Vol. 48 No. 3 (2021)
Series

Igneous Rock Associations 28. Construction of a Venusian Greenstone Belt: A Petrological Perspective

J.Gregory Shellnutt
Department of Earth Sciences, National Taiwan Normal University, 88 Tingzhou Road Section 4, Taipei 11677, Taiwan

Published 2021-12-08

Keywords

  • Anorthosite,
  • Greenstone belt,
  • Terrestrial Archean crust,
  • TTG suites,
  • Venus

How to Cite

Shellnutt, J. G. (2021). Igneous Rock Associations 28. Construction of a Venusian Greenstone Belt: A Petrological Perspective. Geoscience Canada, 48(3), 97–116. https://doi.org/10.12789/geocanj.2021.48.176

Funding data

Abstract

The crustal evolution of Venus appears to be principally driven by intraplate processes that may be related to mantle upwelling as there is no physiographic (i.e. mid-ocean ridge, volcanic arc) evidence of Earth-like plate tectonics. Rocks with basaltic composition were identified at the Venera 9, 10, 13, and 14, and Vega 1 and 2 landing sites whereas the rock encountered at the Venera 8 landing site may be silicic. The Venera 14 rock is chemically indistinguishable from terrestrial olivine tholeiite but bears a strong resemblance to basalt from terrestrial Archean greenstone belts. Forward petrological modeling (i.e. fractional crystallization and partial melting) and primary melt composition calculations using the rock compositions of Venus can yield results indistinguishable from many volcanic (ultramafic, intermediate, silicic) and plutonic (tonalite, trondhjemite, granodiorite, anorthosite) rocks that typify Archean greenstone belts. Evidence of chemically precipitated (carbonate, evaporite, chert, banded-iron formation) and clastic (sandstone, shale) sedimentary rocks is scarce to absent, but their existence is dependent upon an ancient Venusian hydrosphere. Nevertheless, it appears that the volcanic–volcaniclastic–plutonic portion of terrestrial greenstone belts can be constructed from the known surface compositions of Venusian rocks and suggests that it is possible that Venus and Early Earth had parallel evolutionary tracks in the growth of proto-continental crust.

References

  1. Airey, M.W., Mather, T.A., Pyle, D.M., Glaze, L.S., Ghail, R.C., and Wilson, C.F., 2015, Explosive volcanic activity on Venus: the roles of volatile contribution, degassing, and external environment: Planetary and Space Science, v. 113–114, p. 33–48, https://doi.org/10.1016/j.pss.2015.01.009.
  2. Anderson, F.S., and Smrekar, S.E., 2006, Global mapping of crustal and lithospheric thickness on Venus: Journal of Geophysical Research, v. 111, E08006, https://doi.org/10.1029/2004JE002395.
  3. Anhaeusser, C.R., 2014, Archaean greenstone belts and associated granitic rocks – A review: Journal of African Earth Sciences, v. 100, p. 684–732, https://doi.org/10.1016/j.jafrearsci.2014.07.019.
  4. Ansan, V., and Vergely, P., 1995, Evidence of vertical and horizontal motions on Venus: Maxwell Montes: Earth, Moon, and Planets, v. 69, p. 285–310, https://doi.org/10.1007/BF00643789.
  5. Armann, N., and Tackley, P.J., 2012, Simulating the thermomechanical magmatic and tectonic evolution of Venus’s mantle and lithosphere: two-dimensional models: Journal of Geophysical Research, v. 117, E12003, https://doi.org/10.1029/2012JE004231.
  6. Armstrong, R.L., 1981, Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth: Philosophical Transactions of the Royal Society of London Series A, v. 301, p. 443–472, https://doi.org/10.1098/rsta.1981.0122.
  7. Ashwal, L.D., 1993, Anorthosites: Springer-Verlag, Heidelberg, 422 p.
  8. Ashwal, L.D., and Bybee, G.M., 2017, Crustal evolution and the temporality of anorthosites: Earth-Science Reviews, v. 173, p. 307–330, https://doi.org/10.1016/j.earscirev.2017.09.002.
  9. Barnes, S.J., and Van Kranendonk, M.J., 2014, Archean andesites in the east Yilgarn craton, Australia: products of plume-crust interaction?: Lithosphere, v. 6, p. 80–92, https://doi.org/10.1130/L356.1.
  10. Basilevsky, A.T., and Head III, J.W., 1988, The geology of Venus: Annual Reviews of Earth and Planetary Sciences, v. 16, p. 295–317, https://doi.org/10.1146/annurev.ea.a6.050188.001455.
  11. Basilevsky, A.T., and Head, J.W., 2002, Venus: timing and rates of geologic activity: Geology, v. 30, p. 1015–1018, https://doi.org/10.1130/0091-7613(2002)030%3C1015:VTAROG%3E2.0.CO;2.
  12. Basilevsky, A.T., and Head, J.W., 2003, The surface of Venus: Reports on Progress in Physics, v. 66, p. 1699–1734, https://doi.org/10.1088/0034-4885/66/10/R04.
  13. Basilevsky, A.T., and Head, J.W., 2007, Beta Regio, Venus: evidence for uplift, rifting, and volcanism due to a mantle plume: Icarus, v. 192, p. 167–186, https://doi.org/10.1016/j.icarus.2007.07.007.
  14. Basilevsky, A.T., Kuzmin, R.O., Nikolaeva, O.V., Pronin, A.A., Ronca, L.B., Avduevsky, V.S., Uspensky, G.R., Cheremukhina, Z.P., Semenchenko, V.V., and Ladygin, V.M., 1985, The surface of Venus as revealed by the Venera landings: Part II: Geological Society of America Bulletin, v. 96, p. 137–144, https://doi.org/10.1130/0016-7606(1985)96%3C137:TSOVAR%3E2.0.CO;2.
  15. Basilevsky, A.T., Nikolaeva, O.V., and Weitz, C.M., 1992, Geology of the Venera 8 landing site region from Magellan data: morphological and geochemical considerations: Journal of Geophysical Research, v. 97, p. 16315–16335, https://doi.org/10.1029/92JE01557.
  16. Basilevsky, A.T., Shalygin, E.V., Titov, D.V., Markiewicz, W.J., Scholten, F., Roatsch, Th., Kreslavsky, M.A., Moroz, L.V., Ignatiev, N.I., Fiethe, B., Osterloh, B., and Michalik, H., 2012, Geologic interpretation of the near-infrared images of the surface taken by the Venus Monitoring Camera, Venus Express: Icarus, v. 217, p. 434–450, https://doi.org/10.1016/j.icarus.2011.11.003.
  17. Bédard, J.H., 2006, A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle: Geochimica et Cosmochimica Acta, v. 70, p. 1188–1214, https://doi.org/10.1016/j.gca.2005.11.008.
