Winfield mine. The Mission Creek and Winfield localities are east of the west-dipping, low-angle, normal Okanagan Fault, which has been active since the Eocene. Lambly Creek is west of the fault. Late Paleozoic to Eocene igneous and metasedimentary rocks occur in the Lambly Creek catchment but Eocene gneiss units, unroofed by the fault, occur on the Okanagan Valley’s east side. This study tests the hypothesis that native placer gold compositions vary across the Okanagan Fault reflecting different sources and histories for the gold. A modest number of Au and Ag analyses (23 analyses) in usefully representative placer gold samples were determined on a scanning electron microscope with an energy dispersive spectrometer (SEM-EDS). Spots analyzed for Au and Ag were also analyzed for 19 trace elements using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mercury was semi-quantitatively determined in ‘unknown’ gold grains by first estimating its concentration (~3.69 ppm) in the AuRM2 external standard. Proportions of Au:Ag:Cu in grain cores indicate all the gold came from mesothermal/hypogene or possibly Au porphyry bedrock deposits though primary signatures may have been obscured by metamorphism or weathering. Winfield and Mission Creek grains tend to have higher siderophile Fe, Ni, Pd and Pt and chalcophile elements As, Se, Te, Hg, Pb and Bi but lower Cu and Sb concentrations than Lambly Creek gold. Mercury is distinctly higher in Winfield and Mission Creek gold than in Lambly Creek gold from the west side of the valley; the element appears particularly useful for ‘fingerprinting’ gold. Lambly Creek gold compositions indicate derivation from two orogenic/hypogene sources from greenstone and plutonic/hydrothermal rocks present in the catchment area. Modern day Mission Creek and Miocene paleoplacer Winfield grains have a similar hypogene trace element signature but there are no known local bedrock gold sources. The Mission Creek and Winfield gold grain cores are surrounded by < 10 µm, Au-rich, Ag- and trace element-poor, rims. Lambly Creek grains lack such rims. The Au-rich rims on modern day Mission Creek and Miocene Winfield gold may reflect prolonged near-surface exposure with surficial electrochemical dissolution of hypogene trace elements or the biological precipitation of gold. Low Ag and red colouration on the surface of grains support the biological precipitation hypothesis. The shared trace element signature, together with the Au-rich rims indicate that modern day placer gold in Mission Creek was multiply reworked from Miocene paleoplacers similar to the Winfield occurrence as a result of uplift and erosion of rocks on the east side of Okanagan Fault.
References
- Antweiler, J.C., and Campbell, W.L., 1977, Application of gold compositional analyses to mineral exploration in the United States: Journal of Geochemical Exploration, v. 8, p. 17–29, https://doi.org/10.1016/0375-6742(77)90041-3. DOI: https://doi.org/10.1016/0375-6742(77)90041-3
- Antweiler, J.C., and Campbell, W.L., 1982, Gold in exploration geochemistry, in Levinson, A.L., ed., Precious Metals in the Northern Cordillera: Association of Exploration Geochemistry, Calgary, AB, p. 33–44.
- Armstrong, R., 1988, Mesozoic and early Cenozoic magmatic evolution of the Canadian Cordillera, in Clark, S.P., Jr., and Burchfiel, B.C., eds., Processes in Continental Lithospheric Deformation: Geological Society of America Special Papers, v. 218, p. 55–91, https://doi.org/10.1130/SPE218-p55. DOI: https://doi.org/10.1130/SPE218-p55
- Banks, D.A., Chapman, R.J., and Spence-Jones, C., 2018, Detrital gold as a deposit-specific indicator mineral by LA-IPS-MS analysis: Geoscience Report 2018–21, 49 p. Available at: https://cdn.geosciencebc.com/project_data/GBCReport2018-21.pdf.
- BC Ministry of Energy and Mines, 1993, MINFILE detail report for Winfield (Eley/Hall) occurrence: British Columbia Geologic Survey, MINFILE Report: 082LSW093.
- BC Ministry of Energy and Mines, 1996, MINFILE detail report for Mission Creek occurrence: British Columbia Geologic Survey MINFILE Report: 082ENW105.
