TYPOLOGICAL PARAMETERS FOR THE LEXICO-SYNTACTIC STRUCTURES OF HIGH-DIGIT NUMERICAL EXPRESSIONS ${ }^{1}$

Cheng Luo
Brock University

Abstract

The objective of this paper is to explore the lexico-syntactic structure of high-digit numerical expressions (henceforth HDNEs), normally with 4 digits and more, and to propose a set of typological parameters to account for crosslinguistic variations in lexicalization sites. The two parameters of pivot/anchor and increment are proposed to describe and account for lexicalization sites of HDNEs, with language-specific valuesetting explaining crosslinguistic variation. Support for this analysis includes psycholinguistic evidence from second language acquisition.

1. INTRODUCTION

This paper examines the crosslinguistic lexico-syntactic structure of high-digit numerical expressions (HDNEs) in order to provide a principled account for their lexicalization sites, whose crosslinguistic variations are demonstrated in italics in Table 1:

Table 1: Sample of crosslinguistic variation in HDNE lexicalization sites

	English	Chinese	Kannada	Lugwere
1,000	(one) thousand	(yi) qian	ondu-sävira	lu-kumi
10,000	ten thousand	(yi) wan	haththu-săvira	mu-tulo
100,000	(one) hundred thousand	shi wan	ondu-laksha	mi-tulo i-kumi
$1,000,000$	(one) million	(yi) bai wan	haththu-laksha	ka-kairi
$10,000,000$	ten million	(yi) qian wan	ondu-kōti	bu-kairi i-kumi
$100,000,000$	(one) hundred million	(yi) yì	haththu-köti	bu-kairi chi-kumi
$1,000,000,000$	(one) billion	shi yì	-	katabarika kamo

As Chomsky (1980: 248f) suggests, the way in which human beings develop the number system may 'shed light on deep and fundamental charac-

[^0]teristics of the human species.' Piaget (1961: 188) points out that numerical expressions involve 'fundamental cognitive principles [such as] classification and serialization.' As part of a complete description of grammatical systems, numerical expressions provide a relatively small, but usually well-defined and independent subsystem of language that can be described in its own terms $\boldsymbol{\varepsilon}$ nd compared with similar systems in other languages (Brainerd 1968). C osslinguistic studies of numerals (e.g., Greenberg 1978, 1989; Hurford 1975, 1987; Gvozdanovic 1992a) have shown considerable regularity and gen rralizability in their semantic structure and morphosyntactic properties. However, most studies have either focussed on lowerdigit numerals (e.g., Greenberg 1978, 1989; Seiler 1990; Gvozdanovic 1992a; Franks 199!.), or investigated single languages or language groups (e.g., Akiner 1983; Bradley 1981; Gerhardt 1987; Shionoya 1990; Krippes 1991; Potet 1992; Cliverio 1993). Thus, despite their insights into the structure of numerical expressions of individual languages, or of lower-digit numerical expressions crosslinguistically, such studies have limitations as to what significan generalizations can be made about the diverse lexicosyntactic propertie ; of HDNEs found in the world's languages.

That HDNEs need to be studied in their own terms is seen from some important distributicnal differences between HDNEs and their lower-digit counterparts. For example, lexicalization of English numerals occurs at regular intervals b^{γ} powers of thousand from the $4^{\text {th }}$ digit on, but shows a more idiosyncratic pattern for the lower digits, due in part to their more dense lexicalization within a semantic domain. Given this and other structural differences to be discussed between high- and low-digit numerical expressions, and given the relatively little attention previously paid to HDNEs, an investigation of crosslinguistic HDNE structure will not only provide evidence for a set of parameters governing the lexicalization of HDNEs, but also lend insights into the setting and re-setting of parametric values in first and second language acquisition. In the following discussion, I will first e:amine Hurford's $(1975,1987)$ and Greenberg's $(1975$, 1989) crosslinguis ic accounts of HDNEs, and then propose a pair of parameters supporterl by a crosslinguistic analysis of HDNEs. It will be shown that the proposed jarameters provide a plausible, general, yet simple way to describe the lexi so-syntactic structure of HDNEs crosslinguistically.

