Paleoproterozoic Rocks of the Belcher Islands, Nunavut: A Review of Their Remarkable Geology and Relevance to Inuit-led Conservation Efforts
Publié-e 2024-04-05
Mots-clés
- Belcher Islands,
- Canadian Shield,
- Conservation,
- Geobiology,
- Paleoproterozoic
- Superior Craton,
- Trans-Hudson Orogen ...Plus
Comment citer
Résumé
Le groupe paléoprotérozoïque de Belcher (environ 2,0 à 1,83 Ga) se trouve sur les îles Belcher dans la baie d'Hudson au Nunavut, Canada. Il comprend près de neuf kilomètres de roches sédimentaires siliciclastiques et carbonatées bien préservées, déposées initialement dans un milieu marin marginal à peu profond, représentant l'un des premiers véritables environnements de plateau continental du proto Bouclier canadien. Une grande variété de faciès de dépôt existe au sein du groupe de Belcher, et celui-ci est particulièrement bien connu pour ses stromatolithes spectaculaires dans la dolomie. En plus de ces caractéristiques macroscopiques, deux de ses formations (Kasegalik et McLeary) contiennent des microfossiles intacts d'Eoentophysalis belcherensis, la plus ancienne occurrence connue de cyanobactéries dans les archives géologiques. La partie supérieure du groupe de Belcher contient des roches sédimentaires de caractère très différent qui représentent un bassin d'avant-pays plus jeune qui s'est formé en réponse aux processus d’accrétion et de collision de l'orogène trans-hudsonien. Ces formations plus jeunes (Omarolluk et Loaf) sont constituées d'une épaisse séquence de turbidites, recouvertes d'arkose et d'autres roches sédimentaires clastiques immatures. Une caractéristique déterminante de la formation d'Omarolluk est la présence de concrétions calcaires. La formation d'Omarolluk partage des attributs avec les « omars », qui sont des clastes transportés par les glaciers qui se retrouvent à la fois localement et plus loin dans certaines parties du Canada et du nord des États-Unis et qui ont contribué à caractériser les directions d’écoulement glaciaire du Pléistocène à travers le continent.
Le groupe de Belcher comprend également deux formations dominées par de spectaculaires roches volcaniques mafiques. L'épisode le plus ancien, représenté par la formation d’Eskimo, reflète l'éruption de coulées volcaniques en grande partie subaériennes interprétées comme représentant des basaltes de plateau associés au rift du socle archéen lors de l'établissement du plateau continental. Un épisode volcanique ultérieur (la formation de Flaherty) est dominé par des coulées sous-marines de basalte en coussins et a été attribué à divers contextes tectoniques, notamment des arcs volcaniques liés à la subduction et des plateaux océaniques liés à l'activité de panaches mantelliques et à une nouvelle phase de rift le long de la marge continentale. Ce volcanisme ultérieur marque la transition du plateau au bassin d'avant-pays. Des filons-couches mafiques et des intrusions associées (intrusions de Haig) sont présents dans la partie moyenne et inférieure du groupe de Belcher. Les interactions thermiques et chimiques entre le magma mafique et les schistes calcaires ont généré des roches inhabituelles qui sont bien connues au Nunavut comme des pierres à sculpter artisanales de haute qualité. Le groupe de Belcher contient également des formations ferrifères du type du lac Supérieur qui ont suscité un intérêt en matière d'exploration dans le passé.
Le groupe de Belcher est une entité géologique unique définie par sa grande variété de types de roches, ses superbes affleurements et son potentiel à illustrer de nombreux processus géologiques importants à une époque fondatrice dans l’histoire de la Terre. Il constitue également une ressource paléontologique de microfossiles unique, et ses dépôts se situent dans une période cruciale et très controversée de l’évolution atmosphérique et océanique du Précambrien. Il représente une ressource scientifique importante dans le contexte de la compréhension de tels changements. Cet article de synthèse générale met en lumière ses caractéristiques les plus importantes, discute de son potentiel pour de futures recherches et contribue aux discussions plus larges sur son rôle futur éventuel en tant que zone protégée au sein du Nunavut.
Références
- Andres, M.S., and Reid R.P., 2006, Growth morphologies of modern marine stromatolites: A case study from Highborne Cay, Bahamas: Sedimentary Geology, v. 185, p. 319–328, https://doi.org/10.1016/j.sedgeo.2005.12.020.