- Boyle, D.R., 1982, The formation of basal-type uranium deposits in south central British Columbia: Economic Geology, v. 77, p. 1176–1209, https://doi.org/10.2113/gsecongeo.77.5.1176. DOI: https://doi.org/10.2113/gsecongeo.77.5.1176
- Boyle, R.W., 1979, The geochemistry of gold and its deposits (together with a chapter on geochemical prospecting for the element): Energy, Mines and Resources Canada, Geological Survey 280, 584 p. Available at: https://publications.gc.ca/site/eng/9.817728/publication.html. DOI: https://doi.org/10.4095/105577
- Brostoff, L.B., González, J.J., Jett, P., and Russo, R.E., 2008, Trace element fingerprinting of ancient Chinese gold with femtosecond laser ablation-inductively coupled mass spectrometry: Journal of Archaeological Science, v. 36, p. 461–466, https://doi.org/10.1016/j.jas.2008.09.037. DOI: https://doi.org/10.1016/j.jas.2008.09.037
- Chapman, R., Mortensen, J.K., and Murphy, R., 2023a, Compositional signatures of gold from different deposit types in British Columbia, Canada: Minerals, v. 13, 1072, https://doi.org/10.3390/min13081072. DOI: https://doi.org/10.3390/min13081072
- Chapman, R., Torvela, T., and Savastano, L., 2023b, Insights into regional metallogeny from detailed compositional studies of alluvial gold: An example from the Loch Tay area, central Scotland: Minerals, v. 13, 140, https://doi.org/10.3390/min13020140. DOI: https://doi.org/10.3390/min13020140
- Chapman, R.J., Mortensen, J.K., Allan, M.M., Walshaw, R.D., Bond, J., and MacWilliam, K., 2022, A new approach to characterizing deposit type using mineral inclusion assemblages in gold particles: Economic Geology, v. 117, p. 361–381, https://doi.org/10.5382/econgeo.4863. DOI: https://doi.org/10.5382/econgeo.4863
- Fryer, B.J., Jackson, S.E., and Longerich, H.P., 1995, The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma–mass spectrometer (LAM-ICP-MS) in the Earth sciences: Canadian Mineralogist, v. 33, p. 303–312.
- Fulton, R.J., and Smith, G.W., 1978, Late Pleistocene stratigraphy of south-central British Columbia: Canadian Journal of Earth Sciences, v. 15, p. 971–980, https://doi.org/10.1139/e78-105. DOI: https://doi.org/10.1139/e78-105
- Gabrielse, H., and Yorath, C.J., 1991, Tectonic synthesis, in Gabrielse, H., and Yorath, C.J., eds., Geology of the Cordilleran Orogen in Canada: Geological Survey of Canada, Series no. 4, p. 679–705, https://doi.org/10.4095/134123. DOI: https://doi.org/10.1130/DNAG-GNA-G2.677
- Garnett, R.H.T., and Bassett, N.C., 2005, Placer deposits, in Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P., eds., One Hundredth Anniversary Volume: Economic Geology, p. 813–843, https://doi.org/10.5382/AV100.25. DOI: https://doi.org/10.5382/AV100.25
- Gourlay, A., 1989, Assessment report for the QPX Minerals Inc. spod claim: British Columbia Geologic Survey, Assessment Report: 18499.
- Grant, A.H., Lavin, O.P., and Nichol, I., 1991, The morphology and chemistry of transported gold grains as an exploration tool: Journal of Geochemical Exploration, v. 40, p. 73–94, https://doi.org/10.1016/0375-6742(91)90032-P. DOI: https://doi.org/10.1016/0375-6742(91)90032-P
- Greenough, J.D., and Roed, M.A., 1995, History of bedrock in the Kelowna area, in Roed, M.A., and Dobson, D.A., eds., Geology of the Kelowna Area and Origin of the Okanagan Valley, British Columbia: Kelowna Geology Committee, p. 27–39.
- Greenough, J.D., and Roed, M.A., 2014, Geological history of bedrock in the Kelowna area, in Greenough, J.D., and Roed, M.A., eds., Okanagan Geology, British Columbia, 3rd Edition: Kelowna Geology Committee, p. 27–39.