2. PRIOR CROSSLINGUISTIC STUDIES ON HDNEs

2.1 Hurford's exponentiation and multiplication types

Hurford (1987: 245) proposes three universal syntactic categories for PS-rules in numeral syntax: NUMBER, PHRASE, and M, as in (1). (2) gives an example of a structure generated by (1), where digit expands to any of the words one, two, ...nine)

Of particular interest here is the category M, which functions as base numbers for numerical expressions (Gvozdanovic 1992a: 5), and corresponds to the lexicalization sites in Table 1 except for the numbers 1 to 10 (i.e., DIGITS). In the high-digit domain, Hurford classifies languages into two types: those whose Ms are interpreted by exponentiation and those by multiplication. The exponentiation type is formally defined as in (3) (Hurford 1975: 247), exemplified again by data from English and Chinese in Table 1.
(3) ... the values of the Ms may be arranged into a series m_{1}, m_{2}, \ldots, m_{n}, such that for all adjacent pairs of values m_{i}, m_{j}, either $m_{j}=$ $m_{i}{ }^{2}$ or there exists some m_{x} and some whole number $y(y>1)$, such that $m_{i}=m_{x}{ }^{y}$ and $m_{j}=m_{x}{ }^{y+1}$.

According to (3), English Ms thousand $\left(\mathrm{m}_{\mathrm{i}}\right)$, million $\left(\mathrm{m}_{\mathrm{j}}\right)$, and billion $\left(\mathrm{m}_{\mathrm{k}}\right)$ are in an exponential relationship such that $m_{j}=m_{i}{ }^{2}$, and $m_{k}=m_{i}{ }^{3}$. Similarly, Chinese Ms wan ' $10^{\prime}\left(\mathrm{m}_{\mathrm{i}}\right)$ and $y \mathrm{i}^{\prime} 10^{9}$ ' $\left(\mathrm{m}_{\mathrm{j}}\right)$ also have an expo-
nential relationshi, of $m_{j}=m_{i}{ }^{2}$. On the other hand, the multiplication type is defined as (4), n ith (5) as an example from Tamil, a Dravidian language:
(4) a langıage whose values of the higher-valued Ms can be arranged into a series $m_{1}, m_{2}, \ldots, m_{n}$, such that for all adjacent triples of values m_{i}, m_{j}, m_{k} there exists some whole number y such that $\mathrm{m}_{\mathrm{k}}=\mathrm{m}_{\mathrm{j}} \times \mathrm{y}$ and $\mathrm{m}_{\mathrm{j}}=m_{i} \times \mathrm{y}$ (Hurford 1975: 248).

Tamil:	ayiram	$' 1,000^{\prime}$
	laksham	$' 100,000$
	kōdi	$' 10,000,000^{\prime}$

In (5), ayiram $\left(\mathrm{m}_{\mathrm{i}}\right)$, laksham $\left(\mathrm{m}_{\mathrm{j}}\right)$ and $k o \bar{d} i\left(\mathrm{~m}_{\mathrm{k}}\right)$ are related not by exponentiation, bu t by multiplication by 100 , such that $m_{j}=m_{i} \times 100$, and $m_{k}=m_{j} \times 100$. This kind of multiplicative relationship also obtains in HDNEs in Ancient Hawaii in, Yoruba, Ainu, and some other Dravidian languages.