  18. Bédard, J.H., 2018, Stagnant lids and mantle overturns: implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics: Geoscience Frontiers, v. 9, p. 19–49, https://doi.org/10.1016/j.gsf.2017.01.005.
  19. Bédard, J.H., Brouillette, P., Madore, L., and Berclaz, A., 2003, Archaean cratonization and deformation in the northern Superior Province, Canada: an evaluation of plate tectonic versus vertical tectonic models: Precambrian Research, v. 127, p. 61–87, https://doi.org/10.1016/S0301-9268(03)00181-5.
  20. Bédard, J.H., Leclerc, F., Harris, L.B., and Goulet, N., 2009, Intra-sill magmatic evolution in the Cummings Complex, Abitibi greenstone belt: tholeiitic to calc-alkaline magmatism recorded in an Archaean subvolcanic conduit system: Lithos, v. 111, p. 47–71, https://doi.org/10.1016/j.lithos.2009.03.013.
  21. Bédard, J.H., Harris, L.B., and Thurston, P.C., 2013, The hunting of the snArc: Precambrian Research, v. 229, p. 20–48, https://doi.org/10.1016/j.precamres.2012.04.001.
  22. Berry, A.J., Danyushevsky, L.V., O’Neill, H.StC., Newville, M., and Sutton, S.R., 2008, Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle: Nature, v. 455, p. 960–963, https://doi.org/10.1038/nature07377.
  23. Bindschadler, D.L., 1995, Magellan: a new view of Venus’ geology and geophysics: Reviews of Geophysics, v. 33, p. 459–467, https://doi.org/10.1029/95RG00281.
  24. Bindschadler, D.L., and Head, J.W., 1991, Tessera Terrain, Venus: characterization and models for origin and evolution: Journal of Geophysical Research, v. 96, p. 5889–5907, https://doi.org/10.1029/90JB02742.
  25. Bleeker, W., 2002, Archaean tectonics: a review, with illustrations from the Slave craton, in Fowler, C.M.R, Ebinger, C.J., and Hawkesworth, C.J., eds., The Early Earth: Physical, Chemical and Biological Development: Geological Society, London, Special Publications, v. 199, p. 151–181, https://doi.org/10.1144/GSL.SP.2002.199.01.09.
  26. Bottke, W., Ghent, R., Mazrouri, S., Robbins, S., and Vokrouhlicky, D., 2015, Asteroid impacts, crater scaling laws, and a proposed younger age for Venus’s surface (Abstract): AAS DSP Meeting, 2015 Abstracts, v. 47. p. 20107.
  27. Brown, M., Johnson, T., and Gardiner, N.J., 2020, Plate tectonics and the Archean Earth: Annual Review of Earth and Planetary Sciences, v. 48, p. 291–320, https://doi.org/10.1146/annurev-earth-081619-052705.
  28. Buchan, K.L., and Ernst, R.E., 2021, Plumbing systems of large igneous provinces (LIPs) on Earth and Venus: investigating the role of giant circumferential and radiating dyke swarms, coronae and novae, and mid-crustal intrusive complexes: Gondwana Research, v. 100, p. 25–43, https://doi.org/10.1016/j.gr.2021.02.014.
  29. Byerly, G.R., Kröner, A., Lowe, D.R., Todt, W., and Walsh, M.M., 1996, Prolonged magmatism and time constraints for sediment deposition in the early Archean Barberton greenstone belt: evidence from the Upper Onverwacht and Fig Tree groups: Precambrian Research, v. 78, p. 125–138.
  30. Byrne, P.K., Ghail, R.C., Gilmore, M.S., Şengör, A.M.C., Klimczak, C., Senske, D.A., Whitten, J.L., Khawja, S., Ernst, R.E., and Solomon, S.C., 2021, Venus tesserae feature layered, folded, and eroded rocks: Geology, v. 49, p. 81–85, https://doi.org/10.1130/G47940.1.
  31. Byrnes, J.M., and Crown, D.A., 2002, Morphology, stratigraphy, and surface roughness properties of Venusian lava flow fields: Journal of Geophysical Research, v. 107, p. 9-1–9-22, https://doi.org/10.1029/2001JE001828.
  32. Condie, K.C., 1981, Greenstone belt stratigraphy, in Condie, K.C., ed., Developments in Precambrian Geology, v. 3, p. 45–66, https://doi.org/10.1016/S0166-2635(08)70075-6.
  33. Condie, K.C., 2018, A planet in transition: the onset of plate tectonics on Earth between 3 and 2 Ga?: Geoscience Frontiers, v. 9, p. 51–60, https://doi.org/10.1016/j.gsf.2016.09.001.
  34. Condie, K.C., and Aster, R.C., 2010, Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth: Precambrian Research, v. 180, p. 227–236, https://doi.org/10.1016/j.precamres.2010.03.008.
  35. Condie, K.C., and Benn, K., 2006, Archean geodynamics: similar to or different from modern geodynamics?, in Benn, K., Mareschal, J.-C., and Condie, K.C., eds., Archean Geodynamics and Environments Planet: American Geophysical Union, Geophysical Monograph Series, v. 164, p. 47–59, https://doi.org/10.1029/164GM05.
  36. Condie, K.C., and Kröner, A., 2008, When did plate tectonics begin? Evidence from the geologic record, in Condie, K.C., and Pease, V., eds., When Did Plate Tectonics Begin on Planet Earth?: Geological Society of America Special Papers, v. 440, p. 281–294, https://doi.org/10.1130/2008.2440(14).
  37. Condie, K.C., Aster, R.C., and van Hunen, J., 2016, A great thermal divergence in the mantle beginning 2.5 Ga: geochemical constraints from greenstone basalts and komatiites: Geoscience Frontiers, v. 7, p. 543–553, https://doi.org/10.1016/j.gsf.2016.01.006.
  38. Corfu, F., and Andrews, A.J., 1987, Geochronological constraints on the timing of magmatism, deformation, and gold mineralization in the Red Lake greenstone belt, northwestern Ontario: Canadian Journal of Earth Sciences, v. 24, p. 1302–1320, https://doi.org/10.1139/e87-126.
  39. Davaille, A., Smrekar, S.E., and Tomlinson, S., 2017, Experimental and observational evidence for plume-induced subduction on Venus: Nature Geoscience, v. 10, p. 349–355, https://doi.org/10.1038/ngeo2928.
  40. de Wit, M.J., and Ashwal, L.D., 1995, Greenstone belts: what are they?: South African Journal of Geology, v. 98, p. 505–520, https://doi.org/10520/EJC-943d19ff8.
  41. Dewey, J.F., Kiseeva, E.S., Pearce, J.A., and Robb, L.J., 2021, Precambrian tectonic evolution of Earth: an outline: South African Journal of Geology, v. 124, p. 141–162, https://doi.org/10.25131/sajg.124.0019.
  42. Dhuime, B., Hawkesworth, C.J., Cawood, P.A., and Storey, C.D., 2012, A change in the geodynamics of continental growth 3 billion years ago: Science, v. 335, p. 1334–1336, https://doi.org/10.1126/science.1216066.