- Greenough, J.D., Hughes, B., Capstick, D., and Roed, M.A., 2004, Mineral resources, in Roed, M.A., and Greenough, J.D., eds., Okanagan Geology, British Columbia: Kelowna Geology Committee, p. 131–146.
- Greenough, J.D., Dostal, J., and Mallory-Greenough, L.M., 2007, Incompatible element ratios in French Polynesia basalts: describing mantle component fingerprints: Australian Journal of Earth Sciences, v. 54, p. 947–958, https://doi.org/10.1080/08120090701488271. DOI: https://doi.org/10.1080/08120090701488271
- Greenough, J.D., Velasquez, A., Shaheen, M.E., Gagnon, J., Fryer, B.J., Tetland, M., Chen, Y., and Mossman, D., 2021, Laser ablation ICP-MS trace element composition of native gold from the Abitibi Greenstone belt, Timmins, Ontario: Canadian Journal of Earth Sciences, v. 58, p. 593–609, https://doi.org/10.1139/cjes-2019-0134. DOI: https://doi.org/10.1139/cjes-2019-0134
- Groen, J.C., Craig, J.R., and Rimstidt, J.D., 1990, Gold-rich rim formation on electrum grains in placers: Canadian Mineralogist, v. 28, p. 207–228.
- Hastie, E.C.G., Kontak, D.J., and Lafrance, B., 2020, Gold remobilization: Insights from gold deposits in the Archean Swayze greenstone belt, Abitibi Subprovince, Canada: Economic Geology, v. 115, p. 241–277, https://doi.org/10.5382/econgeo.4709. DOI: https://doi.org/10.5382/econgeo.4709
- Hastie, E.C.G., Kontak, D.J., Lafrance, B., Petrus, J.A., Sharpe, R., and Fayek, M., 2023, Evaluating geochemical discriminants in Archean gold deposits: A Superior Province perspective with an emphasis on the Abitibi greenstone belt: Economic Geology, v. 118, p. 123–155, https://doi.org/10.5382/econgeo.4979. DOI: https://doi.org/10.5382/econgeo.4979
- Hough, R.M., Butt, C.R.M., and Fischer-Bühner, J., 2009, The crystallography, metallography and composition of gold: Elements, v. 5, p. 297–302, https://doi.org/10.2113/gselements.5.5.297. DOI: https://doi.org/10.2113/gselements.5.5.297
- Jochum K.P., Weis U., Stoll B., Kuzmin D., Yang Q., Raczek I., Jacob D.E., Stracke A., Birbaum K., Frick D.A., Günther, D., and Enzweiler, J., 2011, Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines: Geostandards and Geoanalytical Research, v. 35, p. 397–429, https://doi.org/10.1111/j.1751-908X.2011.00120.x. DOI: https://doi.org/10.1111/j.1751-908X.2011.00120.x
- Kamenov, G.D., Melchiorre, E.B., Ricker, F.N., and DeWitt, E., 2013, Insights from Pb isotopes for native gold formation during hypogene and supergene processes at Rich Hill, Arizona: Economic Geology, v. 108, p. 1577–1589, https://doi.org/10.2113/econgeo.108.7.1577. DOI: https://doi.org/10.2113/econgeo.108.7.1577
- Large, R.R., Meffre, S., Burnett, R., Guy, B., Bull, S., Gilbert, S., Goemann, K., and Danyushevsky, L., 2013, Evidence for an intrabasinal source and multiple concentration processes in the formation of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa: Economic Geology, v. 108, p. 1215–1241, https://doi.org/10.2113/econgeo.108.6.1215. DOI: https://doi.org/10.2113/econgeo.108.6.1215
- Lenard, N., 1987a, Assessment report for the Lenard, N Bond 1 claim: British Columbia Geologic Survey, Assessment Report: 16027.
- Lenard, N., 1987b, Assessment report for the Lenard, N Shear 1-7 claims: British Columbia Geologic Survey, Assessment Report: 16094.
- Lenard, N., 1996, Assessment report for the Lenard, N Host claim: British Columbia Geologic Survey, Assessment Report: 24594.