There are several difficulties with Hurford's typology. First, the category M is not expl citly defined, and applies to both the low-digit and the high-digit domairs without considering structural differences between them. Further, it d oes not explicitly specify a digit position at which exponentiation or multiplication starts, thus failing to show whether exponential relationship between lexicalization sites in a language like English starts at the second digit on a decimal basis (ten, hundred, and thousand) or at the $4^{\text {th }}$ digit on the basis of 1,000 (e.g., thousand, million, billion, and trillion). Secondly, while multiplication is a very effective way of economizing the expression of higher numbers ${ }^{2}$ to avoid inefficiency of total lexicalization (Winter 1992: 18-19), exponentiation is less common in natural languages. Thir dly, Hurford's typology shows limitations in descriptive adequacy when attested against data from other languages. Consider (6) from Lugwere, a Eantu language:
(6) a. i-kumi 10
b. chi-kurıi 100
c. lu-kumi 1,000
d. mu-tul) 10,000
e. mi-tulc i-kumi 100,000
f. ka-kaisi $1,000,000$
g. bu-kairi i-kumi $10,000,000$
h. bu-kairi chi-kumi $100,000,000$
i. katabaıika kamo $1,000,000,000$

2 According to Winter (1992: 18), the optimal solution to efficiency of expression is a combination of addition and multiplication.

As we see in the Lugwere data (6), it is difficult to find any consistent relationship, exponential or multiplicative, between the lexical items kumi, tulo, kairi, and katabarika kamo. In fact, the distinction between exponentiation and multiplication is quite superfluous and unnecessary, and it would be more adequate to describe the structure in terms of multiplicative relationship only, as implied in an increment parameter I will propose.

Finally, Hurford's typology seems to be motivated more by semantic interpretation than by lexico-structural properties. In terms of lexicalization sites, Chinese is as different from English as English is from Kannada (Table 1), but according to Hurford, Chinese is grouped with English as opposed to Kannada. The fact that English and Chinese are rendered nondistinct does not account for some significant psycholinguistic differences by L2 learners in acquiring HDNEs, which I will show later.

To sum up, Hurford's typology of HDNEs has some weaknesses in explicitness, plausibility, and descriptive adequacy. To more adequately describe the structure of HDNEs, we need parameters that not only specify the HDNE lexicalization sites and the syntactic relationship between them in a language, but also account for crosslinguistic variation thereof.

2.2 GREENBERG'S CONCEPT OF BASE

Greenberg $(1978,1989)$ proposes three linguistic procedures for the dimension of enumeration: atoms, the set of numerals which receive 'simple lexical representations' (Greenberg 1978: 256), bases, and calculatory operations. These are functionally related, respectively, to indicativity, iconicity, and predicativity (Seiler 1990). Of these procedures, the base is defined as a serialized multiplicand, for example, 10, 100, 1,000 and 1,000,000 (Greenberg 1978: 270). Bases function as marks of hierarchical packing, such that languages may have packs of fives (i.e., quinary), tens (i.e., decimal), twenties (i.e., vigesimal), etc. Other properties of bases include: (a) that they are nominal, (b) that they are polyvalent, and (c) that they mark turning points (Seiler 1990: 193-6).

Unlike Hurford, Greenberg does not distinguish between exponentiation and multiplication, recognizing only a serialized multiplicative relationship between lexicalization sites of numerical expressions. On the other hand, like Hurford's category M, Greenberg's base applies to both lower and higher numerals, overlooking several important structural differences between them, including lexicalization intervals mentioned above. As another difference, we find in English that while ten and hundred may occur recursively in forming HDNEs, thousand, million, billion,
etc., can not be so used. Thus, one can say 'ten million ten thousand and ten' but not '*one ruillion million'.

Crosslinguistice lly, there is also evidence that syntactic processes applicable to lower-digit bases may operate differently for higher-digit ones. Consider the follo ving examples from Chinese involving elliptic forms of numerical express ons:
(7) a. yi bai wu-shi
one hundred fifty
'150'
b. yi bainu
(8) a. yi qiaat wu bai
one thousand five hundred '1,500'
b. yiqian $v u$
(9) a. yi wan wu qian
one 10^{4} five thousand ' 15,000 '
b. yi wan wu
(10)a. yi yì wu qian wan one 10^{8} five thousand 10^{4}
b. ?*yi yì wu
' 150,000, , 00 '
In Chinese, the base wan (i.e., 104) marks the boundary between lower and higher digits. As can be seen from ($7-10$), deletion can optionally apply only when the target of deletion is shi (10), bai $\left(10^{2}\right)$, or gian (10^{3}), but not wan (10^{4}). The inar plicability of deletion to the $5^{\text {th }}$ digit base thus marks a distinct syntactic difference between it and its lower-digit counterparts.

