Bioenergy Alongside Other Land Use: Sustainability Assessment of Alternative Bioenergy Development Scenarios
Authors
Johannes (Hans) WA Langeveld
PM Foluke Quist-Wessel
Jan WJ van Esch
Göran Berndes
Abstract
The development of bioenergy offers major possibilities for the reduction of greenhouse gas emissions and fossil fuel dependency, but negative impacts can also occur—e.g., the outcome for food production and biodiversity can be negative. This is a dilemma for policy: how to promote bioenergy developments that can substantially reduce greenhouse gas (GHG) emissions and fossil fuel use without jeopardizing other policy objectives. One major activity within IEA Bioenergy Task 30 and its successor Task 43 concerns strategies to integrate expanding bioenergy systems with the existing land use, in order to reduce land use competition and displacement risks, and with the aim of improving land use productivity and reducing negative environmental impacts of the existing land use. This paper presents the outcome of an activity within this topic area: an evaluation tool that is being developed for comparing alternative ways of producing biofuel feedstocks—here applied on selected approaches that combine fuel production with other objectives. The tool, described as a generalized integrative assessment tool, has been used to evaluate several alternative bioenergy development options: (i) an alternative sugarcane expansion scenario for the Cerrado areas in Brazil, (ii) the use of crop or industrial residues for biogas production in the Netherlands, and (iii) an accelerated agricultural growth scenario generating additional food and biofuel feedstocks while conserving biodiversity areas in Ukraine. The results suggest that the tool can be useful for presenting and evaluating multidimensional effects of bioenergy expansion— by listing, analyzing and depicting all dimensions in a clear and comprehensive way. The evaluations of the three cases show that if biofuel feedstock production systems are developed in ways that do not lead to displacement of the prevailing land use, impacts on local food production capacity and biodiversity can be avoided, or at least significantly reduced, compared to a scenario of bioenergy expansion crowding out other land uses. Integrated bioenergy food systems can offer opportunities for both economic and social development. Keywords: biofuels, land use, bioethanol, biogas, Brazil, Netherlands, Ukraine. Received 9 November 2010, Revised 7 December 2012, Accepted 14 December 2012.