  43. Donahue, T.M., Hoffman, J.H., Hodges Jr., R.R., and Watson, A.J., 1982, Venus was wet: a measurement of the ratio of deuterium to hydrogen: Science, v. 216, p. 630–633, https://doi.org/10.1126/science.216.4546.630.
  44. Donahue, T.M., Grinspoon, D.H., Hartle, R.E., and Hodges, R.R., 1997, Ion/neutral escape of hydrogen and deuterium: evolution of water, in Bougher, S.W., Hunten, D.M., and Phillips, R.J., eds., Venus II: Geology Geophysics, Atmosphere, and Solar Wind Environment: University of Arizona Press, Tucson, p. 385–414.
  45. Dostal, J., Hamilton, T.S., and Shellnutt, J.G., 2017, Generation of felsic rocks of bimodal volcanic suites from thinned and rifted continental margins: geochemical and Nd, Sr, Pb-isotopic evidence from Haida Gwaii, British Columbia, Canada: Lithos, v. 292–293, p. 146–160, https://doi.org/10.1016/j.lithos.2017.09.005.
  46. Drummond, M.S., and Defant, M.J., 1990, A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparison: Journal of Geophysical Research, v. 95, p. 21503–21521, https://doi.org/10.1029/JB095iB13p21503.
  47. Eales, H.V., and Cawthorn, R.G., 1996, The Bushveld Complex, in Cawthorn, R.G., ed., Layered Intrusions: Developments in Petrology, v. 15, p. 181–229, https://doi.org/10.1016/S0167-2894(96)80008-X.
  48. Ernst, R.E., and Desnoyners, D.W., 2004, Lessons from Venus for understanding mantle plumes on Earth, in Maruyama, S., Kennett, B.L.N., Yuen, D.A., and Windley, B.F., eds., Plumes and Superplumes: Physics of Earth and Planetary Interiors, v. 146, p. 195–229, https://doi.org/10.1016/j.pepi.2003.10.012.
  49. Fassett, C.I., 2016, Analysis of impact crater populations and the geochronology of planetary surfaces in the inner solar system: Journal of Geophysical Research, v. 121, p. 1900–1926, https://doi.org/10.1002/2016JE005094.
  50. Faure, G., and Messing, T.M., 2007, Introduction to Planetary Science: The Geological Perspective: Springer, Dordrecht, 526 p., https://doi.org/10.1007/978-1-4020-5544-7.
  51. Fegley Jr., B., 2014, Venus, in Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry, Planets, Asteroids, Comets and The Solar System: Elsevier, v. 2, p. 127–147.
  52. Filiberto, J., 2014, Magmatic diversity on Venus: constraints from terrestrial analog crystallization experiments: Icarus, v. 231, p. 131–136, https://doi.org/10.1016/J.ICARUS.2013.12.003.
  53. Filiberto, J., Trang, D., Treiman, A.H., and Gilmore, M.S., 2020, Present-day volcanism on Venus as evidenced from weathering rates of olivine: Science Advances, v. 6, eaax7455, https://doi.org/10.1126/sciadv.aax7445.
  54. Fink, J.H., Bridges, N.T., and Grimm, R.E., 1993, Shapes of Venusian “pancake” domes imply episodic emplacement and silicic composition: Geophysical Research Letters, v. 20, p. 261–264, https://doi.org/10.1029/92GL03010.
  55. Florensky, C.P., Ronca, L.B., Basilevsky, A.T., Burba, G.A., Nikolaeva, O.V., Pronin, A.A., Trakhtman, A.M., Volkov, V.P., and Zazetsky, V.V., 1977, The surface of Venus as revealed by Soviet Venera 9 and 10: Geological Society of America Bulletin, v. 88, p. 1537–1545, https://doi.org/10.1130/0016-7606(1977)88%3C1537:TSOVAR%3E2.0.CO;2.
  56. Florensky, C.P., Basilevsky, A.T., Kryuchkov, V.P., Kusmin, R.O., Nikolaeva, O.V., Pronin, A.A., Chernaya, I.M., Tyuflin, YU.S., Selivanov, A.S., Naraeva, M.K., and Ronca, L.B., 1983, Venera 13 and Venera 14: sedimentary rocks on Venus?: Science, v. 221, p. 57–59, https://doi.org/10.1126/science.221.4605.57.
  57. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D., 2001, A geochemical classification for granitic rocks: Journal of Petrology, v. 42, p. 2033–2048, https://doi.org/10.1093/petrology/42.11.2033.
  58. Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y., and Schilling, J.-G., 2013, The mean composition of oceanic ridge basalts: Geochemistry, Geophysics, Geosystems, v. 14, p. 489–518, https://doi.org/10.1029/2012gc004334.
  59. Ghail, R.., 2015, Rheological and petrological implications for a stagnant lid regime on Venus: Planetary and Space Science, v. 113–114, p. 2–9, https://doi.org/10.1016/j.pss.2015.02.005.
  60. Ghail, R.C., and Wilson, L., 2015, A pyroclastic flow deposit on Venus, in Plattz, T., Massironi, M., Byrne, P.K., and Hiesinger, H., eds., Volcanism and Tectonism Across the Inner Solar System: Geological Society, London, Special Publications, v. 401, p. 97–106, https://doi.org/10.1144/SP401.1.
  61. Gillmann, C., and Tackley, P., 2014, Atmosphere/mantle coupling and feedbacks on Venus: Journal of Geophysical Research, v. 119, p. 1189–1217, https://doi.org/10.1002/2013JE004505.
  62. Gilmore, M.S., and Head, J.W., 2018, Morphology and deformational history of Tellus Regio, Venus: evidence for assembly and collision: Planetary and Space Science, v. 154, p. 5–20, https://doi.org/10.1016/j.pss.2018.02.001.
  63. Gilmore, M.S., Mueller, N., and Helbert, J., 2015, VIRTIS emissivity of Alpha Regio, Venus, with implications for tessera composition: Icarus, v. 254, p. 350–361, https:///doi.org/10.1016/j.icarus.2015.04.008.
  64. Grinspoon, D.H., 1993, Implications of the high D/H ratio for the sources of water in Venus’ atmosphere: Nature, v. 363, p. 428–431, https://doi.org/10.1038/363428a0.
  65. Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V., and Carley, T.L., 2012, Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems: Journal of Petrology, v. 53, p. 875–890, https://doi.org/10.1093/petrology/egr080.
  66. Gülcher, A.J.P., Gerya, T.V., Montési, L.G.J., and Munch, J., 2020, Corona structures driven by plume-lithosphere interactions and evidence for ongoing plume activity on Venus: Nature Geoscience, v. 13, p. 547–554, https://www.nature.com/articles/s41561-020-0606-1.
