Vol. 50 No. 4 (2023)
GAC Medallist Series

Logan Medallist 8. Trace Elements in Iron Formation as a Window into Biogeochemical Evolution Accompanying the Oxygenation of Earth’s Atmosphere

Kurt O. Konhauser
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3
Andreas Kappler
Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen, 72076
Stefan V. Lalonde
European Institute for Marine Studies, CNRS-UMR6538, Laboratoire Domaines Océaniques, Technopôle Brest-Iroise, Plouzané, 29280
Leslie J. Robbins
Department of Geology, University of Regina, Regina, Saskatchewan, S4S 0A2

Published 2023-12-18


  • Cyanobacteria,
  • Earth's Oxygenation,
  • Geobiology,
  • Iron Formation

How to Cite

Konhauser, K. O., Kappler, A., Lalonde, S. V., & Robbins, L. J. (2023). Logan Medallist 8. Trace Elements in Iron Formation as a Window into Biogeochemical Evolution Accompanying the Oxygenation of Earth’s Atmosphere. Geoscience Canada, 50(4), 239–258. https://doi.org/10.12789/geocanj.2023.50.201


Iron formations exemplify a type of sedimentary rock found in numerous Archean and Proterozoic supracrustal successions. They serve as a valuable chemical record of Precambrian seawater chemistry and post-depositional iron cycling. These formations accumulated on the seafloor for over two billion years during the early history of our planet, offering a unique opportunity to study environmental changes that occurred during Earth's evolution. Among these changes, one of the most significant events was the shift from an anoxic planet to one where oxygen (O2) became consistently present in both the marine water column and atmosphere. This progression towards global oxygenation was closely linked to the emergence of aerobic microbial metabolisms, which profoundly impacted continental weathering processes, nutrient supply to the oceans, and ultimately, the diversification of the biosphere and complex life forms. In this review, we synthesize two decades of research into the temporal fluctuations of trace element concentrations in iron formations. Our aim is to shed light on the complex mechanisms that contributed to the oxygenation of Earth's surface environments.


  1. Albut, G., Babechuk, M.G., Kleinhanns, I.C., Benger, M., Beukes, N.J., Steinhilber, B., Smith, A.J.B., Kruger, S.J., and Schoenberg, R., 2018, Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa): Geochimica et Cosmochimica Acta, v. 228, p. 157–189, https://doi.org/10.1016/j.gca.2018.02.034.
  2. Albut, G., Kamber, B.S., Brüske, A., Beukes, N.J., Smith, A.J.B, and Schoenberg, R., 2019, Modern weathering in outcrop samples versus ancient paleoredox information in drill core samples from a Mesoarchaean marine oxygen oasis in Pongola Supergroup, South Africa: Geochimica et Cosmochimica Acta, v. 265, p. 330–353, https://doi.org/10.1016/j.gca.2019.09.001.
  3. Alexander, B.W., Bau, M., Andersson, P., and Dulski, P., 2008, Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa: Geochimica et Cosmochimica Acta, v. 72, p. 378–394, https://doi.org/10.1016/j.gca.2007.10.028.
  4. Amend, J.P., McCollom, T.M., Hentscher, M., and Bach, W., 2011, Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types: Geochimica et Cosmochimica Acta, v. 75, p. 5736–5748, https://doi.org/10.1016/j.gca.2011.07.041.
  5. Anbar, A.D., and Knoll, A.H., 2002, Proterozoic ocean chemistry and evolution: a bioinorganic bridge?: Science, v. 297, p. 1137–1142, https://doi.org/10.1016/j.gca.2011.07.041.
  6. Anbar, A.D., Duan, Y., Lyons, T.W., Arnold, G.L., Kendall, B., Creaser, R.A., Kaufman, A.J., Gordon, G.W., Scott, C., Garvin, J., and Buick, R., 2007, A whiff of oxygen before the Great Oxidation Event?: Science, v. 317, p. 1903–1906, https://doi.org/10.1126/science.1140325.
  7. Barley, M.E., Bekker, A., and Krapež, B., 2005, Late Archean to early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen: Earth and Planetary Science Letters, v. 238, p. 156–171, https://doi.org/10.1016/j.epsl.2005.06.062.
  8. Bau, M., and Dulski, P., 1996, Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa: Precambrian Research v. 79, p. 37–55, https://doi.org/10.1016/0301-9268(95)00087-9.
  9. Bau, M., and Möller, P., 1993, Rare earth element systematics of the chemically precipitated component in early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system: Geochimica et Cosmochimica Acta: v. 57, p. 2239–2249, https://doi.org/10.1016/0016-7037(93)90566-F.
  10. Baur, M.E., Hayes, J.M., Studley, S.A., and Walter, M.A., 1985, Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia: Economic Geology, v. 80, p. 270–282, https://doi.org/10.2113/gsecongeo.80.2.270.
  11. Beal, E.J., House, C.H., and Orphan, V.J., 2009, Manganese- and iron-dependent marine methane oxidation: Science, v. 325, p. 184–187, https://doi.org/10.1126/science.1169984.
  12. Bekker, A., and Holland, H.D., 2012, Oxygen overshoot and recovery during the early Paleoproterozoic: Earth and Planetary Science Letters, v. 317–318, p. 295–304, https://doi.org/10.1016/j.epsl.2011.12.012.
  13. Bekker, A., Slack, J.F., Planavsky, N., Krapež, B., Hofmann, A., Konhauser, K.O., and Rouxel, O.J., 2010, Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes: Economic Geology, v. 105, p. 467–508, https://doi.org/10.2113/gsecongeo.105.3.467.
  14. Berner, R.A., and Rao, J.-L., 1994, Phosphorus in sediments of the Amazon River and estuary - Implications for the global flux of phosphorus to the sea: Geochimica et Cosmochimica Acta, v. 58, p. 2333–2339, https://doi.org/10.1016/0016-7037(94)90014-0.
  15. Beukes, N.J., and Gutzmer, J., 2008, Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary, in Hagemann, S., Rosière, C.A., Gutzmer, J., and Beukes, N.J., eds., Banded Iron Formation-Related High-Grade Iron Ore: Reviews in Economic Geology, v. 15, p. 5–47, https://doi.org/10.5382/Rev.15.01.
  16. Bjerrum, C.J., and Canfield, D.E., 2002, Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides: Nature, v. 417, p. 159–162, https://doi.org/10.1038/417159a.
  17. Blättler, C.L., Claire, M.W., Prave, A.R., Kirsimäe, K., Higgins, J.A., Medvedev, P.V., Romashkin, A.E., Rychanchik, D.V., Zerkle, A.L., Paiste, K., Kreitsmann, T., Millar, I.L., Hayles, J.A., Bao, H., Turchyn, A.V., Warke, M.R., and Lepland, A., 2018, Two-billion-year-old evaporites capture Earth’s great oxidation: Science, v. 360, p. 320–323, https://doi.org/10.1126/science.aar2687.
  18. Boden, J.S., Konhauser, K.O., Robbins, L.J., and Sánchez-Baracaldo, P., 2021, Timing the evolution of antioxidant enzymes in cyanobacteria: Nature Communications, v. 12, 4742, https://doi.org/10.1038/s41467-021-24396-y.
  19. Bolhar, R., Kamber, B.S., Moorbath, S., Fedo, C.M., and Whitehouse, M.J., 2004, Characterization of early Archaean chemical sediments by trace element signatures: Earth and Planetary Science Letters, v. 222, p. 43–60, https://doi.org/10.1016/j.epsl.2004.02.016.
  20. Bonner, J.T., 1998, The origins of multicellularity: Integrative Biology, v. 1, p. 27–36, https://doi.org/10.1002/(SICI)1520-6602(1998)1:1%3C27::AID-INBI4%3E3.0.CO;2-6.
  21. Brady, M.P., Tostevin, R., and Tosca, N.J., 2022, Marine phosphate availability and the chemical origins of life on Earth: Nature Communications, v. 13, 5162, https://doi.org/10.1038/s41467-022-32815-x.
