Vol. 48 No. 3 (2021)
Series

Heritage Stone 8. Formation of Pinolitic Magnesite at Quartz Creek, British Columbia, Canada: Inferences from Preliminary Petrographic, Geochemical and Geochronological Studies

Alexandria Littlejohn-Regular
Department of Earth Environmental and Geographic Sciences, University of British Columbia Okanagan 3333 University Way, Kelowna, British Columbia, V1V 1V7, Canada
John D. Greenough
Department of Earth Environmental and Geographic Sciences, University of British Columbia Okanagan 3333 University Way, Kelowna, British Columbia, V1V 1V7, Canada
Kyle Larson
Department of Earth Environmental and Geographic Sciences, University of British Columbia Okanagan 3333 University Way, Kelowna, British Columbia, V1V 1V7, Canada

Publié-e 2021-12-08

Mots-clés

  • British Columbia,
  • Lower Paleozoic,
  • Mg metasomatism,
  • Pinolite,
  • Sparry magnesite,
  • Titanite U–Pb dating
  • ...Plus
    Moins

Comment citer

Littlejohn-Regular, A., Greenough, J. D., & Larson, K. (2021). Heritage Stone 8. Formation of Pinolitic Magnesite at Quartz Creek, British Columbia, Canada: Inferences from Preliminary Petrographic, Geochemical and Geochronological Studies. Geoscience Canada, 48(3), 117–132. https://doi.org/10.12789/geocanj.2021.48.177

Résumé

Les roches du groupe de Horsethief Creek de la fin du Protérozoïque à Quartz Creek en Colombie-Britannique présentent des textures « pinolitiques » rares ressemblant à celles décrites dans certains dépôts de magnésite sparitique ailleurs dans le monde. Des cristaux de magnésite blancs et allongés, atteignant 30 cm de long, se trouvent dans une matrice à grains fins, sombre et contrastante, et composée de dolomie, de chlorite, de matière organique, de minéraux argileux et de pyrite. Les roches sont esthétiquement attrayantes pour un usage en sculpture et en tant que pierre de taille. Le terme « pinolite » est dérivé des similitudes superficielles entre ces textures inhabituelles et les pommes de pin. L'examen pétrographique indique que ces textures se sont formées lorsque les fluides métasomatiques ont remplacé la dolomie sédimentaire primaire par de la magnésite. Les fluides se sont déplacés le long des fractures et des plans de stratification présentant des fracturations répétées, produisant des cristaux de magnésite orientés dans des directions opposées de chaque côté des fractures recuites, et des cristaux de magnésite brisés adjacents aux fractures ultérieures. La magnésite contient des micro-inclusions de dolomie et a des teneurs élevées en Ca qui sont compatibles avec sa formation par remplacement de la dolomie. De faibles concentrations de Cr, Ni, Co, Ti, Sr et Ba dans la magnésite impliquent également la formation dans un environnement métasomatique plutôt que sédimentaire. Les concentrations d'éléments des terres rares (ETR) dans la magnésite de Quartz Creek sont plus élevées que celles de la plupart des magnésites évaporitiques et les profils d’ETR ne présentent pas les anomalies en Ce et Eu qui caractérisent les roches carbonatées des environnements sédimentaires. L'enrichissement en ETR légers par rapport aux ETR lourds, et les similitudes entre les profils des ETR de la dolomie, de la chlorite et de la magnésite, impliquent que les fluides métasomatiques ont modifié la signature géochimique sédimentaire originale des dolomies lors de la formation des pinolites. Un âge U–Pb de la fin de l'Ordovicien au début du Silurien (433 ± 12 Ma), pour la titanite dans la matrice noire entourant la magnésite sparitique, est plus récent que celui des roches hôtes locales, et également plus récent que les âges stratigraphiques du Mésoprotérozoïque au Cambrien moyen des roches hôtes des dépôts de magnésite voisins. La titanite d’environ 433 Ma chevauche les âges de nombreux diatrèmes et dépôts volcanoclastiques associés à des failles dans la région. Il est possible que l'activité ignée a fourni la chaleur et/ou a été la source des fluides métasomatiques qui ont produit les dépôts de pinolites.