- Ansdell, K.M., 2005, Tectonic evolution of the Manitoba-Saskatchewan segment of the Paleoproterozoic Trans-Hudson Orogen, Canada: Canadian Journal of Earth Sciences, v. 42, p. 741–759, https://doi.org/10.1139/e05-035.
- Arndt, N.T., and Todt, W., 1994, Formation of 1.9-Ga-old Trans-Hudson continental crust: Pb isotopic data: Chemical Geology, v. 118, p. 9–26, https://doi.org/10.1016/0009-2541(94)90167-8.
- Arndt, N.T., Brügmann, G.E., Lehnert, K., Chauvel, C., and Chappell, B.W., 1987, Geochemistry, petrogenesis and tectonic environment of Circum-Superior Belt basalts, Canada: Geological Society, London, Special Publications, v. 33, p. 133–145, https://doi.org/10.1144/GSL.SP.1987.033.01.10.
- Aspler, L.B., and Chiarenzelli, J.R., 1998, Two Neoarchean supercontinents? Evidence from the Paleoproterozoic: Sedimentary Geology, v. 120, p. 75–104, https://doi.org/10.1016/S0037-0738(98)00028-1.
- Awramik, S.M., and Barghoorn, E.S., 1977, The Gunflint microbiota: Precambrian Research, v. 5, p. 121–142, https://doi.org/10.1016/0301-9268(77)90025-0.
- Baragar, W.R.A, 2007, Geology, Ottawa Islands, eastern Hudson Bay, Nunavut: Geological Survey of Canada, “A" Series Map, 2113A, https://doi.org/10.4095/224569.
- Baragar, W.R.A., and Scoates, R.F.J., 1981, The Circum-Superior Belt: A Proterozoic Plate Margin?, in Kröner, A., ed., Developments in Precambrian Geology, v. 4, p. 297–330, https://doi.org/10.1016/S0166-2635(08)70017-3.
- Baragar, W.R.A., and Scoates, R.F.J., 1987, Volcanic geochemistry of the northern segments of the Circum-Superior Belt of the Canadian Shield: Geological Society, London, Special Publications, v. 33, p. 113–131, https://doi.org/10.1144/GSL.SP.1987.033.01.09.
- Beauregard, M.A., and Ell, J., 2015, Nunavut carving stone deposit evaluation program: 2015 fieldwork at Rankin Inlet, Cumberland Sound and Arctic Bay, Nunavut: Canada-Nunavut Geoscience Office, Summary of Activities 2015, p. 183–192, https://m.cngo.ca/wp-content/uploads/Summary-of-Activities-2015-P17-Beauregard.pdf.
- Bell, R.T., and Jackson, G.D., 1974, Aphebian halite and sulphate indications in the Belcher Group, Northwest Territories: Canadian Journal of Earth Sciences, v. 11, p. 722–728, https://doi.org/10.1139/e74-072.
- Berman, R.G., Davis, W.J., and Pehrsson, S., 2007, Collisional Snowbird tectonic zone resurrected: Growth of Laurentia during the 1.9 Ga accretionary phase of the Hudsonian orogeny: Geology, v. 35, p. 911–914, https://doi.org/10.1130/G23771A.1.
- Bradley, D.C., 2008, Passive margins through earth history: Earth-Science Reviews, v. 91, p. 1–26, https://doi.org/10.1016/j.earscirev.2008.08.001.
- Burne, R.V., and Moore, L.S., 1987, Microbialites: organosedimentary deposits of benthic microbial communities: Palaios, v. 2, p. 241–254, https://doi.org/10.2307/3514674.
- Butterfield, N.J., 2015, Proterozoic photosynthesis–a critical review: Palaeontology, v. 58, p. 953–972, https://doi.org/10.1111/pala.12211.
- Canfield, D.E., van Zuilen, M.A., Nabhan, S., Bjerrum, C.J., Zhang, S., Wang, H., and Wang, X., 2021, Petrographic carbon in ancient sediments constrains Proterozoic Era atmospheric oxygen levels: Proceedings of the National Academy of Sciences, v. 118, e2101544118, https://doi.org/10.1073/pnas.2101544118.
- Catling, D.C., and Zahnle, K.J., 2020, The Archean atmosphere: Science Advances, v. 6, eaax1420, https://doi.org/10.1126/sciadv.aax1420.
- Chandler, F.W., 1984, Metallogenesis of an early Proterozoic foreland sequence, eastern Hudson Bay, Canada: Journal of the Geological Society, v. 141, p. 299–313, https://doi.org/10.1144/gsjgs.141.2.0299.