  22. Bräuer, S.L., Yavitt, J.B., and Zinder, S.H., 2004, Methanogenesis in McLean Bog, an acidic peat bog in upstate New York: stimulation by H2/CO2 in the presence of rifampicin, or by low concentrations of acetate: Geomicrobiology Journal, v. 21, p. 433–443, https://doi.org/10.1080/01490450490505400.
  23. Brazelton, W.J., Schrenk, M.O., Kelley, D.S., and Baross, J.A., 2006, Methane- and sulfur-metabolizing microbial communities dominate the Lost City Hydrothermal Field ecosystem: Applied and Environmental Microbiology, v. 72, p. 6257–6270, https://doi.org/10.1128/AEM.00574-06.
  24. Bruland, K.W., Middag, R., and Lohan, M.C., 2014, Controls of trace metals in seawater, in Holland, H.D., and Turekian, K.K., eds., Treatise on Geochemistry (Second Edition). Elsevier, Oxford, p. 19–51, https://doi.org/10.1016/B978-0-08-095975-7.00602-1.
  25. Canfield, D.E., 1998, A new model for Proterozoic ocean chemistry: Nature, v. 396, p. 450–453, https://doi.org/10.1038/24839.
  26. Catling, D.C., Claire, M.W., and Zahnle, K.J., 2007, Anaerobic methanotrophy and the rise of atmospheric oxygen: Philosophical Transactions of the Royal Society A, v. 365, p. 1867–1888, https://doi.org/10.1098/rsta.2007.2047.
  27. Cavicchioli, R., Curmi, P.M.G., Saunders, N., and Thomas, T., 2003, Pathogenic archaea: do they exist?: BioEssays, v. 25, p. 1119–1128, https://doi.org/10.1002/bies.10354.
  28. Chan, C.S., Emerson, D., and Luther, G.W., 2016, The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations: Geobiology, v. 14, p. 509–528, https://doi.org/10.1111/gbi.12192.
  29. Chi Fru, E., Rodríguez, N.P., Partin, C.A., Lalonde, S.V., Andersson, P.S., Weiss, D.J., El Albani, A., Rodushkin, I., and Konhauser, K.O., 2016, Cu isotopes in marine black shales record the Great Oxidation Event: Proceedings of the National Academy of Sciences, v. 113, p. 4941–4946, https://doi.org/10.1073/pnas.1523544113.
  30. Chi Fru, E., Somogyi, A., El Albani, A., Medjoubi, K., Aubineau, J., Robbins, L.J., Lalonde, S.V., and Konhauser, K.O., 2019, The rise of oxygen-driven arsenic cycling at ca. 2.48 Ga: Geology, v. 47, p. 243–246, https://doi.org/10.1130/G45676.1.
  31. Cloud, P.E., Jr., 1965, Significance of the Gunflint (Precambrian) microflora: Science, v. 148, p. 27–35, https://doi.org/10.1126/science.148.3666.27.
  32. Condie, K.C., 1993, Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales: Chemical Geology, v. 104, p. 1–37, https://doi.org/10.1016/0009-2541(93)90140-E.
  33. Conley, D.J., Smith, W.M., Cornwell, J.C., and Fisher, T.R., 1995, Transformation of particle-bound phosphorus at the land-sea interface: Estuarian, Coastal and Shelf Science, v. 40, p. 161–176, https://doi.org/10.1016/S0272-7714(05)80003-4.
  34. Craddock, P.R., and Dauphas, N., 2011, Iron and carbon isotope evidence for microbial iron respiration throughout the Archean: Earth and Planetary Science Letters, v. 303, p. 121–132, https://doi.org/10.1016/j.epsl.2010.12.045.
  35. Crowe, S.A., Jones, C., Katsev, S., Magen, C., O’Neill, A.H., Sturm, A., Canfield, D.E., Haffner, G.D., Mucci, A., Sundby, B., and Fowle, D.A., 2008, Photoferrotrophs thrive in an Archean ocean analogue: Proceedings of the National Academy of Sciences, v. 105, p. 15938–15943, https://doi.org/10.1073/pnas.0805313105.
  36. Crowe, S.A. Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., Pack, M.A., Kessler, J.D., Reeburgh, W.S., Roberts, J.A., González, L., Haffner, G.D., Mucci, A., Sundby, B., and Fowle, D.A., 2011, The methane cycle in ferruginous Lake Matano: Geobiology, v. 9, p. 61–78, https://doi.org/10.1111/j.1472-4669.2010.00257.x.
  37. Crowe, S.A., Døssing, L.N., Beukes, N.J., Bau, M., Kruger, S.J., Frei, R., and Canfield, D.E., 2013, Atmospheric oxygenation three billion years ago: Nature, v. 501, p. 535–538, https://doi.org/10.1038/nature12426.
  38. Czaja, A.D., Johnson, C.M., Beard, B.L., Roden, E.E., Li, W., and Moorbath, S., 2013, Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3370 Ma Isua Supracrustal Belt (West Greenland): Earth and Planetary Science Letters, v. 363, p. 192–203, https://doi.org/10.1016/j.epsl.2012.12.025.
  39. Derry, L.A., 2015, Causes and consequences of mid‐Proterozoic anoxia: Geophysical Research Letters, v. 42, p. 8538–8546, https://doi.org/10.1002/2015GL065333.
  40. Dorland, H.C., 1999, Paleoproterozoic Laterites, Red Beds and Ironstones of the Pretoria Group With Reference to the History of Atmospheric Oxygen: Unpublished MSc Thesis, Rand Afrikaans University, Johannesburg, South Africa, 147 p.
  41. Døssing, L.N., Dideriksen, K., Stipp, S.L.S., and Frei, R., 2011, Reduction of hexavalent chromium by ferrous iron: A process of chromium isotope fractionation and its relevance to natural environments: Chemical Geology, v. 285, p. 157–166, https://doi.org/10.1016/j.chemgeo.2011.04.005.
  42. Eickhoff, M., Obst, M., Schröder, C., Hitchcock, A.P., Tyliszczak, T., Martinez, R.E., Robbins, L.J., Konhauser, K.O., and Kappler, A., 2014, Nickel partitioning in biogenic and abiogenic ferrihydrite: The influence of silica and implications for ancient environments: Geochimica et Cosmochimica Acta, v. 140, p. 65–79, https://doi.org/10.1016/j.gca.2014.05.021.
  43. Eigenbrode, J.L., and Freeman, K.H., 2006, Late Archean rise of aerobic microbial ecosystems: Proceedings of the National Academy of Sciences, v. 103, p. 15759–15764, https://doi.org/10.1073/pnas.0607540103.
  44. Ellis, A.S., Johnson, T.M., and Bullen, T.D., 2002, Chromium isotopes and the fate of hexavalent chromium in the environment: Science, v. 295, p. 2060–2062, https://doi.org/10.1126/science.1068368.
  45. Feely, R.A., Trefry, J.H., Lebon, G.T., and German, C.R., 1998, The relationship between P/Fe and V/Fe ratios in hydrothermal precipitates and dissolved phosphate in seawater: Geophysical Research Letters, v. 25, p. 2253–2256, https://doi.org/10.1029/98GL01546.
  46. Fischer, W.W., and Knoll, A.H., 2009, An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation: Geological Society of America Bulletin, v. 121, p. 222–235, https://doi.org/10.1130/B26328.1.
  47. Frausto da Silva, J.J.R., and Williams, R.J., 2001, The Biological Chemistry of the Elements: The Inorganic Chemistry of Life (2nd ed.): Oxford University Press, Oxford, UK, 600 p.
  48. Frei, R., Gaucher, C., Poulton, S.W., and Canfield, D.E., 2009, Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes: Nature, v. 461, p. 250–253, https://doi.org/10.1038/nature08266.