Références

  1. Aharon, P., 1988, A stable-isotope study of magnesites from the Rum Jungle uranium field, Australia: implications for the origin of strata-bound massive magnesites: Chemical Geology, v. 69, p. 127–145, https://doi.org/10.1016/0009-2541(88)90164-7.
  2. Azim Zadeh, A.M., 2009, The genetic model of the Hohentauern/Sunk sparry magnesite deposit (Eastern Alps/Austria): Unpublished PhD thesis, University of Leoben, Leoben, Austria, 182 p.
  3. Azim Zadeh, A.M., Ebner, F., and Jiang, S.-Y., 2015, Mineralogical, geochemical, fluid inclusion and isotope study of Hohentauern/Sunk sparry magnesite deposit (Eastern Alps/Austria): implications for a metasomatic genetic model: Mineralogy and Petrology, v. 109, p. 555–575, https://doi.org/10.1007/s00710-015-0386-2.
  4. Bau, M., and Alexander, B., 2006, Preservation of primary REE patterns without Ce anomaly during dolomitization of Mid‐Paleoproterozoic limestone and the potential re‐establishment of marine anoxia immediately after the "Great Oxidation Event": South African Journal of Geology, v. 109, p. 81–86, https://doi.org/10.2113/gssajg.109.1-2.81.
  5. Bau, M., and Möller, P., 1992, Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite: Mineralogy and Petrology, v. 45, p. 231–246, https://doi.org/10.1007/BF01163114.
  6. Callen, J.M., and Herrmann, A.D., 2019, In situ geochemistry of middle Ordovician dolomites of the upper Mississippi valley: The Depositional Record, v. 5, p. 4–22, https://doi.org/10.1002/dep2.51.
  7. Frimmel, H.E., 2009, Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator: Chemical Geology, v. 258, p. 338–353, https://doi.org/10.1016/j.chemgeo.2008.10.033.
  8. Fritz, W.H., and Simandl, G.J., 1993, New middle Cambrian fossil and geological data from the Brussilof magnesite mine area, southeastern British Columbia: Geological Survey of Canada, Paper 93-1A, p. 183–190, https://doi.org/10.4095/134205.
  9. Gromet, L.P., Haskin, L.A., Korotev, R.L., and Dymek, R.F., 1984, The "North American shale composite": Its compilation, major and trace element characteristics: Geochimica et Cosmochimica Acta, v. 48, p. 2469–2482, https://doi.org/10.1016/0016-7037(84)90298-9.
  10. Haley, B.A., Klinkhammer, G.P., and McManus, J., 2004, Rare earth elements in pore waters of marine sediments: Geochimica et Cosmochimica Acta, v. 68, p. 1265–1279, https://doi.org/10.1016/j.gca.2003.09.012.
  11. Hancock, K.D., and Simandl, G.J., 1992, Geology of the Marysville Magnesite Deposit, Southeastern British Columbia: British Columbia Ministry of Energy, Mines and Petroleum Resources, Exploration in British Columbia, Part B, p. 71–80.
  12. Hobbs, F.W.C., and Xu, H., 2020, Magnesite formation through temperature and pH cycling as a proxy for lagoon and playa paleoenvironments: Geochimica et Cosmochimica Acta, v. 269, p. 101–116, https://doi.org/10.1016/j.gca.2019.10.014.
  13. Huang, J., Chu, X.L., Chang, H.J., and Feng, L.J., 2009, Trace element and rare earth element of cap carbonate in Ediacaran Doushantuo Formation in Yangtze Gorges: Chinese Science Bulletin, v. 54, p. 3295–3302, https://doi.org/10.1007/s11434-009-0305-1.
  14. Kiesl, W., Koeberl, C., and Körner, W., 1990, Geochemistry of magnesites and dolomites at the Oberdorf/Laming (Austria) deposit and implications for their origin: Geologische Rundschau, v. 79, p. 327–335, https://doi.org/10.1007/BF01830629.
  15. Kilias, S.P., Pozo, M., Bustillo, M., Stamatakis, M.G., and Calvo, J.P., 2006, Origin of the Rubian carbonate-hosted magnesite deposit, Galicia, NW Spain: mineralogical, REE, fluid inclusion and isotope evidence: Mineralium Deposita, v. 41, p. 713–733, https://doi.org/10.1007/s00126-006-0075-5.
  16. Krupenin, M.T., 2005, Geological-geochemical types and REE systematization in deposits of the South Urals magnesite province: Doklady Earth Sciences, v. 405, p. 1253–1256.
  17. Krupenin, M.T., and Ellmies, R., 2001, Genetic features of sparry magnesites in Proterozoic carbonate rocks of the Southern Urals: Ethnographic Praxis in Industry Conference Proceedings, v. 6, p. 997–999.