- Chandler, F.W., 1988, The early Proterozoic Richmond Gulf graben, east coast of Hudson Bay, Quebec: Geological Survey of Canada, Bulletin No. 362, 76 p., https://doi.org/10.4095/126313.
- Chandler, F.W., and Parrish, R.R., 1989, Age of the Richmond Gulf Group and implications for rifting in the Trans-Hudson Orogen, Canada: Precambrian Research, v. 44, p. 277–288, https://doi.org/10.1016/0301-9268(89)90048-X.
- Chauvel, C., Arndt, N.T., Kielinzcuk, S., and Thom, A., 1987, Formation of Canadian 1.9 Ga old continental crust. I: Nd isotopic data: Canadian Journal of Earth Sciences, v. 24, p. 396–406, https://doi.org/10.1139/e87-042.
- Ciborowski, T.J.R., Minifie, M.J., Kerr, A.C., Ernst, R.E., Baragar, B., and Millar, I.L., 2017, A mantle plume origin for the Palaeoproterozoic Circum-Superior Large Igneous Province: Precambrian Research, v. 294, p. 189–213, https://doi.org/10.1016/j.precamres.2017.03.001.
- Cole, D.B., Mills, D.B., Erwin, D.H., Sperling, E.A., Porter, S.M., Reinhard, C.T., and Planavsky, N.J., 2020, On the co-evolution of surface oxygen levels and animals: Geobiology, v. 18, p. 260–281, https://doi.org/10.1111/gbi.12382.
- Corrigan, D., Pehrsson, S., Wodicka, N., and de Kemp, E., 2009, The Palaeoproterozoic Trans-Hudson Orogen: a prototype of modern accretionary processes: Geological Society, London, Special Publications, v. 327, p. 457–479, https://doi.org/10.1144/SP327.19.
- Corrigan, D., van Rooyen, D., and Wodicka, N., 2021, Indenter tectonics in the Canadian Shield: A case study for Paleoproterozoic lower crust exhumation, orocline development, and lateral extrusion: Precambrian Research, v. 355, 106083, https://doi.org/10.1016/j.precamres.2020.106083.
- Dimroth, E., Baragar, W.R.A., Bergeron, R., and Jackson, G.D., 1970, The filling of the Circum-Ungava geosyncline, in Baer, A.J., ed., Symposium on Basins and Geosynclines of the Canadian Shield: Geological Survey of Canada, Paper 70-40, p. 45–142, https://doi.org/10.4095/124922.
- Dodd, M.S., Papineau, D., She, Z., Fogel, M.L., Nederbragt, S., and Pirajno, F., 2018, Organic remains in late Palaeoproterozoic granular iron formations and implications for the origin of granules: Precambrian Research, v. 310, p. 133–152, https://doi.org/10.1016/j.precamres.2018.02.016.
- Donaldson, J.A., and Ricketts, B.D., 1979, Beachrock in Proterozoic dolostone of the Belcher Islands, Northwest Territories, Canada: Journal of Sedimentary Research, v. 49, p. 1287–1294, https://doi.org/10.1306/212F790F-2B24-11D7-8648000102C1865D.
- Dyke, A.S., Andrews, J.T., Clark, P.U., England, J.H., Miller, G.H., Shaw, J., and Veillette, J.J., 2002, The Laurentide and Innuitian ice sheets during the Last Glacial Maximum: Quaternary Science Reviews, v. 21, p. 9–31, https://doi.org/10.1016/S0277-3791(01)00095-6.
- Ernst, R.E., and Bell, K., 2010, Large igneous provinces (LIPs) and carbonatites: Mineralogy and Petrology, v. 98, p. 55–76, https://doi.org/10.1007/s00710-009-0074-1.
- Evans, D.A.D., and Mitchell, R.N., 2011, Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna: Geology, v. 39, p. 443–446, https://doi.org/10.1130/G31654.1.
- Flaherty, R.J., 1918, The Belcher Islands of Hudson Bay: their discovery and exploration: Geographical Review, v. 5, p. 433–458, https://doi.org/10.2307/207804.
- Fralick, P., Davis, D.W., and Kissin, S.A., 2002, The age of the Gunflint Formation, Ontario, Canada: single zircon U–Pb age determinations from reworked volcanic ash: Canadian Journal of Earth Sciences, v. 39, p. 1085–1091, https://doi.org/10.1139/e02-028.