- Liu, H., and Beaudoin, G., 2021, Geochemical signatures in native gold derived from Au-bearing ore deposits: Ore Geology Reviews, v. 132, 104066, https://doi.org/10.1016/j.oregeorev.2021.104066. DOI: https://doi.org/10.1016/j.oregeorev.2021.104066
- Liu, H., Beaudoin, G., Makvandi, S., Jackson, S.E., and Huang, X., 2021, Multivariate statistical analysis of trace element compositions of native gold from orogenic gold deposits: Implication for mineral exploration: Ore Geology Reviews, v. 131, 104061, https://doi.org/10.1016/j.oregeorev.2021.104061. DOI: https://doi.org/10.1016/j.oregeorev.2021.104061
- Madsen, J.K., Thorkelson, D.J., Friedman, R.M., and Marshall, D.D., 2006, Cenozoic to Recent plate configurations in the Pacific Basin: Ridge subduction and slab window magmatism in western North America: Geosphere, v. 2, p. 11–34, https://doi.org/10.1130/GES00020.1. DOI: https://doi.org/10.1130/GES00020.1
- Mank, A.J.G., and Mason, P.R.D., 1999, A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples: Journal of Analytical Atomic Spectrometry, v. 14, p. 1143–1153, https://doi.org/10.1039/a903304a. DOI: https://doi.org/10.1039/a903304a
- Mark, D., 1988, Assessment report for the Parkwood Resources Bluehawk 1 claim: British Columbia Geologic Survey Assessment Report Report: 17501.
- Massey, N.W.D, MacIntyre, D.G., Desjardins, P.J., and Cooney, R.T., 2005, Digital geology map of British Columbia: British Columbia Ministry of Energy and Mines, GeoFile 2005-1.
- Mathews, W.M., 1988, Neogene geology of the Okanagan Highland, British Columbia: Canadian Journal of Earth Science, v. 25, p. 725–731, https://doi.org/10.1139/e88-068. DOI: https://doi.org/10.1139/e88-068
- McCandless, T.E., Baker, M.E., and Ruiz, J., 1997, Trace element analysis of natural gold by laser ablation ICP-MS: A combined external/internal standardisation approach: Geostandards Newsletter, v. 21, p. 271–278, https://doi.org/10.1111/j.1751-908X.1997.tb00675.x. DOI: https://doi.org/10.1111/j.1751-908X.1997.tb00675.x
- McClenaghan, M.B., and Cabri, L.J., 2011, Review of gold and platinum group element (PGE) indicator minerals methods for surficial sediment sampling: Geochemistry: Exploration, Environment, Analysis, v. 11, p. 251–263, https://doi.org/10.1144/1467-7873/10-im-026. DOI: https://doi.org/10.1144/1467-7873/10-IM-026
- McCready, A.J., Parnell, J., and Castro, L., 2003, Crystalline placer gold from the Rio Neuquen, Argentina: Implications for the gold budget in placer gold formation: Economic Geology, v. 98, p. 623–633, https://doi.org/10.2113/gsecongeo.98.3.623. DOI: https://doi.org/10.2113/gsecongeo.98.3.623
- McInnes, M., Greenough, J.D., Fryer, B.J., and Wells, R., 2008, Trace elements in native gold by solution ICP-MS and their use in mineral exploration: A British Columbia example: Applied Geochemistry, v. 23, p. 1076–1085, https://doi.org/10.1016/j.apgeochem.2007.12.027. DOI: https://doi.org/10.1016/j.apgeochem.2007.12.027
- Melo-Gómez, J.D., Hastie, E.C.G., Gibson, H.L., Tait, K.T., and Petrus, J.A., 2021, Gold fineness across Ontario: An update on the Gold Fingerprinting Project, in Summary of Field Work and Other Activities, 2021: Ontario Geological Survey, Open File Report 6380, p. 13-1 to 13-9.
- Melo-Gómez, J.D., Hastie, E.C.G., Gibson, H.L., Tait, K.T., and Petrus, J.A., 2022, Trace element content of gold across Ontario: An update on the Gold Fingerprinting Project, in Summary of Field Work and Other Activities, 2022: Ontario Geological Survey, Open File Report 6390, p. 15-1 to 15-11.