  67. Haggerty, S.E., 1978, The redox state of planetary basalts: Geophysical Research Letters, v. 5, p. 443–446, https://doi.org/10.1029/GL005i006p00443.
  68. Hamilton, W.B., 2005, Plumeless Venus preserves an ancient impact-accretionary surface, in Foulger, G.R., Natland, J.H., Presnall, D.C., and Anderson, D.L., eds., Plate, Plumes, and Paradigms: Geological Society of America Special Papers, v. 388, p. 781–814, https://doi.org/10.1130/0-8137-2388-4.781.
  69. Hamilton, W.B., 2007, An alternative Venus, in Foulger, G.R., and Jurdy, D.M., eds., Plate, Plumes, and Planetary processes: Geological Society of America Special Papers, v. 430, p. 879–911, https://doi.org/10.1130/2007.2430(41).
  70. Hamilton, W.B., 2011, Plate tectonics began in Neoproterozoic time, and plumes from deep mantle have never operated: Lithos, v. 123, p. 1–20, https://doi.org/10.1016/j.lithos.2010.12.007.
  71. Hamilton, W.B., 2015, Terrestrial planets fractionated synchronously with accretion, but Earth progressed through subsequent internally dynamic stages whereas Venus and Mars have been inert for more than 4 billion years, in Foulger, G.R., Lustrino, M., and King, S.D., eds., The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson: Geological Society of America Special Papers, v. 514, https://doi.org/10.1130/2015.2514(09).
  72. Hamilton, W.B., 2019, Toward a myth-free geodynamic history of Earth and its neighbors: Earth-Science Reviews, v. 198, 102905, https://doi.org/10.1016/j.earscirev.2019.102905.
  73. Hansen, V.L., 2007a, Venus: a thin-lithosphere analog for early Earth?, in van Kranendonk, M.J., Smithies, R.H., and Bennett, V.C., eds., Earth’s Oldest Rocks: Developments in Precambrian Geology, v. 15, p. 987–1012, https://doi.org/10.1016/S0166-2635(07)15081-7.
  74. Hansen, V.L., 2007b., LIPs on Venus: Chemical Geology, v. 241, p. 354–374, https://doi.org/10.1016/J.CHEMGEO.2007.01.020.
  75. Hansen, V.L., 2018, Global tectonic evolution of Venus, from exogenic to endogenic over time, and implications for early Earth processes: Philosophical Transactions of the Royal Society A, v. 376, 20170412, https://doi.org/10.1098/rsta.2017.0412.
  76. Hansen, V.L., and Willis, J.J., 1998, Ribbon terrain formation, southwestern Fortuna Tessera, Venus: implications for lithosphere evolution: Icarus, v. 132, p. 321–343, https://doi.org/10.1006/icar.1998.5897.
  77. Hansen, V.L., Banks, B.K., and Ghent, R.R., 1999, Tessera terrain and crustal plateaus, Venus: Geology, v. 27, p. 1071–1074, https://doi.org/10.1130/0091-7613(1999)027&3C1071:TTACPV%3E2.3.CO;2.
  78. Harris, L.B., and Bédard, J.H., 2014, Crustal evolution and deformation in a non-plate-tectonic Archaean Earth: comparisons with Venus, in Dilek, Y., and Furnes, H., eds., Evolution of Archean Crust and Early Life: Modern Approaches in Solid Earth Sciences: Springer, Dordrecht, p. 215–291, https://doi.org/10.1007/978-94-007-7615-9_9.
  79. Harris, L.B., and Bédard, J.H., 2015, Interactions between continent-like ‘drift’ rifting and mantle flow on Venus: gravity interpretations and Earth analogues, in Plattz, T., Massironi, M., Byrne, P.K., and Hiesinger, H., eds., Volcanism and Tectonism Across the Inner Solar System: Geological Society, London, Special Publications, v. 401, p. 327–356, https://doi.org/10.1144/SP401.9.
  80. Harrison, T.M., 2009, The Hadean crust: evidence from > 4 Ga zircons: Annual Review in Earth and Planetary Sciences, v. 37, p. 479–505, https://doi.org/10.1146/annurev.earth.031208.100151.
  81. Hashimoto, G.L., Roos-Serote, M., Sugita, S., Gilmore, M.S., Kamp, L.W., Carlson, R.W., and Baines, K.H., 2008, Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data: Journal of Geophysical Research, v. 113, E00B24, https://doi.org/10.1029/2008JE003134.
  82. Hauck II, S.A., Phillips, R.J., and Price, M.H., 1998, Venus: crater distribution and plains resurfacing models: Journal of Geophysical Research, v. 103, p. 13635–13642, https://doi.org/10.1029/98JE00400.
  83. Hauri, E., 2002, SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions: Chemical Geology, v. 183, p. 115–141, https://doi.org/10.1016/S0009-2541(01)00374-6.
  84. Hawkesworth, C.J., and Kemp, A.I.S., 2006, Evolution of continental crust: Nature, v. 443, p. 811–817, https://doi.org/10.1038/nature05191.
  85. Hawkesworth, C.J., Cawood, P.A., and Dhuime, B., 2019, Rates of generation and growth of the continental crust: Geoscience Frontiers, v. 10, p. 165–173, https://doi.org/10.1016/j.gsf.2018.02.004.
  86. Hawkesworth, C.J., Cawood, P.A., and Dhuime, B., 2020, The evolution of the continental crust and the onset of plate tectonics: Frontiers in Earth Science, v. 8, 326, https://doi.org/10.3389/feart.2020.00326.
  87. Head, J.W., 1990, Processes of crustal formation and evolution on Venus: an analysis of topography, hypsometry, and crustal thickness variations: Earth, Moon, and Planets, v. 50, p. 25–55, https://doi.org/10.1007/BF00142388.
  88. Head, J.W., Crumpler, L.S., Aubele, J.C., Guest, J.E., and Saunders, R.S., 1992, Venus volcanism: classification of volcanic features and structures, associations, and global distribution from Magellan data: Journal of Geophysical Research, v. 97, p. 13153–13197, https://doi.org/10.1029/92JE01273.
  89. Herrick, R.R., and Rumpf, M.E., 2011, Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters: Journal of Geophysical Research, v. 116, E02004, https://doi.org/10.1029/2010JE003722.
  90. Herrick, R.R., Dufek, J., and McGovern, P.J., 2005, Evolution of large shield volcanoes on Venus: Journal of Geophysical Research, v. 110, E01002, https://doi.org/10.1029/2004JE002283.
  91. Herzberg, C., and Asimow, P.D., 2015, PRIMELT3 MEGA.XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus: Geochemistry, Geophysics, Geosystems, v. 16, p. 563–578, https://doi.org/10.1002/2014GC005631.
  92. Herzberg, C., and O’Hara, M.J., 2002, Plume-associated ultramafic magmas of Phanerozoic age: Journal of Petrology, v. 43, p. 1857–1883, https://doi.org/10.1093/petrology/43.10.1857.