Chinese also hés a ling-insertion rule to the effect that the word ling 'zero' occurs as a place holder to mark a sequence of one or more zero places occurring hetween two non-zero places (Battistella 1989: 9). As Battistella (1989) r r ports, ling-insertion applies obligatorily to digits below wan, but optionally to digits above wan, as in (11):
(11) a. san yì (ling) er bai shi yi wan yi qian ling shi san three $10^{":}$ zero two hundred eleven 10^{4} one thousand zero thirteen '302,111,013'
b. *san yì ing er bai shi yi wan yi qian _ shi san

In (11a), the plice holder ling occurs properly both before and after wan; however, while the rule applies optionally to the high-digit part of
the numerical expression before wan, ling has to occur obligatorily in the low-digit section after wan, as attested in the incorrect (11b).

Another difference between the low- and the high-digit expressions crosslinguistically is that low-digit numerical expressions tend to have less systematic calculatory operations than high-digit ones. At lower digits, many languages have a mixture of bases, such as quinary or vigesimal mixed with decimal bases, or a mixture of calculatory operations, such as progressive operation by addition combined with regressive operation by subtraction (Greenburg 1978, Seiler 1990). For high digits, there tends to be a more uniform pattern of the decimal multiplicands and a more consistent operation of multiplication-addition.

Finally, let's consider the use of amari in a quite obsolete native Japanese numerical system called Yamato kotoba (Brainerd \& Peng 1968). In this system, amari functions as an obligatory connective between two numerical expressions. For example, in (12a), it joins nana-chi ' $7,000^{\prime}$ and iso ' 50^{\prime} ' on the one hand and iso and mihe 'three' on the other, which are themselves full-fledged numerical expressions.
a. nana-chi he amari iso amari mihe
7 -thousand coN fifty con three
' 7,053 '
b. futa yorozu amari itsu chi-tari $2 \quad 100^{4}$ CONJ $5 \quad 1000$-tari '25,000'
c. chi i ho yorozu $10005100 \quad 10^{4}$ ' $15,000,000$ '
In terms of distribution of amari, we notice that it occurs only after, as in (12b), but not before, as in (12c), yorozu 'ten-thousand', the presumable boundary between low- and high-digit numerical expressions in Japanese. Thus, we may say that the distribution of amari is sensitive to the low-/high-digit distinction in Japanese.

To briefly conclude this section, crosslinguistic evidence for the structural differences between low- and high-digit numerical expressions strongly suggests the need to analyze HDNEs independently in terms of a set of parameters capable not only of describing HDNE structures and crosslinguistic variations, but also of capturing these differences as well. In the rest of this paper, I will propose such a set of parameters, and attest it against crosslinguistic data.

3. TYPOLOGICAL]'ARAMETERS: ANCHOR, PIVOT, AND INCREMENT

Compare Engli ih and Mandarin Chinese HDNEs in (13):
2,354,796,000
a. two bi lion three hundred and fifty four million seven hundred and niuety six thousand
b. er-shi san yì wu qian si bai qi- shi twenty hree 10^{8} five thousand four hundred seven-ty
jiu win liu qian nine 10^{\ddagger} six thousand

The comparison shows several structural properties. First, both languages express some HDNEs periphrastically (e.g., ten thousand) but others lexically (e.g., thousand and wan); however, lexicalization sites differ in the two langua jes. For example, the $5^{\text {th }}$ digit is a lexicalization site in Chinese but not in English. Secondly, within a periphrastic expression such as a hundred thousind in English, the lexical head thousand does not recur in other HDNEs as modifier, e.g., *thousand thousand, whereas hundred does (cf. two huni'red million three hundred thousand). We may call this property non-recuisiveness. Thirdly, the lexicalization sites are structured in English in such a way that a change in lexeme occurs every three digits starting from the ${ }^{!}!$th digit (e.g. thousand, million, billion). We may call this 3 -digit increment. Chinese, on the other hand, shows a 4 -digit increment, i.e., lexeme change occurs every four digits starting from the $5^{\text {th }}$ digit (e.g., wan, yi).