- Mernagh, T.P., Heinrich, C.A., Leckie, J.F., Carville, D.P., Gilbert, D.J., Valenta, R.K., and Wyborn, L.A.I., 1994, Chemistry of low temperature hydrothermal gold, platinum, and palladium (+ or – uranium) mineralization at Coronation Hill, Northern Territory, Australia: Economic Geology, v. 89, p. 1053–1073, https://doi.org/10.2113/gsecongeo.89.5.1053. DOI: https://doi.org/10.2113/gsecongeo.89.5.1053
- Milidragovic, D., Beaudoin, G., and Jackson, S.E., 2016, In-situ trace element characterization of three gold reference materials using EPMA and LA-ICP-MS: Geological Survey of Canada, Open File 8096, 26 p., https://doi.org/10.4095/299097. DOI: https://doi.org/10.4095/299097
- Miller, D., Desai, N., Grigorova, D., and Smith, W., 2001, Trace-element study of gold from southern African archaeological sites: South Africa Journal of Science, v. 97, p. 297–300, https://hdl.handle.net/10520/EJC97347.
- Monger, J.W.H., and Price, R.A., 1979, Geodynamic evolution of the Canadian Cordillera – progress and problems: Canadian Journal of Earth Sciences, v. 16, p. 770–791, https://doi.org/10.1139/e79-069. DOI: https://doi.org/10.1139/e79-069
- Morrison, G.W., Rose, W.J., and Jaireth, S., 1991, Geological and geochemical controls on the silver content (fineness) of gold in gold-silver deposits: Ore Geology Reviews, v. 6, p. 333–364, https://doi.org/10.1016/0169-1368(91)90009-V. DOI: https://doi.org/10.1016/0169-1368(91)90009-V
- Morrison, M., 1989, Assessment report for the Jubilation 1-2 claims: British Columbia Geologic Survey Assessment Report: 19110.
- Murray, J., 1991, Assessment report for the Amarado Res. Zumar 2-4 claims: British Columbia Geologic Survey Assessment Report: 21600.
- Murray, S., 2009, LBMA certified reference materials: Gold project final update: Alchemist, v. 55, p. 11–12.
- Nesbitt, B.E., and Muehlenbachs, K., 1995, Geochemical studies of the origins and effects of synorogenic crustal fluids in the southern Omineca Belt of British Columbia, Canada: Geological Society of America Bulletin, v. 107, p. 1033–1050, https://doi.org/10.1130/0016-7606(1995)107<1033:GSOTOA>2.3.CO;2. DOI: https://doi.org/10.1130/0016-7606(1995)107<1033:GSOTOA>2.3.CO;2
- Northcote, B., 2022, Exploration and mining in the south central region, British Columbia, in Provincial Overview of Exploration and Mining in British Columbia, 2021: Ministry of Energy, Mines and Low Carbon Innovation, British Columbia Geological Survey, Information Circular 2022-01, p. 85–104.
- Okulitch, A.V., (compiler), 2013, Geology, Okanagan Watershed, British Columbia: Geological Survey of Canada, Open File 6839, scale 1:100,000, https://doi.org/10.4095/292220. DOI: https://doi.org/10.4095/292220
- Osatenko, M., 1980, Assessment report for the Cominco Ltd. Woodsdale claim: British Columbia Geologic Survey Assessment Report: 08922.
- Outridge, P.M., Doherty, W., and Gregoire, D.C., 1998, Determination of trace elemental signatures in placer gold by laser ablation-inductively coupled plasma-mass spectrometry as a potential aid for gold exploration: Journal of Geochemical Exploration, v. 60, p. 229–240, https://doi.org/10.1016/S0375-6742(97)00049-6. DOI: https://doi.org/10.1016/S0375-6742(97)00049-6
- Pautler, J., 1988, Assessment report for the Kerr Addison Mines Lamb 1-8 claims: British Columbia Geologic Survey Assessment: 17854.
- Penney, G., 2001, Fingerprinting gold using laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS): An exploration tool: Unpublished Honours Thesis, Memorial University of Newfoundland, NL, 65 p.