  49. Frost, C.D., von Blanckenburg, F., Schoenberg, R., Frost, B.R., and Swapp, S.M., 2007, Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation: Contributions to Mineralogy and Petrology, v. 153, p. 211–235, https://doi.org/10.1007/s00410-006-0141-0.
  50. Gaillard, F., Scaillet, B., and Arndt, N.T., 2011, Atmospheric oxygenation caused by a change in volcanic degassing pressure: Nature, v. 478, p. 229–232, https://doi.org/10.1038/nature10460.
  51. Garcia, A.K., Cavanaugh, C.M., and Kacar, B., 2021, The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution: The ISME Journal, v. 15, p. 2183–2194, https://doi.org/10.1038/s41396-021-00971-5.
  52. Gauger, T., Byrne, J.M., Konhauser, K.O., Obst, M., Crowe, S., and Kappler, A., 2016, Influence of organics and silica on Fe(II) oxidation rates and cell–mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox – Implications for Fe(II) oxidation in ancient oceans: Earth and Planetary Science Letters, v. 443, p. 81–89, https://doi.org/10.1016/j.epsl.2016.03.022.
  53. Gérard, F., 2016, Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils – A myth revisited: Geoderma, v. 262, p. 213–226, https://doi.org/10.1016/j.geoderma.2015.08.036.
  54. Godfrey, L.V., and Falkowski, P.G., 2009, The cycling and redox state of nitrogen in the Archaean ocean: Nature Geoscience, v. 2, p. 725–729, https://doi.org/10.1038/ngeo633.
  55. Gole, M.J., and Klein, C., 1981, Banded iron-formations through much of Precambrian time: The Journal of Geology, v. 89, p. 169–183, https://doi.org/10.1086/628578.
  56. Gross, G.A., 1980, A classification of iron-formation based on depositional environments: Canadian Mineralogist, v. 18, p. 215–222.
  57. Grotzinger, J.P., and Knoll, A.H., 1999, Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks?: Annual Reviews of Earth and Planetary Sciences, v. 27, p. 313–358, https://doi.org/10.1146/annurev.earth.27.1.313.
  58. Hagemann, S.G., Angerer, T., Duuring, P., Rosière, C.A., Figueiredo e Silva, R.C., Lobato, L., Hensler, A.S., and Walde, D.H.G., 2016, BIF-hosted iron mineral system: A review: Ore Geology Reviews, v. 76, p. 317–359, https://doi.org/10.1016/j.oregeorev.2015.11.004.
  59. Halama, M., Swanner, E.D., Konhauser, K.O., and Kappler, A., 2016, Evaluation of siderite and magnetite formation in BIFs by pressure-temperature experiments of Fe(III) minerals and microbial biomass: Earth and Planetary Science Letters, v. 450, p. 243–253, https://doi.org/10.1016/j.epsl.2016.06.032.
  60. Halevy, I., Alesker, M., Schuster, E.M., Popovitz-Biro, R., and Feldman, Y., 2017, A key role for green rust in the Precambrian oceans and the genesis of iron formations: Nature Geoscience, v. 10, p. 135–139, https://doi.org/10.1038/ngeo2878.
  61. Hao, J., Knoll, A.H., Huang, F., Hazen, R.M., and Daniel, I., 2020, Cycling phosphorus on the Archean Earth: Part I. Continental weathering and riverine transport of phosphorus: Geochimica et Cosmochimica Acta, v. 273, p. 70–84, https://doi.org/10.1016/j.gca.2020.01.027.
  62. Hao, W., Mänd, K., Li, Y., Alessi, D.S., Somelar, P., Moussavou, M., Romashkin, A.E., Lepland, A., Kirsimäe, K., Planavsky, N.J., and Konhauser, K.O., 2021, The kaolinite shuttle links the Great Oxidation and Lomagundi events: Nature Communications, v. 12, 2944, https://doi.org/10.1038/s41467-021-23304-8.
  63. Hao, W., Chen, N., Sun, W., Mänd, K., Kirsimäe, K., Teitler, Y., Somelar, P., Robbins, L.J., Babechuk, M.G., Planavsky, N.J., Alessi, D.S., and Konhauser, K.O., 2022, Binding and transport of Cr(III) by clay minerals during the Great Oxidation Event: Earth and Planetary Science Letters, v. 584, 117503, https://doi.org/10.1016/j.epsl.2022.117503.
  64. Hartman, H., 1984, The evolution of photosynthesis and microbial mats: A speculation on the banded iron formations, in Cohen, Y., Castenholz, R.W., and Halvorson, H.O., eds., Microbial Mats: Stromatolites: Alan R. Liss, Incorporated, New York, p. 449–453.
  65. Haugaard, R., Frei, R., Stendal, H., and Konhauser, K.O., 2013, Petrology and geochemistry of the ~2.9 Ga Itilliarsuk banded iron formation and associated supracrustal rocks, West Greenland: Source characteristics and depositional environment: Precambrian Research, v. 229, p. 150–176, https://doi.org/10.1016/j.precamres.2012.04.013.
  66. Hausinger, R.P., 1987, Nickel utilization by microorganisms: Microbiological Reviews, v. 51, p. 22–42, https://doi.org/10.1128/mr.51.1.22-42.1987.
  67. Heimann, A., Johnson, C.M., Beard, B.L., Valley, J.W., Roden, E.E., Spicuzza, M.J., and Beukes, N.J., 2010, Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~ 2.5 Ga marine environments: Earth and Planetary Science Letters, v. 294, p. 8–18, https://doi.org/10.1016/j.epsl.2010.02.015.
  68. Hemmingsson, C., Pitcain, I.K., and Chi Fru, E., 2018, Evaluation of phosphate-uptake mechanisms by Fe(III)(oxyhydr)oxides in early Proterozoic oceanic conditions: Environmental Chemistry, v. 15, p. 18–28, https://doi.org/10.1071/EN17124.
  69. Hibbing, M.E., Fuqua, C., Parsek, M.R., and Peterson, S.B., 2010, Bacterial competition: surviving and thriving in the microbial jungle: Nature Reviews Microbiology, v. 8, p. 15–25, https://doi.org/10.1038/nrmicro2259.
  70. Hoffman, P.F., Kaufman, A.J., Halverson, G.P., and Schrag, D.P., 1998, A Neoproterozoic snowball Earth: Science, v. 281, p. 1342–1346, https://doi.org/10.1126/science.281.5381.1342.
  71. Holland, H.D., 1973, The oceans; A possible source of iron in iron-formations: Economic Geology, v. 68, p. 1169–1172, https://doi.org/10.2113/gsecongeo.68.7.1169.
  72. Holland, H.D., 1978, The Chemistry of the Atmosphere and Oceans: Wiley, New York, 369 p.
  73. Holland, H.D., 1984, The Chemical Evolution of the Atmosphere and Oceans: Princeton University Press, Princeton, NJ, 598 p., https://doi.org/10.1515/9780691220239.
  74. Homann, M., Sansjofre, P., Van Zuilen, M., Heubeck, C., Gong, J., Killingsworth, B., Foster, I.S., Airo, A., Van Kranendonk, M.J., Ader, M., and Lalonde, S.V., 2018, Microbial life and biogeochemical cycling on land 3,220 million years ago: Nature Geoscience, v. 11, p. 665–671, https://doi.org/10.1038/s41561-018-0190-9.
  75. Immenhauser, A., 2009, Estimating palaeo-water depth from the physical rock record: Earth-Science Reviews, v. 96, p. 107–139, https://doi.org/10.1016/j.earscirev.2009.06.003.
  76. Isley, A.E., 1995, Hydrothermal plumes and the delivery of iron to banded iron formation: The Journal of Geology, v. 103, p. 169–185, https://doi.org/10.1086/629734.
  77. Isley, A.E., and Abbott, D.H., 1999, Plume-related mafic volcanism and the deposition of banded iron formation: Journal of Geophysical Research, v. 104, p. 15461–15477, https://doi.org/10.1029/1999JB900066.