For ease of disiussion, I will use two terms: anchor and pivot for the first parameter. Aı anchor is a non-recursive lexeme in any HDNE that can not be a modifier in periphrastic numerical expressions. In English, the anchors are thousanl (4th digit), million (7th), billion (10th), trillion (13th), etc.; in Chinese, tiley are wan (5th), yi (9th), zhao (13th), etc. ${ }^{3}$ Note that qian 'thousand' in Chinese is not an anchor, as it can recur as modifier in higher digit expres sions. A pivot is the rightmost anchor from which regular increment invclving anchor change occurs. By definition, the pivot is thousand (4th digii) in English and wan (5th) in Chinese. The second parameter is increme it, defined as the interval at which anchor change occurs.

3 The Chinese a uchor wan, however, can occasionally be used in periphrastic expressions as an alternative to its more formal counterparts, e.g. yi wan wan 'a hundred million' instead of the more formal yi yi.

With these parameters, the differences between English and Chinese lexicalization sites for HDNEs can be expressed in terms of different valuesetting, as in (14):

While English has the $4^{\text {th }}$ digit as pivot and uses a 3-digit increment which effects change of anchor at the $7^{\text {th }}, 10^{\text {th }}$ and $13^{\text {th }}$ digits, Chinese has the $5^{\text {th }}$ digit as pivot and uses a 4 -digit increment which effects change of anchor at $9^{\text {th }}$ and $13^{\text {th }}$ digits.
(15) is a formal representation of the two types of lexico-syntactic structures of HDNEs represented by English and Chinese, as stated in (14). In (15), the numbers at the bottom represent digit positions. P^{4} marks the pivot position at which increment starts in a language, and together with the As, marks lexicalization sites. The Ms show the respective multiplicative relationships between an anchor and its modifiers. Finally, R represents the digits lower than P, which are not the focus of the present study.

Compared with Hurford's typology, the parameters proposed here more clearly and adequately describe HDNE structures in a language. The pivot is a necessary parameter for marking the starting point for regular increment; and once the value of the pivot is assigned, the increment parameter adequately accounts for lexicalization sites. Secondly, the concept of increment involves only multiplicative relationships between anchors, thus simplifying our typological description. Thirdly, they more adequately account for crosslinguistic variations of HDNE structures from languages like Lugwere as well as those represented by English, Chinese, and Kannada, as will be seen next.

Typological parameters and syntactic structure of high-digit numerical expressions

[^1]

4. CROSSLINGUIS1IC EVIDENCE

Table 2 (following References) presents some codified crosslinguistic HDNE data of 14 languages from 5 language families. The languages are divided into 4 groups: the European group, the East Asian group, the Dravidian group and the bantu group. HDNEs are arranged from higher to lower digits. Within each cell, the anchor occurs in the bottom line, and modifiers, if any, occur from top to bottom above the anchor in the order of ten, hundred, and ihousand. Each HDNE should be read from left to right regardless of the linear disalignment. The shaded areas indicate lexicalization sites, with the rightmost one marking the pivot position. In Table 2, crosslinguistic variation in lexicalization sites of HDNEs is accounted for in terms of pivot and increment, as follows: for the European group: pivot = 10^{3}; increment $=:$-digit; anchors $=10^{3}, 10^{6}, 10^{9}, 10^{12}$; for the East Asian group ${ }^{5}$: pivot $=10^{*}$; increment $=4$-digit; anchors $=104 ; 10^{8} ; 10^{12}$; and for the Dravidian group: $\boldsymbol{j}^{\text {ivot }}=10^{3}$; increment $=2$-digit; anchors $=10^{3}, 10^{5}, 10^{7}$.