  93. Herzberg, C., Condie, K., and Korenaga, J., 2010, Thermal history of the Earth and its petrological expression: Earth and Planetary Science Letters, v. 292, p. 79–88, https://doi.org/10.1016/j.epsl.2010.01.022.
  94. Hurley, P.M., and Rand, J.R., 1969, Pre-drift continental nuclei: Two ancient nuclei appear to have had a peripheral growth and no pre-drift fragmentation and dispersal: Science, v. 164, p. 1229–1242, https://doi.org/10.1126/SCIENCE.164.3885.1229.
  95. Husen, A., Almeev, R.R., Holtz, F., Koepke, J., Sano, T., and Mengel, K., 2013, Geothermobarometry of basaltic glasses from the Tamu Massif, Shatsky Rise oceanic plateau: Geochemistry, Geophysics, Geosystems, v. 14, p. 3908–3928, https://doi.org/10.1002/ggge.20231.
  96. Ivanov, M.A., 2001, Morphology of the tessera terrain on Venus: implications for the composition of tessera material: Solar System Research, v. 35, p. 1–17, https://doi.org/10.1023/A:1005289305927.
  97. Ivanov, M.A., and Head, J.W., 2011, Global geological map of Venus: Planetary and Space Science, v. 59, p. 1559–1600, https://doi.org/10.1016/j.pss.2011.07.008.
  98. Ivanov, M.A., and Head, J.W., 2015, Volcanically embayed craters on Venus: testing the catastrophic and equilibrium resurfacing models: Planetary and Space Science, v. 106, p. 116–121, https://doi.org/10.1016/J.PSS.2014.12.004.
  99. Jahn, B.-M., Glikson, A.Y., Peucat, J.J., and Hickman, A.H., 1981, REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: implications for the early crustal evolution: Geochimica et Cosmochimica Acta, v. 45, p. 1633–1652, https://doi.org/10.1016/S0016-7037(81)80002-6.
  100. James, P.B., Zuber, M.T., and Phillips, R.J., 2013, Crustal thickness and support of topography on Venus: Journal of Geophysical Research, v. 118, p. 859–875, https://doi.org/10.1029/2012JE004237.
  101. Johnson, T.E., Brown, M., Gardiner, N.J., Kirkland, C.L., and Smithies, R.H., 2017, Earth’s first stable continents did not form by subduction: Nature, v. 543, p. 239–242, https://doi.org/10.1038/nature21383.
  102. Jull, M.G., and Arkani-Hamed, J., 1995, The implications of basalt in the formation and evolution on mountains on Venus: Physics of the Earth and Planetary Interiors, v. 89, p. 163–175, https://doi.org/10.1016/0031-9201(95)03015-O.
  103. Kargel, J.S., Komatsu, G., Baker, V.R., and Strom, R.G., 1993, The volcanology of Venera and VEGA landing sites and the geochemistry of Venus: Icarus, v. 103, p. 253–275, https://doi.org/10.1006/ICAR.1993.1069.
  104. Khawja, S., Ernst, R.E., Samson, C., Byrne, P.K., Ghail, R.C., and MacLellan, L.M., 2020, Tesserae on Venus may preserve evidence of fluvial erosion: Nature Communications, v. 11, 5789, https://doi.org/10.1038/s41467-020-19336-1.
  105. Kohler, E.A., and Anhaeusser, C.R., 2002, Geology and geodynamic setting of Archaean silicic metavolcaniclastic rocks of the Bien Venue Formation, Fig Tree group, northeastern Barberton greenstone belt, South Africa: Precambrian Research, v. 116, p. 199–235, https://doi.org/10.1016/S0301-9268(02)00021-9.
  106. Kreslavsky, M.A., Ivanov, M.A., and Head, J.W., 2015, The resurfacing history of Venus: constraints from buffered crater densities: Icarus, v. 250, p. 438–450, https://doi.org/10.1016/j.icarus.2014.12.024.
  107. Lancaster, M.G., Guest, J.E., and Magee, K.P., 1995, Great lava flow fields on Venus: Icarus, v. 118, p. 69–86, https://doi.org/10.1006/ICAR.1995.1178.
  108. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B., 1986, A chemical classification of volcanic rocks based on the total alkali-silica diagram: Journal of Petrology, v. 27, p. 745–750, https://doi.org/10.1093/petrology/27.3.745.
  109. Leclerc, F., Bédard, J.H., Harris, L.B., McNicoll, V.J., Goulet, N., Roy, P., and Houle, P., 2011, Tholeiitic to calc-alkaline cyclic volcanism in the Roy Group, Chibougamau area, Abitibi greenstone belt – revised stratigraphy and implications for VHMS exploration: Canadian Journal of Earth Sciences, v. 48, p. 661–694, https://doi.org/10.1139/E10-088.
  110. Lee, C.-T.A., Luffi, P., Plank, T., Dalton, H., and Leeman, W.P., 2009, Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas: Earth and Planetary Science Letters, v. 279, p. 20–33, https://doi.org/10.1016/j.epsl.2008.12.020.
  111. Lopez, I., Marquez, A., and Oyarzun, R., 1997, Are coronae restricted to Venus?: corona-like tectonovolcanic structures on Earth: Earth, Moon, and Planets, v. 77, p. 125–137, https://doi.org/10.1023/A:1006227431552.
  112. MacLellan, L., Ernst, R., El Bilali, H., Ghail, R., and Bethell, E., 2021, Volcanic history of the Derceto large igneous province, Astkhik Planum, Venus: Earth-Science Reviews, v. 220, 103619, https://doi.org/10.1016/j.earscirev.2021.103619.
  113. Manikyamba, C., Kerrich, R., Khanna, T.C., and Subba Rao, D.V., 2007, Geochemistry of adakites and rhyolites from the Neoarchaean Gadwal greenstone belt, eastern Dharwar craton, India: implications for sources and geodynamic setting: Canadian Journal of Earth Science, v. 44, p. 1517–1535, https://doi.org/10.1139/E07-034.
  114. Martin, H., 1994, The Archean grey gneisses and the genesis of continental crust, in Condie, K.C., ed., Archean Crustal Evolution: Developments in Precambrian Geology, v. 11, p. 205–259, https://doi.org/10.1016/S0166-2635(08)70224-X.
  115. Martin, H., and Moyen, J.-F., 2002, Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling of the Earth: Geology, v. 30, p. 319–322, https://doi.org/10.1130/0091-7613(2002)030%3C0319:SCITTG%3E2.0.CO;2.
  116. McBirney, A.R., 1996, The Skaergaard Intrusion, in Cawthorn, R.G., ed., Layered Intrusions: Developments in Petrology, v. 15, p. 147–180, https://doi.org/10.1016/S0167-2894(96)80007-8.