  78. Jabłońska, J., and Tawfik, D.S., 2021, The evolution of oxygen-utilizing enzymes suggests early biosphere oxygenation: Nature Ecology & Evolution, v. 5, p. 442–448, https://doi.org/10.1038/s41559-020-01386-9.
  79. Jiang, C.Z., and Tosca, N.J., 2019, Fe(II)-carbonate precipitation kinetics and the chemistry of anoxic ferruginous seawater: Earth and Planetary Science Letters, v. 506, p. 231–242, https://doi.org/10.1016/j.epsl.2018.11.010.
  80. Joeckel, R.M., Ang Clement, B.J., and VanFleet Bates, L.R., 2005, Sulfate-mineral crusts from pyrite weathering and acid rock drainage in the Dakota Formation and Graneros Shale, Jefferson County, Nebraska: Chemical Geology, v. 215, p. 433–452, https://doi.org/10.1016/j.chemgeo.2004.06.044.
  81. Johnson, C.M., Beard, B.L., Klein, C., Beukes, N.J., and Roden, E.E., 2008, Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis: Geochimica et Cosmochimica Acta, v. 72, p. 151–169, https://doi.org/10.1016/j.gca.2007.10.013.
  82. Johnson, J.E., Muhling, J.R., Cosmidis, J., Rasmussen, B., and Templeton, A.S., 2018, Low‐Fe (III) greenalite was a primary mineral from Neoarchean oceans: Geophysical Research Letters, v. 45, p. 3182–3192, https://doi.org/10.1002/2017GL076311.
  83. Jones, C., Nomosatryo, S., Crowe, S.A., Bjerrum, C.J., and Canfield, D.E., 2015, Iron oxides, divalent cations, silica, and the early earth phosphorus crisis: Geology, v. 43, p. 135–138, https://doi.org/10.1130/G36044.1.
  84. Kappler, A., Pasquero, C., Konhauser, K.O., and Newman, D.K., 2005, Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria: Geology, v. 33, p. 865–868, https://doi.org/10.1130/G21658.1.
  85. Karhu, J.A., and Holland, H.D., 1996, Carbon isotopes and the rise of atmospheric oxygen: Geology, v. 24, p. 867–870, https://doi.org/10.1130/0091-7613(1996)024%3C0867:CIATRO%3E2.3.CO;2.
  86. Kasting, J.F., 2013, What caused the rise of atmospheric O2?: Chemical Geology, v. 362, p. 13–25, https://doi.org/10.1016/j.chemgeo.2013.05.039.
  87. Kendall, B., Reinhard, C.T., Lyons, T.W., Kaufman, A.J., Poulton, S.W., and Anbar, A.D., 2010, Pervasive oxygenation along late Archaean ocean margins: Nature Geoscience, v. 3, p. 647–652, https://doi.org/10.1038/ngeo942.
  88. Kharecha, P.A., Kasting, J.F., and Siefert, J.L., 2005, A coupled atmosphere-ecosystem model of the early Archean Earth: Geobiology, v. 3, p. 53–76, https://doi.org/10.1111/j.1472-4669.2005.00049.x.
  89. Kipp, M.A., and Stüeken, E.E., 2017, Biomass recycling and Earth’s early phosphorus cycle: Science Advances, v. 3, eaao4795, https://doi.org/10.1126/sciadv.aao4795.
  90. Klein, C., 2005, Presidential Address to the Mineralogical Society of America, Boston, November 6, 2001: Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin: American Mineralogist, v. 90, p. 1473–1499, https://doi.org/10.2138/am.2005.1871.
  91. Klein, C., and Beukes, N.J., 1989, Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the early Proterozoic Transvaal Supergroup, South Africa: Economic Geology, v. 84, p. 1733–1774, https://doi.org/10.2113/gsecongeo.84.7.1733.
  92. Klein, C., and Beukes, N.J., 1993, Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan iron-formation in Canada: Economic Geology, v. 88, p. 542–565, https://doi.org/10.2113/gsecongeo.88.3.542.
  93. Knoll, A.H., 1984, The Archean/Proterozoic transition: A sedimentary and paleobiologies perspective, in Holland, H.D., and Trendall, A.F., eds., Patterns of Change in Earth Evolution: Dahlem Workshop Reports Physical, Chemical, and Earth Sciences Research Reports, v. 5, Springer, Berlin, p. 221–242, https://doi.org/10.1007/978-3-642-69317-5_13.
  94. Köhler, I., Konhauser, K.O., Papineau, D., Bekker, A., and Kappler, A., 2013, Biological carbon precursor to diagenetic siderite with spherical structures in iron formations: Nature Communications, v. 4, 1741, https://doi.org/10.1038/ncomms2770.
  95. Konhauser, K.O., 2007, Introduction to Geomicrobiology: Blackwell, Oxford. 425 p.
  96. Konhauser, K.O., Hamade, T., Raiswell, R., Morris, R.C., Ferris, F.G., Southam, G., and Canfield, D.E., 2002, Could bacteria have formed the Precambrian banded iron formations?: Geology, v. 30, p. 1079–1082, https://doi.org/10.1130/0091-7613(2002)030%3C1079:CBHFTP%3E2.0.CO;2.
  97. Konhauser, K.O., Newman, D.K., and Kappler, A., 2005, The potential significance of microbial Fe(III) reduction during Precambrian banded iron formations: Geobiology, v. 3, p. 167–177, https://doi.org/10.1111/j.1472-4669.2005.00055.x.
  98. Konhauser, K.O., Lalonde, S.V., Amskold, L., and Holland, H.D., 2007a, Was there really an Archean phosphate crisis?: Science, v. 315, 1234, https://doi.org/10.1126/science.1136328.
  99. Konhauser, K.O., Amskold, L., Lalonde, S.V., Posth, N.R., Kappler, A., and Anbar, A., 2007b, Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition: Earth and Planetary Science Letters, v. 258, p. 87–100, https://doi.org/10.1016/j.epsl.2007.03.026.
  100. Konhauser, K.O., Pecoits, E., Lalonde, S.V., Papineau, D., Nisbet, E.G., Barley, M.E., Arndt, N.T., Zahnle, K., and Kamber, B.S., 2009, Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event: Nature, v. 458, p. 750–753, https://doi.org/10.1038/nature07858.
  101. Konhauser, K.O., Lalonde, S.V., Planavsky, N.J., Pecoits, E., Lyons, T.W., Mojzsis, S.J., Rouxel, O.J., Barley, M.E., Rosière, C., Fralick, P.W., Kump, L.R., and Bekker, A., 2011, Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event: Nature, v. 478, p. 369–373, https://doi.org/10.1038/nature10511.
  102. Konhauser, K.O., Robbins, L.J., Pecoits, E., Peacock, C., Kappler, A., and Lalonde, S.V., 2015, The Archean nickel famine revisited: Astrobiology, v. 15, p. 804–815, https://doi.org/10.1089/ast.2015.1301.
  103. Konhauser, K.O., Planavsky, N.J., Hardisty, D.S., Robbins, L.J., Warchola, T.J., Haugaard, R., Lalonde, S.V., Partin, C.A., Oonk, P.B.H., Tsikos, H., Lyons, T.W., Bekker, A., and Johnson, C.M., 2017, Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history: Earth-Science Reviews, v. 172, p. 140–177, https://doi.org/10.1016/j.earscirev.2017.06.012.
  104. Konhauser, K.O., Robbins, L.J., Alessi, D.S., Flynn, S.L., Gingras, M.K., Martinez, R.E., Kappler, A., Swanner, E.D., Li, Y-L., Crowe, S.A., Planavsky, N.J., Reinhard, C.T., and Lalonde, S.V., 2018, Phytoplankton contributions to the trace-element composition of Precambrian banded iron formations: Geological Society of America Bulletin, v. 130, p. 941–951, https://doi.org/10.1130/B31648.1.