- Pooley, R., Lomas, S., Hawthorn, G., and Alexander, R., 2011, NI 43-101 technical report for a preliminary economic assessment on the Elk Gold Project, Merritt, British Columbia, Canada: Almaden Minerals, Vancouver, BC, Project Code: ALM003.
- Potts, P.J., Bowles, J.F.W., Reed, S.J.B., and Cave, M.R., (editors), 1995, Microprobe Techniques in the Earth Sciences (1st edition): Springer New York, NY, 419 p., https://doi.org/10.1007/978-1-4615-2053-5. DOI: https://doi.org/10.1007/978-1-4615-2053-5
- Putnis, A., 2009, Mineral replacement reactions: Reviews in Mineralogy and Geochemistry, v. 70, p. 87–124, https://doi.org/10.2138/rmg.2009.70.3. DOI: https://doi.org/10.2138/rmg.2009.70.3
- Rasmussen, K.L., Mortensen, J.K., and Falck, H., 2006, Morphological and compositional analysis of placer gold in the South Nahanni River drainage, Northwest Territories, in Emond, D.S., Lewis, L.L., and Weston, L.H., eds., Yukon Exploration and Geology 2006: Yukon Geological Survey, p. 237–250. DOI: https://doi.org/10.4095/224565
- Reith, F., Fairbrother, L., Nolze, G., Wilhelmi, O., Clode, P.L., Gregg, A., Parsons, J.E., Wakelin, S.A., Pring, A., Hough, R., Southam, G., and Brugger, J., 2010, Nanoparticle factories: Biofilms hold the key to gold dispersion and nugget formation: Geology, v. 38, p. 843–846, https://doi.org/10.1130/G31052.1. DOI: https://doi.org/10.1130/G31052.1
- Reith, F., Brugger, J., Zammit, C.M., Nies, D.H., and Southam, G., 2013, Geobiological cycling of gold: From fundamental process understanding to exploration solutions: Minerals, v. 3, p. 367–394, https://doi.org/10.3390/min3040367. DOI: https://doi.org/10.3390/min3040367
- Roed, M.A., 1995, Groundwater resources, in Roed, M.A., and Dobson, D.A., eds., Geology of the Kelowna Area and Origin of the Okanagan Valley, British Columbia: Kelowna Geology Committee, p. 131–134.
- Roed, M.A., 2004, Gold mining, Gallagher’s Canyon, in Roed, M.A., and Greenough, J.D., eds., Okanagan Geology, British Columbia: Kelowna Geology Committee, p. 131–132.
- Roed, M.A., 2014a, Addendum, new geologic discoveries and projects in the Okanagan, in Greenough, J.D., and Roed, M.A., eds., Okanagan Geology, British Columbia, 3rd Edition: Kelowna Geology Committee, p. 205–226.
- Roed, M.A., 2014b, Groundwater resources, in Greenough, J.D., and Roed, M.A., eds., Okanagan Geology, British Columbia, 3rd Edition: Kelowna Geology Committee, p. 145–148.
- Roed, MA., Barendregt, R.W., Benowitz, J.A., Smith, C.A.S., Sanborn, P.T., Greenough, J.D., Huscroft, C., Layer, P.W., Mathewes, R.W., and Tessler, D., 2014, Evidence for an Early Pleistocene glaciation in the Okanagan Valley, southern British Columbia: Canadian Journal of Earth Sciences, v. 51, p. 125–141, https://doi.org/10.1139/cjes-2013-0106. DOI: https://doi.org/10.1139/cjes-2013-0106
- Scott, A., and Osatenko, M., 1980, Assessment report for the Cominco Ltd. Esperon claim: British Columbia Geologic Survey Assessment Report: 08664.