  117. McCallum, I.S., 1996, The Stillwater Complex, in Cawthorn, R.G., ed., Layered Intrusions: Developments in Petrology, v. 15, p. 441–483, https://doi.org/10.1016/S0167-2894(96)80015-7.
  118. McKenzie, D., Ford, P.G., Johnson, C., Parsons, B., Sandwell, D., Saunders, S., and Solomon, S.C., 1992a, Features on Venus generated by plate boundary processes: Journal of Geophysical Research, v. 97, p. 13533–13544, https://doi.org/10.1029/92JE01350.
  119. McKenzie, D., Ford, P.G., Liu, F., and Pettengill, G.H., 1992b, Pancakelike domes on Venus: Journal of Geophysical Research, v. 97, p. 15967–15976, https://doi.org/10.1029/92JE01349.
  120. Morse, S., 2015, Kiglapait intrusion, Labrador, in Charlier, B., Namur, O., Latypov, R., and Tegner, C., eds., Layered Intrusions: Springer, Dordrecht, p. 589–648, https://doi.org/10.1007/978-94-017-9652-1_13.
  121. Moyen, J.-F., 2011, The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth: Lithos, v. 123, p. 21–36, https://doi.org/10.1016/j.lithos.2010.09.015.
  122. Moyen, J.-F., and Martin, H., 2012, Forty years of TTG research: Lithos, v. 148, p. 312–336, https://doi.org/10.1016/j.lithos.2012.06.010.
  123. Nikolayeva, O.V., 1990, Geochemistry of the Venera 8 material demonstrates the presence of continental crust on Venus: Earth, Moon, and Planets, v. 50, p. 329–341, https://doi.org/10.1007/BF00142398.
  124. Nimmo, F., 2002, Why does Venus lack a magnetic field?: Geology, v. 30, p. 987–990, https://doi.org/10.1130/0091-7613(2002)030%3C0987:WDVLAM%3E2.0.CO;2.
  125. Nimmo, F., and McKenzie, D., 1998, Volcanism and tectonics on Venus: Annual Review of Earth and Planetary Sciences, v. 26, p. 23–51, https://doi.org/10.1146/annurev.earth.26.1.23.
  126. Ogawa, M., and Yanagisawa, T., 2014, Mantle evolution in Venus due to magmatism and phase transitions: from punctuated layered convection to whole-mantle convection: Journal of Geophysical Research, v. 119, p. 867–883, https://doi.org/10.1002/2013JE004593.
  127. O’Neil, J., and Carlson, R.W., 2017, Building Archean cratons from Hadean mafic crust: Science, v. 355, p. 1199–1202, https://doi.org/10.1126/science.aah3823.
  128. O’Neil, J., Carlson, R.W., Paquette, J.-L., and Francis, D., 2012, Formation age and metamorphic history of the Nuvvuagittuq greenstone belt: Precambrian Research, v. 220–221, p. 23–44, https://doi.org/10.1016/j.precamres.2012.07.009.
  129. O’Rourke, J.G., and Korenaga, J., 2015, Thermal evolution of Venus with argon degassing: Icarus, v. 260, p. 128–140, https://doi.org/10.1016/j.icarus.2015.07.009.
  130. O’Rourke, J.G., Wolf, A.S., and Ehlmann, B.L., 2014, Venus: interpreting the spatial distribution of volcanically modified craters: Geophysical Research Letters, v. 41, p. 8252–8260, https://doi.org/10.1002/2014GL062121.
  131. Pavri, B., Head III, J.W., Klose, K.B., and Wilson, L., 1992, Steep-sided domes on Venus: characteristics, geologic setting, and eruption conditions from Magellan data: Journal of Geophysical Research, v. 97, p. 13445–13478, https://doi.org/10.1029/92JE01162.
  132. Pearce, J.A., 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust: Lithos, v. 100, p. 14–48, https://doi.org/10.1016/j.lithos.2007.06.016.
  133. Percival, J.A., and Card, K.D., 1986, Greenstone belts: their boundaries, surrounding rock terrains, and interrelationships, in de Wit, M.J., and Ashwal, L.D., eds., Workshop on Tectonic Evolution of Greenstone Belts: Lunar and Planetary Institute Technical Report 86-10, p. 170–173.
  134. Phillips, R.J., and Hansen, V.L., 1998, Geological evolution of Venus: rises, plains, plumes, and plateaus: Science, v. 279, p. 1492–1497, https://doi.org/10.1126/science.279.5356.1492.
  135. Phinney, W.C., Morrison, D.A., and Maczuga, D.E., 1988, Anorthosites and related megacrystic units in the evolution of Archean crust: Journal of Petrology, v. 29, p. 1283–1323, https://doi.org/10.1093/petrology/29.6.1283.
  136. Polat, A., Hofmann, A.W., and Rosing, M.T., 2002, Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greentone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth: Chemical Geology, v. 184, p. 231–254, https://doi.org/10.1016/S0009-2541(01)00363-1.
  137. Polat, A., Kusky, T., Li, J., Fryer, B., Kerrich, R., and Patrick, K., 2005, Geochemistry of Neoarchean (ca. 2.55–2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China craton: implications for geodynamic setting and continental growth: Geological Society of America Bulletin, v. 117, p. 1387–1399, https://doi.org/10.1130/B25724.1.
  138. Polat, A., Appel, P.W.U., Fryer, B., Windley, B., Frei, R., Samson, I.M., and Huang, H., 2009, Trace element systematics of the Neoarchean Fiskenæsset anorthosite complex and associated meta-volcanic rocks, SW Greenland: evidence for a magmatic arc origin: Precambrian Research, v. 175, p. 87–115, https://doi.org/10.1016/j.precamres.2009.09.002.
  139. Reimink, J.R., Davies, J.H.F.L., Bauer, A.M., and Chacko, T., 2020, A comparison between zircons from the Acasta gneiss complex and the Jack Hills region: Earth and Planetary Science Letters, v. 531, 115975, https://doi.org/10.1016/j.epsl.2019.115975.
  140. Romeo, I., and Turcotte, D.L., 2008, Pulsating continents on Venus: an explanation for crustal plateaus and tessera terrains: Earth and Planetary Science Letters, v. 276, p. 85–97, https://doi.org/10.1016/j.epsl.2008.09.009.
  141. Romeo, I., and Turcotte, D.L., 2010, Resurfacing on Venus: Planetary and Space Science, v. 58, p. 1374–1380, https://doi.org/10.1016/j.pss.2010.05.022.
  142. Roth, A.S.G., Bourdon, B., Mojzsis, S.J, Rudge, J.F., Guitreau, M., and Blichert-Toft, J., 2014, Combined 147,146Sm–143,142Nd constraints on the longevity and residence time of early terrestrial crust: Geochemistry, Geophysics, Geosystems, v. 15, p. 2329–2345, https://doi.org/10.1002/2014GC005313.