  105. Koschwanez, J.H., Foster, K.R., and Murray, A.W., 2011, Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity: PLoS Biology, v. 9, e1001122, https://doi.org/10.1371/journal.pbio.1001122.
  106. Kump, L.R., and Barley, M.E., 2007, Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago: Nature, v. 448, p. 1033–1036, https://doi.org/10.1038/nature06058.
  107. Laakso, T.A., and Schrag, D.P., 2018, Limitations on limitation: Global Biogeochemical Cycles, v. 32, p. 486–496, https://doi.org/10.1002/2017GB005832.
  108. Lalonde, S.V., and Konhauser, K.O., 2015, Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis: Proceedings of the National Academy of Sciences, v. 112, p. 995–1000, https://doi.org/10.1073/pnas.1415718112.
  109. Large, R.R., Halpin, J.A., Danyushevsky, L.V., Maslennikov, V.V., Bull, S.W., Long, J.A., Gregory, D.D., Lounejeva, E., Lyons, T.W., Sack, P.J., McGoldrick, P.J., and Calver, C.R., 2014, Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution: Earth and Planetary Science Letters, v. 389, p. 209–220, https://doi.org/10.1016/j.epsl.2013.12.020.
  110. Lechte, M., and Wallace, M., 2016, Sub-ice shelf ironstone deposition during the Neoproterozoic Sturtian glaciation: Geology, v. 44, p. 891–894, https://doi.org/10.1130/G38495.1.
  111. Levitus, S., Conkright, M.E., Reid, J.L., Najjar, R.G., and Mantyla, A., 1993, Distribution of nitrate, phosphate and silicate in the world oceans: Progress in Oceanography, v. 31, p. 245–273, https://doi.org/10.1016/0079-6611(93)90003-V.
  112. Li, Y., Sutherland, B.R., Gingras, M.K., Owttrim, G.W., and Konhauser, K.O., 2021, A novel approach to investigate the deposition of (bio)chemical sediments: The sedimentation velocity of cyanobacteria-ferrihydrite aggregates: Journal of Sedimentary Research, v. 91, p. 390–398, https://doi.org/10.2110/jsr.2020.114.
  113. Li, Y.-L., Konhauser, K.O., Cole, D.R., and Phelps, T.J., 2011, Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formation: Geology, v. 39, p. 707–710, https://doi.org/10.1130/G32003.1.
  114. Li, Y.-L., Konhauser, K.O., Kappler, A., and Hao, X.-L., 2013, Experimental low-grade alteration of biogenic magnetite indicates microbial involvement in generation of banded iron formations: Earth and Planetary Science Letters, v. 361, p. 229–237, https://doi.org/10.1016/j.epsl.2012.10.025.
  115. Li, Y.-L., Konhauser, K.O., and Zhai, M., 2017, The formation of primary magnetite in the early Archean oceans: Earth and Planetary Science Letters, v. 466, p. 103–114, https://doi.org/10.1016/j.epsl.2017.03.013.
  116. Li, Z.-Q., Zhang, L.-C., Xue, C.-J., Zheng, M.-T., Zhu, M.-T., Robbins, L.J., Slack, J.F., Planavsky, N.J., and Konhauser, K.O., 2018, Earth’s youngest banded iron formation implies ferruginous conditions in the Early Cambrian ocean: Scientific Reports, v. 8, 9970, https://doi.org/10.1038/s41598-018-28187-2.
  117. Liu, H., Konhauser, K.O., Robbins, L.J., and Sun, W.D., 2021, Global continental volcanism controlled the evolution of oceanic nickel concentrations: Earth and Planetary Science Letters, v. 572, 117116, https://doi.org/10.1016/j.epsl.2021.117116.
  118. Lovelock, J.E., 1972, Gaia as seen through the atmosphere: Atmospheric Environment (1967), v. 6, p. 579–580, https://doi.org/10.1016/0004-6981(72)90076-5.
  119. Lyons, T.W., Reinhard, C.T., and Planavsky, N.J., 2014, The rise of oxygen in Earth’s early ocean and atmosphere: Nature, v. 506, p. 307–315, https://doi.org/10.1038/nature13068.
  120. Mahmoudi, N., Steen, A.D., Halverson, G.P., and Konhauser, K.O., 2023, Biogeochemistry of Earth before exoenzymes: Nature Geosciences, v. 16, p. 845–850, https://doi.org/10.1038/s41561-023-01266-4.
  121. Maliva, R.G., Knoll, A.H., and Simonson, B.M., 2005, Secular change in the Precambrian silica cycle: Insights from chert petrology: Geological Society of America Bulletin, v. 117, p. 835–845, https://doi.org/10.1130/B25555.1.
  122. Mayika, K.B., Moussavou, M., Prave, A.R., Lepland, A., Mbina, M., and Kirsimäe, K., 2020, The Paleoproterozoic Francevillian succession of Gabon and the Lomagundi-Jatuli event: Geology, v. 48, p. 1099–1104, https://doi.org/10.1130/G47651.1.
  123. McNamara, K.J., and Awramik, S.M., 1992, Stromatolites: a key to understanding the early evolution of life: Science Progress, v. 76, p. 345–364, https://www.jstor.org/stable/43421308.
  124. Mloszewska, A.M., Pecoits, E., Cates, N.L., Mojzsis, S.J., O’Neil, J., Robbins, L.J., and Konhauser, K.O., 2012, The composition of Earth’s oldest iron-formations: The Nuvvuagittuq supracrustal belt (Quebec, Canada): Earth and Planetary Science Letters, v. 317–318, p. 331–342, https://doi.org/10.1016/j.epsl.2011.11.020.
  125. Mloszewska, A.M., Cole, D.M., Planavsky, N.J., Kappler, A., Whitford, D.S., Owttrim, G.W., and Konhauser, K.O., 2018, UV radiation limited the expansion of cyanobacteria in early marine photic environments: Nature Communications, v. 9, 3008, https://doi.org/10.1038/s41467-018-05520-x.
  126. Morel, F.M.M., and Price, N.M., 2003, The biogeochemical cycles of trace metals in the oceans: Science, v. 300, p. 944–947, https://doi.org/10.1126/science.1083545.
  127. Morris, R.C., 1993, Genetic modelling for banded iron-formations of the Hamersley Group, Pilbara Craton, Western Australia: Precambrian Research, v. 60, p. 243–286, https://doi.org/10.1016/0301-9268(93)90051-3.
  128. Nealson, K.H., and Myers, C.R., 1990, Iron reduction by bacteria: A potential role in the genesis of banded iron formations: American Journal of Science, v. 290, p. 35–45.
  129. Nims, C., and Johnson, J.E., 2022, Exploring the secondary mineral products generated by microbial iron respiration in Archean ocean simulations: Geobiology, v. 20, p. 743–763, https://doi.org/10.1111/gbi.12523.
  130. Olson, S.L., Kump, L.R., and Kasting, J.F., 2013, Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases: Chemical Geology, v. 362, p. 35–43, https://doi.org/10.1016/j.chemgeo.2013.08.012.
  131. Ossa Ossa, F., Hofmann, A., Vidal, O., Kramers, J.D., Belyanin, G., Cavalazzi, B., 2016, Unusual manganese enrichment in the Mesoarchean Mozaan Group, Pongola Supergroup, South Africa: Precambrian Research, v. 281, p. 414–433, https://doi.org/10.1016/j.precamres.2016.06.009.
  132. Ostrander, C.M., Johnson, A.C., and Anbar, A.D., 2021, Earth’s first redox revolution: Annual Review of Earth and Planetary Sciences, v. 49, p. 337–366, https://doi.org/10.1146/annurev-earth-072020-055249.
  133. Oze, C., Bird, D.K., and Fendorf, S., 2007, Genesis of hexavalent chromium from natural sources in soil and groundwater: Proceedings of the National Academy of Sciences, v. 104, p. 6544–6549, https://doi.org/10.1073/pnas.0701085104.