- Frisch, T., 2021, Garth Digby Jackson (1929–2021): Arctic, v. 74, p. 564–565, https://doi.org/10.14430/arctic74148.
- Fryer, B.J., 1972, Age determinations in the Circum–Ungava Geosyncline and the evolution of Precambrian Banded Iron-Formations: Canadian Journal of Earth Sciences, v. 9, p. 652–663, https://doi.org/10.1139/e72-055.
- Gabriel, N.W., Papineau, D., She, Z., Leider, A., and Fogel, M.L., 2021, Organic diagenesis in stromatolitic dolomite and chert from the late Palaeoproterozoic McLeary Formation: Precambrian Research, v. 354, 106052, https://doi.org/10.1016/j.precamres.2020.106052.
- Gauthier, M.S., Hodder, T.J., Ross, M., Kelley, S.E., Rochester, A., and McCausland, P., 2019, The subglacial mosaic of the Laurentide Ice Sheet; a study of the interior region of southwestern Hudson Bay: Quaternary Science Reviews, v. 214, p. 1–27, https://doi.org/10.1016/j.quascirev.2019.04.015.
- Golubic, S., and Hofmann, H.J., 1976, Comparison of Holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation: Journal of Paleontology, v. 50, p. 1074–1082, https://www.jstor.org/stable/1303548.
- Gross, G.A., 2009, Iron formation in Canada, genesis and geochemistry: Geological Survey of Canada, Open File No. 5987, 164 p., https://doi.org/10.4095/226638.
- Hamilton, M.A., Buchan, K.L., Ernst, R.E., and Scott, G.M., 2009, Widespread and short-lived 1870 Ma mafic magmatism along the northern Superior Craton margin (Abstract), American Geophysical Union-Geological Association of Canada, Joint Assembly, 24–27 May 2009, Toronto, ON, Abstract GA11A-01.
- Haycock-Chavez, N., 2021, Indigenous-driven conservation: exploring the planning of Qikiqtait protected area in Sanikiluaq, Nunavut: MSc thesis, Memorial University, St. John’s NL, 124 p., https://doi.org/10.48336/KTC1-AV62.
- Hodgskiss, M.S.W., and Sperling, E.A., 2020, Stratigraphy and shale geochemistry of the Belcher Group, Belcher Islands, southern Nunavut: Canada-Nunavut Geoscience Office, Summary of Activities 2019, p. 65–78, https://cngo.ca/summary-of-activities/2019/.
- Hodgskiss, M.S.W., and Sperling, E.A., 2022, A prolonged, two-step oxygenation of Earth’s early atmosphere: Support from confidence intervals: Geology, v. 50, p. 158–162, https://doi.org/10.1130/G49385.1.
- Hodgskiss, M.S.W., Crockford, P.W., Peng, Y., Wing, B.A., and Horner, T.J., 2019a, A productivity collapse to end Earth’s Great Oxidation: Proceedings of the National Academy of Sciences, v. 116, p. 17207–17212, https://doi.org/10.1073/pnas.1900325116.
- Hodgskiss, M.S.W., Dagnaud, O.M.J., Frost, J.L., Halverson, G.P., Schmitz, M.D., Swanson-Hysell, N.L., and Sperling, E.A., 2019b, New insights on the Orosirian carbon cycle, early Cyanobacteria, and the assembly of Laurentia from the Paleoproterozoic Belcher Group: Earth and Planetary Science Letters, v. 520, p. 141–152, https://doi.org/10.1016/j.epsl.2019.05.023.
- Hodgskiss, M.S.W., Lalonde, S.V., Crockford, P.W., and Hutchings, A.M., 2021, A carbonate molybdenum isotope and cerium anomaly record across the end-GOE: Local records of global oxygenation: Geochimica et Cosmochimica Acta, v. 313, p. 313–339, https://doi.org/10.1016/j.gca.2021.08.013.
- Hoffman, P.F., 1985, Is the Cape Smith belt (northern Quebec) a klippe?: Canadian Journal of Earth Sciences, v. 22, p. 1361–1369, https://doi.org/10.1139/e85-140.
- Hoffman, P.F., 1987, Early Proterozoic foredeeps, foredeep magmatism, and Superior-type iron-formations of the Canadian Shield, in Kröner, A., ed., Proterozoic Lithospheric Evolution: Geodynamics Series, v. 17, p. 85–98, https://doi.org/10.1029/GD017p0085.