While most grcups show regular and consistent increment, Lugwere presents an interes ting pattern. As in Chinese, the $5^{\text {th }}$ digit in Lugwere is lexicalized with $m u$-tulo. However, the increment shows a mixed pattern of 2-digit increment between mu-tulo 'ten-thousand' and ka-kairi 'million', and 3-digit increment between ka-kairi 'million' and katabarika 'billion'. Consideriag the recurrence pattern of ikumi 'ten' especially in the $3^{\text {rd }}$ and $4^{\text {th }}$ digit p risitions, if we extend the scale rightward to include the $2^{\text {nd }}$ to the $4^{\text {th }}$ digit; , we actually have a 3-2-3 increment pattern, with the pivot at the $2^{\text {nd }}$ diryit (though not a high digit) and the anchors at the $5^{\text {th }}$, $7^{\text {th }}$, and $10^{\text {th }}$. In a nord, what the Lugwere data show is that not all languages have fixed-value increment.

5 Diachronically many of the HDNEs in Chinese, Japanese and Korean were cognates, sugg sting that the numerical system originated in Chinese and was borrowed into Japanese and Korean, which accounts for the set of structural features shared by the three languages.

To sum up, crosslinguistic variation in HDNEs can be accounted for in terms of pivot and increment, and their value-setting. It is suggested that these parameters may be applicable to HDNEs in other languages, which differ from each other in the value-setting of the parameters.

5. PSYCHOLINGUISTIC EVIDENCE

A comparison of Hurford's typology and the typological parameters proposed here shows that they make quite different predictions about second language acquisition, based on language transfer theory of interlanguage studies. According to Hurford's analysis (\$2.1), which by treating European languages like English, and Chinese, as belonging to the exponentiation type makes them non-distinct, East Asian English as a Second Language (ESL) learners ${ }^{6}$ will learn English HDNEs as easily as, say, Spanish ESL learners. The analysis argued for herein, however, contrasts European and East Asian languages in value setting, and predicts that East Asian ESL learners will have greater difficulty acquiring English HDNEs than their Spanish counterparts, because of differences in processing HDNES.

In order to find out which typology is psycholinguistically more plausible, an experiment (Luo \& Wilson 1996) was carried out to test the hypothesis that East Asian ESL learners would encounter greater difficulties than their European counterparts in comprehending or producing English HDNEs as a result of delayed re-setting of typological parameters because of first language (L1) interference. 50 lower-level ESL learner participants (20 Spanish, 30 East Asians) and 16 English native speaker participants performed a listening comprehension task by writing down contextualized HDNEs heard on tape, and an oral production task by promptly uttering HDNEs seen on a computer in Arabic numerals. Errors and processing time for each task were measured, recorded and then converted to performance scores for all the groups.

Statistical results are reported in Table 3 and diagrammatically shown in Figure 2. As the results show, there are significant between-group differences in both comprehension and production of HDNEs. More specifically, while the control group (native English speakers; 138.27 for comprehension and 188.21 for production, respectively) outperformed both the East Asian group (38.88 for comprehension and 100.90 for production, respectively) and the Spanish group (69.33 for comprehension and 137.14 for

[^2]production, respectively), the Spanish group significantly outperformed the East Asian gro 1 p both in production and in comprehension, suggesting presence of negat ve transfer effect for the latter group. Thus, psycholinguistic evidence ir second language acquisition shows greater difficulty in processing target language HDNEs when one's native language HDNEs differ structurally from those of the target language. Such differences are best captrued by pivot and increment as plausible parameters for the lex-ico-syntactic description of HDNEs.