  134. Partin, C.A., Bekker, A., Planavsky, N.J., Scott, C.T., Gill, B.C., Li, C., Podkovyrov, V., Maslov, A., Konhauser, K.O., Lalonde, S.V., Love, G.D., Poulton, S.W., and Lyons, T.W., 2013, Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales: Earth and Planetary Science Letters, v. 369–370, p. 284–293, https://doi.org/10.1016/j.epsl.2013.03.031.
  135. Pecoits, E., Gingras, M.K., Barley, M.A., Kappler, A., Posth, N.R., and Konhauser, K.O., 2009, Petrography and trace element geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry: Precambrian Research, v. 172, p. 163–187, https://doi.org/10.1016/j.precamres.2009.03.014.
  136. Percak-Dennett, E.M., Beard, B.L., Xu, H., Konishi, H., Johnson, C.M., and Roden, E.E., 2011, Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater: Geobiology, v. 9, p. 205–220, https://doi.org/10.1111/j.1472-4669.2011.00277.x.
  137. Peters, S.E., and Loss, D.P., 2012, Storm and fair-weather wave base: A relevant distinction?: Geology, v. 40, p. 511–514, https://doi.org/10.1130/G32791.1.
  138. Planavsky, N.J., Rouxel, O.J., Bekker, A., Lalonde, S.V., Konhauser, K.O., Reinhard, C.T., and Lyons, T.W., 2010, The evolution of the marine phosphate reservoir: Nature, v. 467, p. 1088–1090, https://doi.org/10.1038/nature09485.
  139. Planavsky, N.J., Rouxel, O.J., Bekker, A., Hofmann, A., Little, C.T.S., and Lyons, T.W., 2012a, Iron isotope composition of some Archean and Proterozoic iron formations: Geochimica et Cosmochimica Acta, v. 80, p. 158–169, https://doi.org/10.1016/j.gca.2011.12.001.
  140. Planavsky, N.J., Bekker, A., Hofmann, A., Owens, J.D., and Lyons, T.W., 2012b, Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event: Proceedings of the National Academy of Sciences, v. 109, p. 18300–18305, https://doi.org/10.1073/pnas.1120387109.
  141. Planavsky, N.J., Asael, D., Hofmann, A., Reinhard, C.T., Lalonde, S.V., Knudsen, A., Wang, X., Ossa Ossa, F., Pecoits, E., Smith, A.J.B., Beukes, N.J., Bekker, A., Johnson, T.M., Konhauser, K.O., Lyons, T.W., and Rouxel, O.J., 2014, Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event: Nature Geoscience, v. 7, p. 283–286, https://doi.org/10.1038/ngeo2122.
  142. Planavsky, N., Crowe, S.A., Fakhraee, M., Beaty, B., Reinhard, C.T., Mills, B.J.W., Holstege, C., and Konhauser, K.O., 2021, Evolution of the structure and impact of Earth’s biosphere: Nature Reviews Earth & Environment, v. 2, p. 123–139, https://doi.org/10.1038/s43017-020-00116-w.
  143. Posth, N.R., Hegler, F., Konhauser, K.O., and Kappler, A., 2008, Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans: Nature Geoscience, v. 1, p. 703–708, https://doi.org/10.1038/ngeo306.
  144. Posth, N.R., Huelin, S., Konhauser, K.O., and Kappler, A., 2010, Size, density and composition of cell–mineral aggregates formed during anoxygenic phototrophic Fe(II) oxidation: Impact on modern and ancient environments: Geochimica et Cosmochimica Acta, v. 74, p. 3476–3493, https://doi.org/10.1016/j.gca.2010.02.036.
  145. Posth, N.R., Konhauser, K.O., and Kappler, A., 2013a, Microbiological processes in banded iron formation deposition: Sedimentology, v. 60, p. 1733–1754, https://doi.org/10.1111/sed.12051.
  146. Posth, N.R., Köhler, I., Swanner, E.D., Schröder, C., Wellman, E., Binder, B., Konhauser, K.O., Neumann, U., Berthold, C., Nowak, M., and Kappler, A., 2013b, Simulating Precambrian banded iron formation diagenesis: Chemical Geology, v. 362, p. 66–73, https://doi.org/10.1016/j.chemgeo.2013.05.031.
  147. Poulton, S.W., Fralick, P.W., and Canfield, D.E., 2004, The transition to a sulphidic ocean ~1.84 billion years ago: Nature, v. 431, p. 173–177, https://doi.org/10.1038/nature02912.
  148. Prave, A.R., Kirsimäe, K., Lepland, A., Fallick, A.E., Kreitsmann, T., Deines, Yu.E., Romashkin, A.E., Rychanchik, D.V., Medvedev, P.V., Moussavou, M., Bakakas, K., and Hodgskiss, M.S.W., 2022, The grandest of them all: the Lomagundi-Jatuli Event and Earth’s oxygenation: Journal of the Geological Society, v.179, p. 2021–2036, https://doi.org/10.1144/jgs2021-036.
  149. Ragsdale, S.W., and Kumar, M., 1996, Nickel-containing carbon monoxide dehydrogenase/acetyl-CoA synthase: Chemical Reviews, v. 96, p. 2515–2540, https://doi.org/10.1021/cr950058+.
  150. Rai, D., Eary, L.E., and Zachara, J.M., 1989, Environmental chemistry of chromium: Science of the Total Environment, v. 86, p. 15–23, https://doi.org/10.1016/0048-9697(89)90189-7.
  151. Rasmussen, B., and Muhling, J.R., 2018, Making magnetite late again: Evidence for widespread magnetite growth by thermal decomposition of siderite in Hamersley banded iron formations: Precambrian Research, v. 306, p. 64–93, https://doi.org/10.1016/j.precamres.2017.12.017.
  152. Rasmussen, B., and Muhling, J.R., 2020, Hematite replacement and oxidative overprinting recorded in the 1.88 Ga Gunflint iron formation, Ontario, Canada: Geology, v. 48, p. 688–692, https://doi.org/10.1130/G47410.1.
  153. Rasmussen, B., Krapež, B., and Meier, D.B., 2014, Replacement origin for hematite in 2.5 Ga banded iron formation: Evidence of postdepositional oxidation of iron-bearing minerals: Geological Society of America Bulletin, v. 126, p. 438–446, https://doi.org/10.1130/B30944.1.
  154. Rasmussen, B., Muhling, J.R., Suvorova, A., and Krapež, B., 2017, Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform: Precambrian Research, v. 290, p. 49–62, https://doi.org/10.1016/j.precamres.2016.12.005.
  155. Rasmussen, B., Muhling, J.R., and Krapež, B., 2021a, Greenalite and its role in the genesis of early Precambrian iron formations – A review: Earth-Science Reviews, v. 217, 103613, https://doi.org/10.1016/j.earscirev.2021.103613.
  156. Rasmussen, B., Muhling, J.R., Suvorova, A., and Fischer, W.W., 2021b, Apatite nanoparticles in 3.46–2.46 Ga iron formations: Evidence for phosphorus-rich hydrothermal plumes on early Earth: Geology, v. 49, p. 647–651, https://doi.org/10.1130/G48374.1.
  157. Reddy, T.R., Zheng, X.-Y., Roden, E.E., Beard, B.L., and Johnson, C.M., 2016, Silicon isotope fractionation during microbial reduction of Fe(III)-Si gels under Archean seawater conditions and implications for iron formation genesis: Geochimica et Cosmochimica Acta, v. 190, p. 85–99, https://doi.org/10.1016/j.gca.2016.06.035.
  158. Reinhard, C.T., Raiswell, R., Scott, C., Anbar, A.D., and Lyons, T.W., 2009, A late Archean sulfidic sea stimulated by early oxidative weathering of the continents: Science, v. 326, p. 713–716, https://doi.org/10.1126/science.1176711.