  143. Rubie, D.C., Jacobson, S.A., Morbidelli, A., O’Brien, D.P., Young, E.D., de Vries, J., Nimmo, F., Palme, H., and Frost, D.J., 2015, Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water: Icarus, v. 248, p. 89–108, https://doi.org/10.1016/j.icarus.2014.10.015.
  144. Sage, R.P., Lightfoot, P.C., and Doherty, W., 1996, Bimodal cyclical Archean basalts and rhyolites from the Michipicoten (Wawa) greenstone belt, Ontario: geochemical evidence for magma contributions from the asthenospheric mantle and ancient continental lithosphere near the southern margin of the Superior Province: Precambrian Research, v. 76, p. 119–153, https://doi.org/10.1016/0301-9268(95)00020-8.
  145. Sakimoto, S.E.H., and Zuber, M.T., 1993, Venus pancake dome formation: morphologic effects of a cooling-induced variable viscosity during emplacement (Conference Paper): Proceedings of the Twenty-fourth Lunar and Planetary Sciences Conference, v. 24, p. 1233–1234.
  146. Schaefer, L., and Fegley Jr., B., 2017, Redox states of initial atmosphere outgassed on rocky planets and planetesimals: The Astrophysical Journal, v. 843, 120, https://doi.org/10.3847/1538-4357/aa784f.
  147. Scott, C.R., Mueller, W.U., and Pilote, P., 2002, Physical volcanology, stratigraphy, and lithogeochemistry of an Archean volcanic arc: evolution from plume-related volcanism to arc rifting of SE Abitibi greenstone belt, Val d’Or, Canada: Precambrian Research, v. 115, p. 223–260, https://doi.org/10.1016/S0301-9268(02)00011-6.
  148. Seager, S., Petkowski, J.J., Gao, P., Bains, W., Bryan, N.C., Ranjan, S., and Greaves, J., 2021, The Venusian lower atmosphere haze as a depot for desiccated microbial life: a proposed life cycle for persistence of the Venusian aerial biosphere: Astrobiology, v. 21, p. 1206–1223, https://doi.org/10.1089/ast.2020.2244.
  149. Shellnutt, J.G., 2013, Petrological modeling of basaltic rocks from Venus: a case for the presence of silicic rocks: Journal of Geophysical Research, v. 118, p. 1350–1364, https://doi.org/10.1002/JGRE.20094.
  150. Shellnutt, J.G., 2016, Mantle potential temperature estimates of basalt from the surface of Venus: Icarus, v. 277, p. 98–102, https://doi.org/10.1016/j.icarus.2016.05.014.
  151. Shellnutt, J.G., 2018, Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus: PLoS ONE, v. 13, e019415, https://doi.org/10.1371/journal.pone.0194155.
  152. Shellnutt, J.G., 2019, The curious case of the rock at Venera 8: Icarus, v. 321, p. 50–61, https://doi.org/10.1016/j.icarus.2018.11.001.
  153. Shellnutt, J.G., and Manu Prasanth, M.P., 2021, Modeling results for the composition and typology of non-primary venusian anorthosite: Icarus, v. 366, 114531, https://doi.org/10.1016/j.icarus.2021.114531.
  154. Singh, V.K., and Slabunov, A., 2015, The central Bundelkhand Archaean greenstone complex, Bundelkhand craton, central India: geology, composition, and geochronology of supracrustal rocks: International Geology Review, v. 57, p. 1349–1364, https://doi.org/10.1080/00206814.2014.919613.
  155. Smith, P.M., and Asimow, P.D., 2005, Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models: Geochemistry, Geophysics, Geosystems, v. 6, Q02004, https://doi.org/10.1029/2004GC000816.
  156. Smith, W.D., and Maier, W.D., 2021, The geotectonic setting, age and mineral deposit inventory of global layered intrusions: Earth-Science Reviews, v. 220, 103736, https://doi.org/10.1016/j.earscirev.2021.103736.
  157. Smithies, R.H., Van Kranendonk, M.J., and Champion, D.C., 2005a, It started with a plume – early Archaean basaltic proto-continental crust: Earth and Planetary Science Letters, v. 238, p. 284–297, https://doi.org/10.1016/j.epsl.2005.07.023.
  158. Smithies, R.H., Champion, D.C., Van Kranendonk, M.J., Howard, H.M., and Hickman, A.H., 2005b, Modern-style subduction processes in the Mesoarchaean: geochemical evidence from the 3.12 Ga Whundo intra-oceanic arc: Earth and Planetary Science Letters, v. 231, p. 221–237, https://doi.org/10.1016/j.epsl.2004.12.026.
  159. Smrekar, S.E., and Sotin, C., 2012, Constraints on mantle plumes on Venus: implications for volatile history: Icarus, v. 217, p. 510–523, https://doi.org/10.1016/j.icarus.2011.09.011.
  160. Smrekar, S.E., Elkins-Tanton, L., Leitner, J.J., Lenardic, A., Mackwell, S., Moresi, L., Sotin, C., and Stofan, E.R., 2007, Tectonic and thermal evolution of Venus and the role of volatiles: implications for understanding the terrestrial planets, in Esposito, L.W., Stofan, E.R., and Cravens, T.E., eds., Exploring Venus as a Terrestrial Planet: American Geophysical Union, Geophysical Monograph Series, v. 176, p. 45–71, https://doi.org/10.1029/176GM05.
  161. Smrekar, S.E., Stofan, E.R., Mueller, N., Treiman, A., Elkins-Tanton, L., Helbert, J., Piccioni, G., and Drossart, P., 2010, Recent hotspot volcanism on Venus from VIRTIS emissivity data: Science, v. 328, p. 605–608, https://doi.org/10.1126/science.1186785.
  162. Sobolev, A.V., Asafov, E.V., Gurenko, A.A., Arndt, N.T., Batanova, V.G., Portnyagin, M.V., Garbe-Schönberg, D., and Krasheninnikov, S.P., 2016, Komatiites reveal a hydrous Archaean deep-mantle reservoir: Nature, v. 531, p. 628–632, https://doi.org/10.1038/nature17152.
  163. Stern, R.J., 2008, Modern-style plate tectonics began in Neoproterozoic time: an alternative interpretation of Earth’s tectonic history, in Condie, K.C., and Pease, V., eds., When Did Plate Tectonics Begin on Planet Earth?: Geological Society of America Special Papers, v. 440, p. 265–280, https://doi.org/10.1130/2008.2440(13).
  164. Strom, R.G., Schaber, G.G., and Dawson, D.D., 1994, The global resurfacing of Venus: Journal of Geophysical Research, v. 99, p. 10899–10926, https://doi.org/10.1029/94JE00388.
  165. Suppe, J., and Connors, C., 1992, Linear mountain belts and related deformation on Venus: Proceedings of the Lunar and Planetary Sciences Conference, v. 23, p. 1389–1390.
  166. Surkov, Y.A., 1977, Geochemical studies of Venus by Venera 9 and 10 automatic interplanetary stations: Proceedings of the Lunar and Science Conference 8th, p. 2665–2689.