- Hoffman, P.F., 1988, United Plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia: Annual Review of Earth and Planetary Sciences, v. 16, p. 543–603, https://doi.org/10.1146/annurev.ea.16.050188.002551.
- Hoffman, P.F., 1990, Dynamics of the tectonic assembly of northeast Laurentia in geon 18 (1.9–1.8 Ga): Geoscience Canada, v. 17, p. 222–226, https://journals.lib.unb.ca/index.php/GC/article/view/3692.
- Hofmann, H.J., 1971, Precambrian fossils, pseudofossils and problematica in Canada: Geological Survey of Canada, Bulletin No. 189, 146 p., https://doi.org/10.4095/123948.
- Hofmann, H.J., 1974, Mid-Precambrian prokaryotes(?) from the Belcher Islands, Canada: Nature, v. 249, p. 87–88, https://doi.org/10.1038/249087a0.
- Hofmann, H.J., 1976, Precambrian microflora, Belcher Islands, Canada: Significance and systematics: Journal of Paleontology, v. 50, p. 1040–1073, https://www.jstor.org/stable/1303547.
- Hofmann, H.J., 1977, On Aphebian stromatolites and Riphean stromatolite stratigraphy: Precambrian Research, v. 5, p. 175–205, https://doi.org/10.1016/0301-9268(77)90027-4.
- Hofmann, H.J., and Jackson, G.D., 1969, Precambrian (Aphebian) microfossils from Belcher Islands, Hudson Bay: Canadian Journal of Earth Sciences, v. 6, p. 1137–1144, https://doi.org/10.1139/e69-115.
- Hofmann, H.J., and Jackson, G.D., 1987, Proterozoic ministromatolites with radial-fibrous fabric: Sedimentology, v. 34, p. 963–971, https://doi.org/10.1111/j.1365-3091.1987.tb00586.x.
- House of Commons Standing Committee on Fisheries and Oceans, 2023, Report 9: Main Estimates 2023–24: Votes 1, 5 and 10 under Department of Fisheries and Oceans: House of Commons, Canada, Meeting March 27, 2023, https://www.ourcommons.ca/Committees/en/FOPO/StudyActivity?studyActivityId=12073274.
- Hynes, A., 1991, The gravity field of eastern Hudson Bay: Evidence for a flexural origin for the Hudson Bay (Nastapoka) Arc?: Tectonics, v. 10, p. 722–728, https://doi.org/10.1029/91TC00643.
- Jackson, G.D., 1960, Belcher Islands, Northwest Territories, 33M, 34D, and E: Geological Survey of Canada, Paper 60-20, 13 p., https://doi.org/10.4095/101205.
- Jackson, G.D., 2013, Geology, Belcher Islands, Nunavut: Geological Survey of Canada, Open File 4923, 159 p., https://doi.org/10.4095/292434.
- Karhu, J.A., and Holland, H.D., 1996, Carbon isotopes and the rise of atmospheric oxygen: Geology, v. 24, p. 867–870, https://doi.org/10.1130/0091-7613(1996)024%3C0867:CIATRO%3E2.3.CO;2.
- Kennedy, C.B., Gault, A.G., Fortin, D., Clark, I.D., Pedersen, K., Scott, S.D., and Ferris, F.G., 2010, Carbon isotope fractionation by circumneutral iron-oxidizing bacteria: Geology, v. 38, p. 1087–1090, https://doi.org/10.1130/G30986.1.
- Konhauser, K.O., Planavsky, N.J., Hardisty, D.S., Robbins, L.J., Warchola, T.J., Haugaard, R., Lalonde, S.V., Partin, C.A., Oonk, P.B.H., Tsikos, H., Lyons, T.W., Bekker, A., and Johnson, C.M., 2017, Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history: Earth-Science Reviews, v. 172, p. 140–177, https://doi.org/10.1016/j.earscirev.2017.06.012.
- Laarman, J.E., 2004, Soapstone occurrences on Tukarak Island: A product of plume tectonics on the east margin of the Trans Hudson Orogen, Belcher Islands, Nunavut: Unpublished BSc thesis, Western University, ON.
- LaBerge, G.L., 1967, Microfossils and Precambrian iron-formations: Geological Society of America Bulletin, v. 78, p. 331–342, https://doi.org/10.1130/0016-7606(1967)78[331:MAPI]2.0.CO;2.
- Laznicka, P., 2014, Giant metallic deposits—A century of progress: Ore Geology Reviews, v. 62, p. 259–314, https://doi.org/10.1016/j.oregeorev.2014.03.002.