  159. Reinhard, C.T., Planavsky, N.J., Gill, B.C., Ozaki, K., Robbins, L.J., Lyons, T.W., Fischer, W.W., Wang, C., Cole, D.B., and Konhauser, K.O., 2017, Evolution of the global phosphorus cycle: Nature, v. 541, p. 386–389, https://doi.org/10.1038/nature20772.
  160. Rico, K.I., Schad, M., Picard, A., Kappler, A., Konhauser, K.O., and Mahmoudi, N., 2023, Resolving the fate of trace metals during microbial remineralization of phytoplankton biomass in precursor banded iron formation sediments: Earth and Planetary Science Letters, v. 607, 118068, https://doi.org/10.1016/j.epsl.2023.118068.
  161. Robbins, L.J., Lalonde, S.V., Saito, M.A., Planavsky, N.J., Mloszewska, A.M., Pecoits, E., Scott, C., Dupont, C.L., Kappler, A., and Konhauser, K.O., 2013, Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution: Geobiology, v. 11, p. 295–306, https://doi.org/10.1111/gbi.12036.
  162. Robbins, L.J., Swanner, E.D., Lalonde, S.V., Eickhoff, M., Paranich, M.L., Reinhard, C.T., Peacock, C.L., Kappler, A., and Konhauser, K.O., 2015, Limited Zn and Ni mobility during simulated iron formation diagenesis: Chemical Geology, v. 402, p. 30–39, https://doi.org/10.1016/j.chemgeo.2015.02.037.
  163. Robbins, L.J., Lalonde, S.V., Planavsky, N.J., Partin, C.A., Reinhard, C.T., Kendall, B., Scott, C., Hardisty, D.S., Gill, B.C., Alessi, D.S., Dupont, C.L., Saito, M.A., Crowe, S.A., Poulton, S.W., Bekker, A., Lyons, T.W., and Konhauser, K.O., 2016, Trace elements at the intersection of biological and geochemical evolution: Earth-Science Reviews, v. 163, p. 323–348, https://doi.org/10.1016/j.earscirev.2016.10.013.
  164. Robbins, L.J., Konhauser, K.O., Warchola, T.J., Homann, M., Thoby, M., Foster, I., Mloszewska, A.M., Alessi, D.S., and Lalonde, S.V., 2019a, A comparison of bulk versus laser ablation trace element analyses in banded iron formations: Insights into the mechanisms leading to compositional variability: Chemical Geology, v. 506, p. 197–224, https://doi.org/10.1016/j.chemgeo.2018.12.036.
  165. Robbins, L.J., Funk, S.P., Flynn, S.L., Warchola, T.J., Li, Z., Lalonde, S.V., Rostron, B.J., Smith, A.J.B., Beukes, N.J., de Kock, M.O., Heaman, L.M., Alessi, D.S., and Konhauser, K.O., 2019b, Hydrogeological constraints on the formation of Palaeoproterozoic banded iron formations: Nature Geoscience, v. 12, p. 558–563, https://doi.org/10.1038/s41561-019-0372-0.
  166. Robbins, L.J., Fakhraee, M., Smith, A.J.B., Bishop, B.A., Swanner, E.D., Peacock, C.L., Wang, C.-L., Planavsky, N.J., Reinhard, C.T., Crowe, S.A., and Lyons, T.W., 2023, Manganese oxides, Earth surface oxygenation, and the rise of oxygenic photosynthesis: Earth-Science Reviews, v. 239, 104368, https://doi.org/10.1016/j.earscirev.2023.104368.
  167. Rosing, M.T., and Frei, R., 2004, U-rich Archaean sea-floor sediments from Greenland – indications of >3700 Ma oxygenic photosynthesis: Earth and Planetary Science Letters, v. 217, p. 237–244, https://doi.org/10.1016/S0012-821X(03)00609-5.
  168. Saito, M.A., Sigman, D.M., and Morel, F.M.M., 2003, The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean–Proterozoic boundary?: Inorganica Chimica Acta, v. 356, p. 308–318, https://doi.org/10.1016/S0020-1693(03)00442-0.
  169. Sánchez-Baracaldo, P., 2015, Origin of marine planktonic cyanobacteria: Scientific Reports, v. 5, 17418, https://doi.org/10.1038/srep17418.
  170. Sánchez-Baracaldo, P., Bianchini, G., Wilson, J.D., and Knoll, A.H., 2022, Cyanobacteria and biogeochemical cycles through Earth history: Trends in Microbiology, v. 30, p. 143–157, https://doi.org/10.1016/j.tim.2021.05.008.
  171. Schad, M., Halama, M., Bishop, B., Konhauser, K.O., and Kappler, A., 2019a, Temperature fluctuations in the Archean ocean as trigger for varve-like deposition of iron and silica minerals in banded iron formations: Geochimica et Cosmochimica Acta, v. 265, p. 386–412, https://doi.org/10.1016/j.gca.2019.08.031.
  172. Schad, M., Konhauser, K.O., Sánchez-Baracaldo, P., Kappler, A., and Bryce, C., 2019b, How did the evolution of oxygenic photosynthesis influence the temporal and spatial development of the microbial iron cycle on ancient Earth?: Free Radical Biology and Medicine, v. 140, p. 154–166, https://doi.org/10.1016/j.freeradbiomed.2019.07.014.
  173. Schad, M., Byrne, J.M., ThomasArrigo, L.K., Kretzschmar, R., Konhauser, K.O., and Kappler, A., 2022, Microbial Fe cycling in a simulated Precambrian ocean environment: Implications for secondary mineral (trans)formation and deposition during BIF genesis: Geochimica et Cosmochimica Acta, v. 331, p. 165–191, https://doi.org/10.1016/j.gca.2022.05.016.
  174. Schidlowski, M., Eichmann, R., and Junge, C.E., 1976, Carbon isotope geochemistry of the Precambrian Lomagundi carbonate province, Rhodesia: Geochimica et Cosmochimica Acta, v. 40, p. 449–455, https://doi.org/10.1016/0016-7037(76)90010-7.
  175. Schirrmeister, B.E., de Vos, J.M., Antonelli, A., and Bagheri, H.C., 2013, Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event: Proceedings of the National Academy of Sciences, v. 110, p. 1791–1796, https://doi.org/10.1073/pnas.1209927110.
  176. Scott, C., Wing, B.A., Bekker, A., Planavsky, N.J., Medvedev, P., Bates, S.M., Yun, M., and Lyons, T.W., 2014, Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early Paleoproterozoic seawater sulfate reservoir: Earth and Planetary Science Letters, v. 389, p. 95–104, https://doi.org/10.1016/j.epsl.2013.12.010.
  177. Siever, R., 1992, The silica cycle in the Precambrian: Geochimica et Cosmochimica Acta, v. 56, p. 3265–3272, https://doi.org/10.1016/0016-7037(92)90303-Z.
  178. Simonson, B.M., and Goode, A.D.T., 1989, First discovery of ferruginous chert arenites in the early Precambrian Hamersley Group of Western Australia: Geology, v. 17, p. 269–272, https://doi.org/10.1130/0091-7613(1989)017%3C0269:FDOFCA%3E2.3.CO;2.
  179. Simonson, B.M., and Hassler, S.W., 1996, Was the deposition of large Precambrian iron formations linked to major marine transgressions?: The Journal of Geology, v. 104, p. 665–676, https://www.jstor.org/stable/30081160.
  180. Smedley, P.L., and Kinniburgh, D.G., 2002, A review of the source, behaviour and distribution of arsenic in natural waters: Applied Geochemistry, v. 17, p. 517–568, https://doi.org/10.1016/S0883-2927(02)00018-5.
  181. Smith, A.J.B., 2018, The iron formations of southern Africa, in Siegesmund, S., Basei, M.A.S., Oyhantçabal, P., and Oriolo, S., eds., Geology of Southwest Gondwana: Regional Geology Reviews, Springer, Cham, p. 469–491, https://doi.org/10.1007/978-3-319-68920-3_17.