  18. Kubli, T.E., 1990, Geology of the Dogtooth Range, Northern Purcell Mountains, British Columbia: Unpublished PhD thesis, University of Calgary, Calgary, Canada, 324 p. https://doi.org/10.11575/PRISM/19577.
  19. Kuşcu, M., Cengiz, O., and Kahya, A., 2017, Trace element contents and C-O isotope geochemistry of the different originated magnesite deposits in Lake District (Southwestern Anatolia), Turkey: Arabian Journal of Geosciences, v. 10, 339, https://doi.org/10.1007/s12517-017-3102-1.
  20. Larson, K.P., and Price, R.A., 2006, The southern termination of the Western Main Ranges of the Canadian Rockies, near Fort Steele, British Columbia: stratigraphy, structure, and tectonic implications: Bulletin of Canadian Petroleum Geology, v. 54, p. 37–61, https://doi.org/10.2113/54.1.37.
  21. Lawrence, M.G., Greig, A., Collerson, K.D., and Kamber, B.S., 2006, Rare earth element and Yttrium variability in southeast Queensland Waterways: Aquatic Geochemistry, v. 12, p. 39–72, https://doi.org/10.1007/s10498-005-4471-8.
  22. Lugli, S., Torres-Ruiz, J., Garuti, G., and Olmedo, F., 2000, Petrography and geochemistry of the Eugui magnesite deposit (Western Pyrenees, Spain): Evidence for the development of a peculiar zebra banding by dolomite replacement: Economic Geology, v. 95, p. 1775–1791, https://doi.org/10.2113/95.8.1775.
  23. Marshall, D., Simandl, G., and Voormeij, D., 2004, Fluid inclusion evidence for the genesis of the Mount Brussilof magnesite deposit, in Simandl, G.J., McMillan, W.J., and Robinson, N.D., eds., Industrial Minerals with Emphasis on Western North America: British Columbia Ministry of Energy and Mines, Geological Survey Paper 2004–2, p. 65–75.
  24. McDonough, W.F., and Sun, S.-s., 1995, The composition of the Earth: Chemical Geology, v. 120, p. 223–253, https://doi.org/10.1016/0009-2541(94)00140-4.
  25. Meyer, E.E., Quicksall, A.N., Landis, J.D., Link, P.K., and Bostick, B.C., 2012, Trace and rare earth elemental investigation of a Sturtian cap-carbonate, Pocatello, Idaho: Evidence for ocean redox conditions before and during carbonate deposition: Precambrian Research, v. 192–195, p. 89–106, https://doi.org/10.1016/j.precamres.2011.09.015.
  26. Möller, P., 1989, Minor and trace elements in magnesite monograph series on mineral deposits: Gebrüder Borntrager, Berlin-Stutgart, v. 28, p. 173–195.
  27. Navarro-Ciurana, D., Cardellach, E., Galindo, C., Fuenlabrada, J.M., Griera, A., Gómez-Gras, D., Vindel, E., and Corbella, M., 2017, REE and Sm–Nd clues of high‐temperature fluid‐rock interaction in the Riópar dolomitization (SE Spain): Procedia Earth and Planetary Science, v. 17, p. 448–451, https://doi.org/10.1016/j.proeps.2016.12.113.
  28. Nesbitt, B. E., and Prochaska, W., 1998, Solute chemistry of inclusion fluids from sparry dolomites and magnesites in Middle Cambrian carbonate rocks of the southern Canadian Rocky Mountains: Canadian Journal of Earth Sciences, v. 35, p. 546–555, https://doi.org/10.1139/e98-006.
  29. Paradis, S., and Simandl, G.J., 2018, Are there genetic links between carbonate-hosted barite-zinc-lead sulphide deposits and magnesite mineralization in southeast British Columbia?, in Rogers, N., ed., Targeted Geoscience Initiative: 2017 Report of Activities, Volume 1, Geological Survey of Canada Open File 8358, p. 217–227, https://doi.org/10.4095/306478.
  30. Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R., and Chenery, S.P., 1997, A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials: Geostandards Newsletter, v. 21, p. 115–144, https://doi.org/10.1111/j.1751-908X.1997.tb00538.x.
  31. Pell, J., 1986, Diatreme breccias in British Columbia: Geological Fieldwork 1985, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1986-1, p. 243–253.
  32. Pohl, W., 1989, Comparative geology of magnesite deposits and occurrences: Monograph Series on Mineral Deposits, v. 28, p. 1–13.
  33. Pohl, W., 1990, Genesis of magnesite deposits - models and trends: Geologische Rundschau, v. 79, p. 291–299, https://doi.org/10.1007/BF01830626.
  34. Pohl, W., 2011, Economic Geology: Principles and Practice: Wiley-Blackwell, 678 p., https://doi.org/10.1002/9781444394870.