  167. Surkov, Yu.A., Barsukov, V.L., Moskalyeva, L.P., Kharyukova, V.P., and Kemurdzhian, A.L., 1984, New data on the composition, structure, and properties of Venus rock obtained by Venera 13 and Venera 14: Journal of Geophysical Research, v. 89, p. B393–B402, https://doi.org/10.1029/JB089IS02P0B393.
  168. Surkov, Yu.A., Moskalyova, L.P., Kharyukova, V.P., Dudin, A.D., Smirnov, G.G., and Zaitseva, S.Ye., 1986, Venus rock composition at the Vega 2 landing site: Journal of Geophysical Research. v. 91, p. B215–B218, https://doi.org/10.1029/JB091iB13p0E215.
  169. Surkov, Yu.A., Kirnozov, F.F., Glazov, V.N., Dunchenko, A.G., Tatsy, L.P., and Sobornov, O.P., 1987, Uranium, thorium, and potassium in the Venusian rocks at the landing sites of Vega 1 and 2: Journal of Geophysical Research, v. 92, p. E537–E540, https://doi.org/10.1029/JB092iB04p0E537.
  170. Taylor, S.R., and McLennan, S.M., 1985, The Continental Crust: its Composition and Evolution: Blackwell Scientific Publications, Oxford, 312 p.
  171. Taylor, S.R., and McLennan, S.M., 1986, The chemical composition of the Archaean crust, in Dawson, J.B., Carswell, D.A., Hall, J., and Wedepohl, K.H., eds., The Nature of the Lower Continental Crust: Geological Society, London, Special Publications, v. 24, p. 173–178, https://doi.org/10.1144/GSL.SP.1986.024.01.16.
  172. Taylor, F.W., Svedhem, H., and Head III, J.W., 2018, Venus: the atmosphere, climate surface, interior and near-space environment of an Earth-like planet: Space Science Reviews, v. 214, 35, https://doi.org/10.1007/s11214-018-0467-8.
  173. Thurston, P.C., 2015, Igneous Rock Associations 19. Greenstone belts and granite-greenstone terranes: constraints on the nature of the Archean world: Geoscience Canada, v. 42, p. 437–484, https://doi.org/10.12789/geocanj.2015.42.081.
  174. Thurston, P.C., and Fryer, B.J., 1983, The geochemistry of repetitive cyclical volcanism from basalt through rhyolite in the Uchi-Confederation greenstone belt, Canada: Contributions to Mineralogy and Petrology, v. 83, p. 204–226, https://doi.org/10.1007/BF00371189.
  175. Thurston, P.C., Ayer, J.A., Goutier, J., and Hamilton, M.A., 2008, Depositional gaps in Abitibi greenstone belt stratigraphy: a key to exploration of syngenetic mineralization: Economic Geology, v. 103, p. 1097–1134, https://doi.org/10.2113/gsecongeo.103.6.1097.
  176. Treiman, A.H., 2007, Geochemistry of Venus’ surface: current limitations as future opportunities, in Esposito, L.W., Stofan, E.R., and Cravens, T.E., eds., Exploring Venus as a Terrestrial Planet: American Geophysical Union, Geophysical Monograph Series, v. 176, p. 7–22, https://doi.org/10.1029/176GM03.
  177. Turcotte, D.L., 1993, An episodic hypothesis for Venusian tectonics: Journal of Geophysical Research, v. 98, p. 17061–17068, https://doi.org/10.1029/93JE01775.
  178. Uppalapati, S., Rolf, T., Crameri, F., and Werner, S.C., 2020, Dynamics of lithospheric overturns and implications for Venus’s surface: Journal of Geophysical Research, v. 125, e2019JE006258, https://doi.org/10.1029/2019JE006258.
  179. Van Kranendonk, M.J., 2010, Two types of Archean continental crust: plume and plate tectonics on early Earth: American Journal of Science, v. 310, p. 1187–1209, https://doi.org/10.2475/10.2010.01.
  180. Vinogradov, A.P., Surkov, Yu.A., and Kirnozov, F.F., 1973, The content of uranium, thorium, and potassium in the rocks of Venus as measured by Venera 8: Icarus, v. 20, p. 253–259, https://doi.org/10.1016/0019-1035(73)90001-8.
  181. Walzer, U., and Hendel, R., 2017, Continental crust formation: numerical modelling of chemical evolution and geological implications: Lithos, v. 278–281, p. 215–228, https://doi.org/10.1016/J.LITHOS.2016.12.014.
  182. Warner, J.L., 1983, Sedimentary processes and crustal cycling on Venus: Journal of Geophysical Research, v. 88, p. A495–A500, https://doi.org/10.1029/JB088iS02p0A495.
  183. Way, M.J., and Del Genio, A.D., 2020, Venusian habitable climate scenarios: modeling Venus through time and applications to slowly rotating Venus-like exoplanets: Journal of Geophysical Research, v. 125, e2019JE006276, https://doi.org/10.1029/2019JE006276.
  184. Way, M.J., Del Genio, A.D., Kiang, N.Y., Sohl, L.E., Grinspoon, D.H., Aleinov, I., Kelley, M., and Clune, T., 2016, Was Venus the first habitable world of our solar system: Geophysical Research Letters, v. 43, p. 8376–8383, https://doi.org/10.1002/2016GL069790.
  185. Weller, M.B., and Duncan, M.S., 2015, Insight into terrestrial planetary evolution via mantle potential temperatures (Abstract): 46th Lunar and Planetary Sciences Conference, 2015, Abstracts, #2749.
  186. Windley, B.F., Kusky, T., and Polat, A., 2021, Onset of plate tectonics by the Eoarchean: Precambrian Research, v. 352, 105980, https://doi.org/10.1016/j.precamres.2020.105980.
  187. Wroblewski, F.B., Treiman, A.H., Bhiravarasu, S., and Gregg, T.K.P., 2019, Ovda Fluctus, the festoon lava flow on Ovda Region, Venus: not silica-rich: Journal of Geophysical Research, v. 124, p. 2233–2245, https://doi.org/10.1029/2019JE006039.
  188. Wyman, D.A., 2018, Do cratons preserve evidence of stagnant lid tectonics?: Geoscience Frontiers, v. 9, p. 3–17, https://doi.org/10.1016/j.gsf.2017.02.001.
  189. Wyman, D.A., Kerrich, R., and Polat, A., 2002, Assembly of Archean cratonic mantle lithosphere and crust: plume-arc interaction in the Abitibi-Wawa subduction-accretion complex: Precambrian Research, v. 115, p. 37–62, https://doi.org/10.1016/S0301-9268(02)00005-0.
  190. Zolotov, M.Yu., Fegley Jr., B., and Lodders, K., 1997, Hydrous silicates and water on Venus: Icarus, v. 130, p. 475–494, https://doi.org/10.1006/icar.1997.5838.