- Tempelman-Kluit, D., and Parkinson, D., 1986, Extension across the Eocene Okanagan crystal[sic] shear in southern British Columbia: Geology, v. 14, p. 318–321, https://doi.org/10.1130/0091-7613(1986)14<318:EATEOC>2.0.CO;2. DOI: https://doi.org/10.1130/0091-7613(1986)14<318:EATEOC>2.0.CO;2
- Tempelman-Kluit, D.J., 1989, Geology, Penticton, west of sixth meridian, British Columbia: Geological Survey of Canada, “A” Series Map 1736A, https://doi.org/10.4095/127379. DOI: https://doi.org/10.4095/127379
- Tetland, M., 2015, Trace element analysis of placer gold: Unpublished MSc Thesis, University of British Columbia, Okanagan, BC, 206 p.
- Tetland, M., Greenough, J., Fryer, B., Hinds, M., and Shaheen, M.E., 2017, Suitability of AuRM2 as a reference material for trace element micro-analysis of native gold: Geostandards and Geoanalytical Research, v. 41, p. 689–700, https://doi.org/10.1111/ggr.12171. DOI: https://doi.org/10.1111/ggr.12171
- Townley, B.K., Hérail, G., Maksaev, V., Palacios, C., de Parseval, P., Sepulveda, F., Orellana, R., Rivas, P., and Ulloa, C., 2003, Gold grain morphology and composition as an exploration tool: application to gold exploration in covered areas: Geochemistry: Exploration, Environment, Analysis, v. 3, p. 29–38, https://doi.org/10.1144/1467-787302-042. DOI: https://doi.org/10.1144/1467-787302-042
- van Achterbergh, E., Ryan, C.G., and Griffin, W.L., 2004, GLITTER user’s manual on-line interactive data reduction for the LA-ICP-MS microprobe: GEMOC National Key Centre, Macquarie University, p. 1–72.
- Watling, R.J., 1999, Novel application of laser ablation inductively coupled plasma mass spectrometry in forensic science and forensic archaeology: Spectroscopy, v. 14, p. 16–34.
- Watling, R.J., Herbert, H.K., Delev, D., and Abell, I.D., 1994, Gold fingerprinting by laser ablation inductively coupled plasma mass spectrometry: Spectrochimica Acta, Part B: Atomic Spectroscopy, v. 49, p. 205–219, https://doi.org/10.1016/0584-8547(94)80019-7. DOI: https://doi.org/10.1016/0584-8547(94)80019-7
- Watling, R.J., Herbert, H.K., and Abell, I.D., 1995, The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to the analysis of selected sulphide minerals: Chemical Geology, v. 124, p. 67–81, https://doi.org/10.1016/0009-2541(95)00025-H. DOI: https://doi.org/10.1016/0009-2541(95)00025-H
- Watling, R.J., Scadding, C.J., and May, C.D., 2014, Chemical fingerprinting of gold using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS): Journal of the Royal Society of Western Australia, v. 97, p. 87–96.
- Weeks, R.M., Bradburn, R.G., Flintoff, B.C., Harris, G.R., and Malcolm, G., 1995, The Brenda Mine: the life of a low-cost porphyry copper-molybdenum producer (1970–1990), southern British Columbia: Porphyry Copper Deposits of the Canadian Cordillera, Canadian Institute of Mining Special, v. 46, p. 192–200.
- White, G., 1968, Assessment report for the Agricola Mines Deer and Tick claims: British Columbia Geologic Survey Assessment Report: 01694.
- Wilde, A.R., Bloom, M.S., and Wall, V.J., 1989, Transport and deposition of gold, uranium, and platinum-group elements in unconformity-related uranium deposits, in Keays, R.R., Ramsay, W.R.H., and Groves, D.I., eds., The Geology of Gold Deposits: The Perspective in 1988: Economic Geology Monograph, 6, p. 637–660, https://doi.org/10.5382/Mono.06.49. DOI: https://doi.org/10.5382/Mono.06.49
- Wilkinson, L., Hill, M., and Vang, E., 1992, SYSTAT: statistics, Version 5.2 edition: Systat, Evanston, Illinois, USA.
- Zhang, X., Nesbitt, B.E., and Muehlenbachs, K., 1989, Gold mineralization in the Okanagan Valley, southern British Columbia; fluid inclusion and stable isotope studies: Economic Geology, v. 84, p. 410–424, https://doi.org/10.5382/Mono.06.49. DOI: https://doi.org/10.2113/gsecongeo.84.2.410