- Legault, F., 1993, The petrogenesis of Proterozoic continental volcanism in the Belcher Islands with implications for the evolution of the Circum-Ungava Fold Belt: Unpublished MSc thesis, McGill University, QC, 112 p.
- Legault, F., Francis, D., Hynes, A., and Budkewitsch, P., 1994, Proterozoic continental volcanism in the Belcher Islands: implications for the evolution of the Circum Ungava Fold Belt: Canadian Journal of Earth Sciences, v. 31, p. 1536–1549, https://doi.org/10.1139/e94-136.
- Leggett, S.R., 1974, A petrographic and stratigraphic study of the Flaherty Formation, Belcher Islands, Northwest Territories: Unpublished BSc thesis, Brock University, ON.
- Lyons, T.W., Diamond, C.W., Planavsky, N.J., Reinhard, C.T., and Li, C., 2021, Oxygenation, life, and the planetary system during Earth’s middle history: An overview: Astrobiology, v. 21, p. 906–923, https://doi.org/10.1089/ast.2020.2418.
- McDonald, B.S., Partin, C.A., Nadeau, M.D., and Higgins, J.A., 2022, ¬Unraveling Paleoproterozoic seawater chemistry from early diagenetic dolomite of the Belcher Group, Nunavut, Canada using 𝛿26Mg (Abstract): Geoscience Canada, v. 49, p. 159–160, https://doi.org/10.12789/geocanj.2022.49.188.
- Moore, E.S., 1918, The iron-formation on Belcher Islands, Hudson Bay, with special reference to its origin and its associated algal limestones: The Journal of Geology, v. 26, p. 412–438, https://doi.org/10.1086/622604.
- Morrow-Pollock, Z.S.W., 2021, The geobiology of the Paleoproterozoic Belcher Group, Nunavut, Canada: MSc Thesis, University of Saskatchewan, SK, 361 p., https://hdl.handle.net/10388/13389.
- Mukhopadhyay, M., and Gibb, R.A., 1981, Gravity anomalies and deep structure of eastern Hudson Bay: Tectonophysics, v. 72, p. 43–60, https://doi.org/10.1016/0040-1951(81)90086-X.
- Nunavut Planning Commission, 2021, Leading the way through land use planning: Nunavut Planning Commission, Draft July 2021, 103 p., https://www.nunavut.ca/sites/default/files/21-001e-2021-07-08-2021_draft_nunavut_land_use_plan-english.pdf.
- Partin, C.A., 2023, A tectonic context for fluctuations in late Paleoproterozoic oxygen content, in Whitmeyer, S.J., Williams, M.L., Kellett, D.A., and Tikoff, B., eds., Laurentia: Turning Points in the Evolution of a Continent: Geological Society of America Memoir, v. 220, p. 111–121, https://doi.org/10.1130/2022.1220(07).
- Partin, C.A., Bekker, A., Planavsky, N.J., Scott, C.T., Gill, B.C., Li, C., Podkovyrov, V., Maslov, A., Konhauser, K.O., Lalonde, S.V., Love, G.D., Poulton, S.W., and Lyons, T.W., 2013, Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales: Earth and Planetary Science Letters, v. 369–370, p. 284–293, https://doi.org/10.1016/j.epsl.2013.03.031.
- Pastula, C., and Partin, C.A., 2023, What are omars? (Poster): Saskatchewan Geological Open House, November 27–29, 2023, Saskatoon, SK.
- Percival, J.A., 2007, Geology and metallogeny of the Superior Province, Canada, in Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication no. 5, p. 903–928.
- Poulton, S.W., Fralick, P.W., and Canfield, D.E., 2010, Spatial variability in oceanic redox structure 1.8 billion years ago: Nature Geoscience, v. 3, p. 486–490, https://doi.org/10.1038/ngeo889.
- Poulton, S.W., Bekker, A., Cumming, V.M., Zerkle, A.L., Canfield, D.E., and Johnston, D.T., 2021, A 200-million-year delay in permanent atmospheric oxygenation: Nature, v. 592, p. 232–236, https://doi.org/10.1038/s41586-021-03393-7.
- Prest, V.K., 1990, Laurentide ice-flow patterns: A historical review, and implications of the dispersal of Belcher Islands erratics: Géographie physique et Quaternaire, v. 44, p. 113–136, https://doi.org/10.7202/032812ar.