  182. Smith, A.J.B., and Beukes, N.J., 2023, The paleoenvironmental implications of pre-Great Oxidation Event manganese deposition in the Mesoarchean Ijzermijn Iron Formation Bed, Mozaan Group, Pongola Supergroup, South Africa: Precambrian Research, v. 384, 106922, https://doi.org/10.1016/j.precamres.2022.106922.
  183. Smith, A.J.B., Beukes, N.J., and Gutzmer, J., 2013, The composition and depositional environments of Mesoarchean iron formations of the West Rand Group of the Witwatersrand Supergroup, South Africa: Economic Geology, v. 108, p. 111–134, https://doi.org/10.2113/econgeo.108.1.111.
  184. Smith, A.J.B., Beukes, N.J., Gutzmer, J., Czaja, A.D., Johnson, C.M., and Nhleko, N., 2017, Oncoidal granular iron formation in the Mesoarchaean Pongola Supergroup, southern Africa: Textural and geochemical evidence for biological activity during iron deposition: Geobiology, v. 15, p. 731–749, https://doi.org/10.1111/gbi.12248.
  185. Smith, A.J.B., Beukes, N.J., Cochrane, J.M., Gutzmer, J., 2023, Manganese carbonate-bearing mudstone of the Witwatersrand-Mozaan succession in southern Africa as evidence for bacterial manganese respiration and availability of free molecular oxygen in Mesoarchaean oceans: South African Journal of Geology, v. 126, p. 29–48, https://doi.org/10.25131/sajg.126.0005.
  186. Søgaard, E.G., Medenwaldt, R., and Abraham-Peskir, J.V., 2000, Conditions and rates of biotic and abiotic iron precipitation in selected Danish freshwater plants and microscopic analysis of precipitate morphology: Water Research, v. 34, p. 2675–2682, https://doi.org/10.1016/S0043-1354(00)00002-6.
  187. Steinhoefel, G., von Blackenburg, F., Horn, I., Konhauser, K.O., Beukes, N.J., and Gutzmer, J., 2010, Deciphering formation processes of banded iron formations from the Transvaal and the Hamersley successions by combined Si and Fe isotope analysis using UV femtosecond laser ablation: Geochimica et Cosmochimica Acta, v. 74, p. 2677–2696, https://doi.org/10.1016/j.gca.2010.01.028.
  188. Sumner, D.Y., 1997, Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, Transvaal Supergroup, South Africa: American Journal of Science, v. 297, p. 455–487, https://doi.org/10.2475/ajs.297.5.455.
  189. Sumner, D.Y., and Beukes, N.J., 2006, Sequence stratigraphic development of the Neoarchean Transvaal carbonate platform, Kaapvaal, Craton, South Africa: South African Journal of Geology, v. 109, p. 11–22, https://doi.org/10.2113/gssajg.109.1-2.11.
  190. Sun, S., Konhauser, K.O., Kappler, A., and Li, Y.-L., 2015, Primary hematite in Neoarchean to Paleoproterozoic oceans: Geological Society of America Bulletin, v. 127, p. 850–861, https://doi.org/10.1130/B31122.1.
  191. Sunda, W.G., 2012, Feedback interactions between trace metal nutrients and phytoplankton in the ocean: Frontiers in Microbiology, v. 3, 204, https://doi.org/10.3389/fmicb.2012.00204.
  192. Swanner, E.D., Mloszewska, A.M., Cirpka, O.A., Schoenberg, R., Konhauser, K.O., and Kappler, A., 2015, Modulation of oxygen production in Archaean oceans by episodes of Fe(II) toxicity: Nature Geoscience, v. 8, p. 126–130, https://doi.org/10.1038/ngeo2327.
  193. Thompson, K.J., Kenward, P.A., Bauer, K.W., Warchola, T., Gauger, T., Martinez, R., Simister, R.L., Michiels, C.C., Llirós, M., Reinhard, C.T., Kappler, A., Konhauser, K.O., and Crowe, S.A., 2019, Photoferrotrophy, deposition of banded iron formations, and methane production in the Archean oceans: Science Advances, v. 5, eaav2869, https://doi.org/10.1126/sciadv.aav2869.
  194. Tosca, N.J., and Tutolo, B.M., 2023, Hydrothermal vent fluid-seawater mixing and the origins of Archean iron formation: Geochimica et Cosmochimica Acta, v. 352, p. 51–68, https://doi.org/10.1016/j.gca.2023.05.002.
  195. Tréguer, P., Nelson, D.M., Van Bennekom, A.J., DeMaster, D.J., Leynaert, A., and Quéguiner, B., 1995, The silica balance in the world ocean: A reestimate: Science, v. 268, p. 375–379, https://doi.org/10.1126/science.268.5209.375.
  196. Trendall, A.F., 2002, The significance of iron-formation in the Precambrian stratigraphic record, in Altermann, W., and Corcoran, P.L., eds., Precambrian Sedimentary Environments: A Modern Approach to Ancient Depositional Systems: International Association of Sedimentologists Special Publications, v. 33, p. 33–66, https://doi.org/10.1002/9781444304312.ch3.
  197. Trendall, A., and Blockley, J., 1970, The Iron Formations of the Precambrian Hamersley Group, Western Australia with Special Reference to the Associated Crocidolite: Western Australia Geological Survey Bulletin, v. 119, 366 p.
  198. Tyrrell, T., 1999, The relative influences of nitrogen and phosphorus on oceanic primary production: Nature, v. 400, p. 525–531, https://doi.org/10.1038/22941.
  199. Tyson, R.V., and Pearson, T.H., 1991, Modern and ancient continental shelf anoxia: an overview: Geological Society, London, Special Publications, v. 58, p. 1–24, https://doi.org/10.1144/GSL.SP.1991.058.01.01.
  200. Walker, J.C.G., 1984, Suboxic diagenesis in banded iron formations: Nature, v. 309, p. 340–342, https://doi.org/10.1038/309340a0.
  201. Weber, M.F., Poxleitner, G., Hebisch, E., Frey, E., and Opitz, M., 2014, Chemical warfare and survival strategies in bacterial range expansions: Journal of the Royal Society Interface, v. 11, 20140172, https://doi.org/10.1098/rsif.2014.0172.
  202. Whitehouse, M.J., and Fedo, C.M., 2007, Microscale heterogeneity of Fe isotopes in >3.71 Ga banded iron formation from the Isua Greenstone Belt, southwest Greenland: Geology, v. 35, p. 719–722, https://doi.org/10.1130/G23582A.1.
  203. Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B., and Schink, B., 1993, Ferrous iron oxidation by anoxygenic phototrophic bacteria: Nature, v. 362, p. 834–836, https://doi.org/10.1038/362834a0.
  204. Wu, X., Zhu, J., He, H., Xian, H., Yang, Y., Ma, L., Liang, X., Lin, X., Li, S., Konhauser, K.O., and Li, Y., 2023, Geodynamic oxidation of the Archean terrestrial surfaces: Communications Earth & Environment, v. 4,132, https://doi.org/10.1038/s43247-023-00789-3.
  205. Zahnle, K.J., Claire, M., and Catling, D., 2006, The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane: Geobiology, v. 4, p. 271–283, https://doi.org/10.1111/j.1472-4669.2006.00085.x.
  206. Zerkle, A.L., House, C.H., and Brantley, S.L., 2005, Biogeochemical signatures through time as inferred from whole microbial genomes: American Journal of Science, v. 305, p. 467–502, https://doi.org/10.2475/ajs.305.6-8.467.
  207. Zheng, X.-Y., Beard, B.L., Reddy, T.R., Roden, E.E., and Johnson, C.M., 2016, Abiologic silicon isotope fractionation between aqueous Si and Fe(III)-Si gel in simulated Archean seawater: Implications for Si isotope records in Precambrian sedimentary rocks: Geochimica et Cosmochimica Acta, v. 187, p. 102–122, https://doi.org/10.1016/j.gca.2016.05.012.