Table 3: $\quad \begin{gathered}\text { Discriptive statistics for task performance } \\ \text { by participants with different L1s }\end{gathered}$

L1	N	Mean	SD	SE	Variance	Minimum	Maximum
Comprehension:							
English	16	138.27	26.56	6.64	705.43	79.88	163.88
Spanish	20	69.33	34.02	7.61	1157.36	0.00	126.73
East Asian	30	38.88	20.76	3.79	430.98	0.00	91.35
Production:							
English	16	188.21	10.19	2.55	103.84	153.30	195.35
Spanish	20	137.14	34.06	7.62	1160.08	82.03	186.57
East Asian	30	100.90	47.64	8.70	2269.57	34.72	180.68

Figure 1: Comparison of performance on HNDEs by L1

6. CONCLUSION

Based on a critique of Hurford's (1987) typology of HDNEs and Greenberg's parameter of base, this paper proposes pivot/anchor and increment as two parameters for describing and accounting for lexicalization sites of HDNEs. It is suggested that the lexico-syntactic structures of HDNEs in all languages are susceptible to such parameters, whose lan-guage-specific value-setting accounts for crosslinguistic variations. Thus, most European languages (e.g., English, Spanish, Slovak, Dutch, German, French) take the $4^{\text {th }}$ digit as the pivot and use a 3-digit increment thereafter, East-Asian languages (Chinese, Japanese and Korean) take a $5^{\text {th }}$ digit pivot and employ a 4-digit increment, and most Dravidian languages (e.g. Tamil, Malayalam, Kannada, and Tegulu) take the $4^{\text {th }}$ digit as the pivot and use a 2-digit increment. It is also possible for some languages, such as the Bantu language of Lugwere, to adopt a mixed increment system. Psycholinguistic evidence from second language acquisition further supports these parameters as a plausible framework for describing the structure of HDNEs in a most adequate, general and simple way.

Table 2: A rosslinguistic comparison of lexicalization sites...

Digit	13	12	11	10	9
\#formative	000000000000	100000000000	10000000000	1000000000	100000000
European					
English	itilion	hundred billion	ten billion	billion	$\begin{aligned} & \text { hundred } \\ & \text { million } \end{aligned}$
Dutch	liljoen	honderd miljard	tien miljard	\square	honderd miljoen
German	I illion	hundert Milliarde	zehn Milliarde		hundert Million
French	t illion	cent milliard	dix milliard	\square	cent million
Spanish	t illon	cien billones	diez billones	\square	cien millones
Slovak	bilion	${ }^{\text {sto }}$ miliard	desat miliard	\square	sto miliónov
EastAsian					
Chinese	z aao	$\text { qian } \text { yì }$	bai yì	shi yì	yi
Japanese		senoku	hyaku- \qquad	jyuoku	
Korean		chun uk	bac- uk	$\begin{array}{lll}\text { sip- } & & \\ & & \\ & & \\ & \end{array}$	uk
Dravidian					
Tamil					paththu- kōdi
Malayalam					pathinonnu kōti
Kannada					haththu kōt i
Telugu					padhi kōtlu
Bantu					
Lugwere		mi-tulo bu-tabarika	i-kumi bu-tabarika	katas arika kamo	chi-kumi bu-kairi

...in high-digit numerical expressions

8	7	6	5	4	3	2
10000000	1000000	100000	10000	1000	100	10
European						
ten million	million	hundred thousand	ten thousand	thousand	hundred	
tien miljoen		honderd duizend	tien duizend	dưizend	honderd	
zehn Million	Million	hundert tausend	zehn tausend	tausend	hundert	
dix million	million	${ }^{\text {cent }} \text { mille }$	dix mille	mille	cent	
diez millones	millon	cien mil	diez mil	mil	cien	
desat miliónov	milión	sto tisíc	desat tisíc	tisịc	sto	
East Asian						
qian wan	bai wan	shi wan	wan	qian	bai	
sen- man	hyakuman	jyu- man	man	sen	hyaku	
chun man	bac- man	sip- man		chun	bac	
Dravidian						
ködi	paththu- laksham	\square	paththuāyiram	āyiram	nūru	
köt i	pathinonnu laksham	laksham	pathinonnu āyiram	àyiram	nūn	
\square	haththu laksha	laksha	haththu sāvira	sāvira	nūru	
\square	padhi lakshalu	\square	padhi vēlu		nūru	
Bantu						
i-kumi bu-kairi	ka-kaini	mi-tulo	mu-tulo	$\text { lu- }{ }^{\text {kumi }}$	chi-kumi	i-kumi:

REFERENCES

AKINER, SHIRIN. 1983. The syntax of the numeral in Byelorussian, compared with Ukrainian, Russian and Polish. The Slavonic and East European Review 61,1: 55-68.