  35. Pohl, W., and Siegl, W., 1986, Sediment hosted magnesite deposits, in Wolf, K.H., ed., Handbook of Stratabound and Stratiform ore deposits: Elsevier, v. 14, p. 223–260.
  36. Poulton, T.P., 1973, Upper Proterozoic ‘Limestone Unit’, Northern Dogtooth Mountains, British Columbia: Canadian Journal of Earth Sciences, v. 10, p. 292–305, https://doi.org/10.1139/e73-026.
  37. Poulton, T.P., and Simony, P.S., 1980, Stratigraphy, sedimentology, and regional correlation of the Horsethief Creek Group (Hadrynian, Late Precambrian) in the northern Purcell and Selkirk Mountains, British Columbia: Canadian Journal of Earth Sciences, v. 17, p. 1708–1724, https://doi.org/10.1139/e80-179.
  38. Powell, R., Green, E.C.R., Marillo Sialer, E., and Woodhead, J., 2020, Robust isochron calculation: Geochronology, v. 2, p. 325–342, https://doi.org/10.5194/gchron-2-325-2020.
  39. Powell, W.G., Johnston, P.A., Collom, C.J., and Johnston, K.J., 2006, Middle Cambrian brine seeps on the Kicking Horse Rim and their relationship to talc and magnesite mineralization and associated dolomitization, British Columbia, Canada: Economic Geology, v. 101, p. 431–451, https://doi.org/10.2113/gsecongeo.101.2.431.
  40. Prochaska, W., 2016, Genetic concepts on the formation of the Austrian magnesite and siderite mineralizations in the Eastern Alps of Austria: Geologia Croatica, v. 69, p. 31–38, https://doi.org/10.4154/GC.2016.03.
  41. Qing, H., and Mountjoy, E.W., 1994, Formation of coarsely crystalline, hydrothermal dolomite reservoirs in the Presqu'ile Barrier, Western Canada Sedimentary Basin: AAPG Bulletin, v. 78, p. 55–77, https://doi.org/10.1306/BDFF9014-1718-11D7-8645000102C1865D.
  42. Redlich, K.A., 1909, Die Typen der Magnesitlagerstätten: Zeitschr. f. prakt. Geologie, v. 17, p. 300–310.
  43. Schroll, E., 2002, Genesis of magnesite deposits in the view of isotope geochemistry: Boletim Paranaense de Geociências, v. 50, p. 59–68, https://doi.org/10.5380/geo.v50i0.4158.
  44. Simandl, G.J., 2002, The chemical characteristics and development potential of magnesite deposits in BC, in Scott, P.W., and Bristow, C.M., eds., Industrial Minerals and Extractive Industry Geology: Geological Society of London, p. 169–178.
  45. Simandl, G.J., and Hancock, K.D., 1991, Geology of the Mount Brussilof magnesite deposit, southeastern British Columbia, in Geological Fieldwork 1990, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1991-1, p. 269–278.
  46. Simandl, G.J., and Hancock, K.D., 1992, Geology of the Dolomite-hosted Magnesite Deposits of Brisco and Driftwood Creek areas, British Columbia, in Geological Fieldwork 1991, British Columbia Ministry of Mines and Petroleum Resources, Paper 1992-1, p. 461–478.
  47. Simandl, G.J., and Hancock, K., 1999, Sparry magnesite, in Selected mineral deposit profiles, volume 3 - industrial minerals and gemstones: British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Open File 1999-10, p. 39–41.
  48. Simandl, G.J., Hancock, K.D., Fournier, M.A., Koyanagi, V.M., Vilkos, V., Lett, R.E., and Colbourne, C., 1992, Geology and major element geochemistry of the Mount Brussilof magnesite area, Southeastern British Columbia (082J/ 12, 13): British Columbia Ministry of Energy, Mines and Petroleum Resources, Mineral Resources Division, Geological Survey Branch, Open File 1992-14, p. 1–14 plus map.
  49. Stacey, J.S., and Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, v. 26, p. 207–221, https://doi.org/10.1016/0012-821X(75)90088-6.
  50. Tostevin, R., Shields, G.A., Tarbuck, G.M., He, T., Clarkson, M.O., and Wood, R.A., 2016, Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings: Chemical Geology, v. 438, p. 146–162, https://doi.org/10.1016/j.chemgeo.2016.06.027.
  51. Wheeler, J.O., and Fox, P.E., 1962, Geology, Rogers Pass, Golden, West Half, British Columbia – Alberta: Geological Survey of Canada Map 43-1962, 1 Sheet, https://doi.org/10.4095/108810.
  52. Zhang, W., Guan, P., Jian, X., Feng, F., and Zou, C., 2014, In situ geochemistry of Lower Paleozoic dolomites in the northwestern Tarim basin: Implications for the nature, origin, and evolution of diagenetic fluids: Geochemistry, Geophysics, Geosystems, v. 15, p. 2744–2764, https://doi.org/10.1002/2013GC005194.