- Prest, V.K., Donaldson, J.A., and Mooers, H.D., 2000, The omar story: the role of omars in assessing glacial history of west-central North America: Géographie physique et Quaternaire, v. 54, p. 257–270, https://doi.org/10.7202/005654ar.
- Regis, D., Pehrsson, S., Martel, E., Thiessen, E., Peterson, T., and Kellett, D., 2021, Post-1.9 Ga evolution of the south Rae craton (Northwest Territories, Canada): A Paleoproterozoic orogenic collapse system: Precambrian Research, v. 355, 106105, https://doi.org/10.1016/j.precamres.2021.106105.
- Ricketts, B.D., 1979, Sedimentology and stratigraphy of eastern and central Belcher Islands, Northwest Territories: PhD thesis, Carleton University, ON, 314 p., https://doi.org/10.22215/etd/1979-00451.
- Ricketts, B.D., 1981, A submarine fan–distal molasse sequence of Middle Precambrian age, Belcher Islands, Hudson Bay: Bulletin of Canadian Petroleum Geology, v. 29, p. 561–582, https://doi.org/10.35767/gscpgbull.29.4.561.
- Ricketts, B.D., 1983, The evolution of a middle Precambrian dolostone sequence; a spectrum of dolomitization regimes: Journal of Sedimentary Research, v. 53, p. 565–586, https://doi.org/10.1306/212F8238-2B24-11D7-8648000102C1865D.
- Ricketts, B.D., and Donaldson, J.A., 1981, Sedimentary history of the Belcher Group of Hudson Bay, in Campbell, F.H.A., ed., Proterozoic Basins of Canada: Geological Survey of Canada, Paper 81-10, p. 235–254, https://doi.org/10.4095/109385.
- Ricketts, B.D., and Donaldson, J.A., 1989, Stromatolite reef development on a mud-dominated platform in the Middle Precambrian Belcher Group of Hudson Bay, in Geldsetzer, H.H.J., James, N.P., and Tebbutt, G.E., eds., Reefs, Canada and Adjacent area: Canadian Society of Petroleum Geologists Memoir, v. 13, p. 113–119.
- Ricketts, B.D., Ware, M.J., and Donaldson, J.A., 1982, Volcaniclastic rocks and volcaniclastic facies in the Middle Precambrian (Aphebian) Belcher Group, Northwest Territories, Canada: Canadian Journal of Earth Sciences, v. 19, p. 1275–1294, https://doi.org/10.1139/e82-109.
- Roksandic, M.M., 1987, The tectonics and evolution of the Hudson Bay region, in Beaumont, C., and Tankard, A.J., eds., Sedimentary Basins and Basin-Forming Mechanisms: Canadian Society of Petroleum Geologists Memoir, v. 12, p. 507–518.
- Sanikiluaq Qikiqtait Steering Committee, 2021, Implementing Sanikiluaq’s vision for a Qikiqtait guardians’ program: program overview: Sanikiluaq, NU.
- Schidlowski, M., 2001, Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept: Precambrian Research, v. 106, p. 117–134, https://doi.org/10.1016/S0301-9268(00)00128-5.
- Schneider, D.A., Bickford, M.E., Cannon, W.F., Schulz, K.J., and Hamilton, M.A., 2002, Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region: Canadian Journal of Earth Sciences, v. 39, p. 999–1012, https://doi.org/10.1139/e02-016.
- Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Czaja, A.D., and Wdowiak, T.J., 2005, Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils: Astrobiology, v. 5, p. 333–371, https://doi.org/10.1089/ast.2005.5.333.
- Shapiro, R.S., and Konhauser, K.O., 2015, Hematite-coated microfossils: primary ecological fingerprint or taphonomic oddity of the Paleoproterozoic?: Geobiology, v. 13, p. 209–224, https://doi.org/10.1111/gbi.12127.
- Sherman, A.G., 1993, Anatomy of giant stromatolite mounds in the Paleoproterozoic Mavor Formation, Belcher Islands, Northwest Territories: Unpublished MSc thesis, Université de Montréal, QC.
- Skipton, D.R., St-Onge, M.R., Kellett, D.A., Joyce, N.L., and Smith, S., 2023, Rapid postorogenic cooling of the Paleoproterozoic Cape Smith foreland thrust belt and footwall Archean basement, Trans-Hudson orogen, Canada, in Whitmeyer, S.J., Williams, M.L., Kellett, D.A., and Tikoff, B., eds., Laurentia: Turning Points in the Evolution of a Continent: Geological Society of America Memoirs, v. 220, https://doi.org/10.1130/2022.1220(06).
- Steenkamp, H.M., Timlick, L., Elgin, R.A., and Akavak, M., 2016, Geological mapping and petrogenesis of carving stone in the Belcher Islands, Nunavut: Canada-Nunavut Geoscience Office, Summary of Activities 2016, p. 121–130.
- Steenkamp, H.M., Elgin, R.A., and Therriault, I., 2017, Geological mapping and resource evaluation of the Koonark carving stone deposit, northern Baffin Island, Nunavut: Canada-Nunavut Geoscience Office, Summary of Activities 2017, p. 139–149.
- St-Onge, M.R., and Ijewliw, O.J., 1996, Mineral corona formation during high-P retrogression of granulitic rocks, Ungava Orogen, Canada: Journal of Petrology, v. 37, p. 553–582, https://doi.org/10.1093/petrology/37.3.553.
- St-Onge, M.R., and Lucas, S.B., 1991, Evolution of regional metamorphism in the Cape Smith Thrust Belt (northern Quebec, Canada): interaction of tectonic and thermal processes: Journal of Metamorphic Geology, v. 9, p. 515–534, https://doi.org/10.1111/j.1525-1314.1991.tb00545.x.
- St-Onge, M.R., Scott, D.J., and Lucas, S.B., 2000, Early partitioning of Quebec: Microcontinent formation in the Paleoproterozoic: Geology, v. 28, p. 323–326, https://doi.org/10.1130/0091-7613(2000)28%3C323:EPOQMF%3E2.0.CO;2.
- St-Onge, M.R., van Gool, J.A.M., Garde, A.A., and Scott, D.J., 2009, Correlation of Archaean and Palaeoproterozoic units between northeastern Canada and western Greenland: constraining the pre-collisional upper plate accretionary history of the Trans-Hudson orogen, in Cawood, R.A., and Kröner, A., eds., Earth Accretionary Sytems in Space and Time: Geological Society, London, Special Publications, v. 318, p. 193–235, https://doi.org/10.1144/SP318.7.
- Suosaari, E.P., Reid, R.P., Mercadier, C., Vitek, B.E., Oehlert, A.M., Stolz, J.F., Giusfredi, P.E., and Eberli, G.P., 2022, The microbial carbonate factory of Hamelin Pool, Shark Bay, Western Australia: Scientific Reports, v. 12, 12902, https://doi.org/10.1038/s41598-022-16651-z.
- Timlick, L., Steenkamp, H.M., and Camacho, A.L., 2017, Comparative study of the petrogenesis of excellent-quality carving stone from Korok Inlet, southern Baffin Island and the Belcher Islands, Nunavut: Canada-Nunavut Geoscience Office, Summary of Activities 2017, p. 129–138.
- Todt, W.A., Chauvel, C., Arndt, N.T., and Hoffman, A.W., 1984, Pb isotopic composition and age of Proterozoic komatiites and related rocks from Canada (Abstract): EOS, 1984 Fall Meeting, v. 65, p. 1129.
- Wahl, G.J., 2012, Haig Inlet iron project technical report, Belcher Islands, Qikiqtaaluk Region, Nunavut, Canada: GH Wahl & Associates Consulting for Canadian Orebodies Incorporated, 62 p.
- Wanless, R.K., Stevens, R.D., Lachance, G.R., and Rimsaite, R.Y.H., 1965, Age determinations and geological studies, Part 1-Isotopic Ages, Report 5: Geological Survey of Canada, Paper 64-17, 126 p., https://doi.org/10.4095/101021.
- Wanless, R.K., Stevens, R.D., Lachance, G.R., and Edmonds, C.M., 1967, Age determinations and geological studies, K-Ar isotope ages, Report 7: Geological Survey of Canada, Paper 66-17, 120 p., https://doi.org/10.4095/100968.
- Wanless, R.K., Stevens, R.D., Lachance, G.R., and Edmonds, C.M., 1968, Age determinations and geological studies, K-Ar isotope ages, Report 8: Geological Survey of Canada, Paper 67-2A, 141 p., https://doi.org/10.4095/103342.
- Weller, O.M., and St-Onge, M.R., 2017, Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogen: Nature Geoscience, v. 10, p. 305–311, https://doi.org/10.1038/NGEO2904.
- Young, G.A., 1922, Iron-bearing rocks of Belcher Islands, Hudson Bay: Geological Survey of Canada, Summary Report, 1921, Part E, 61 p., https://doi.org/10.4095/103426.