BATTISTELLA, EL'WIN. 1989. Some notes on Chinese number words. CUNYForum. Papers in Linguistics 14, 7-12.
bradley, maya. 1981. Numerals in Modern Hebrew. Working Papers in Linguistics 7: 87-115. Melbourne, Australia: University. of Melbourne.

BRAINERD, BARR(IN. 1968. On the syntax of certain classes of numerical expressions. In H.B. Corstius (ed.), Grammars for Number Names, Foundations of Language Supplementary Series, Vol. 7, Dordrecht: D. Reidel, 9-40.

BRAINERD, BARRON. \& FRED PENG. 1968. A syntactic comparison of Chinese and Japanese numerical expressions. In H.B. Corstius (ed.), Grammars for Number Names, Foundations of Language Supplementary Series, Vol. 7, Dordrecht: D. Reidel, 53-81.

CAFLISH, J. 1984. 'A typology of numerical cycles, I: Kartvelian. The Language Qiarterly 23,1-2: 9-12.

CHAE, W. 1983. A study of numerals and numeral classifier constructions in Korean. Lan $̧$ uage Research 19,1: 19-34.

CHOMSKY, NOAM. 1980. Rules and Representations. Oxford: Basil Blackwell.

COMRIE, BERNARI). 1992. Balto-Slavonic. In Jadranka Gvozdanovic (ed.), Indo-Europt an Numerals. (Trends in Linguistics: Studies and Monographs 57). Berlin: Mouton de Gruyter, 717-833.

CORSTIUS, H. B. (єd.) 1968. Grammars for Number Names. Foundations of Language St pplementary Series, Vol. 7. Dordrecht: D. Reidel.

DEHAENE, S \& MI HLER, J. 1992. Cross-linguistic regularities in the frequency of number words. Cognition: International Journal of Cognitive Science 43,1: 1-29.

FRANKS, S. 1994. Parametric properties of numeral phrases in Slavic. Natural Lancuage and Linguistic Theory 12,4: 597-674.

GERHARDT, L. 1987. Some remarks on the numerical systems of Plateau languages. Afrika und Ubersee: Sprachen Kulturen 70,1: 19-29.
GREENBERG, JOSEPH H. 1978. Generalizations about numeral systems. In Joseph H. Greenberg (ed.), Universals of Human Language: Word Structure. Stanford: Stanford University Press, 249-95.
1989. The internal and external syntax of numerical expressions: explaining language specific rules. Belgian Journal of Linguistics 4: 105118.

GVOZDANOVIC, JADRANKA. 1992a. Remarks on numeral systems. In Jadranka Gvozdanovic (ed.), Indo-European Numerals. Berlin: Mouton de Gruyter, 1-10.
(ed.) 1992b. Indo-European Numerals. Berlin: Mouton de Gruyter.
hURFORD, JAMES. 1975. The Linguistic Theory of Numerals. Cambridge: Cambridge University Press.
1987. Language and Number. Oxford: Blackwell.

JUSTUS, C. 1988. Indo-European numerals and numeral systems. In Yoel L. Arbeitman (ed.), A Linguistic Happening in Memory of Ben Schwartz: Studies in Anatolian, Italic, and Other Indo-European Languages. Louvain-La-Neuve: Peeters, 521-541.

KOUL, M. \& SHARMA, R. 1988. Numeral system in Kashmiri. Indian Journal of Linguistics Praci Bhasha Vijnan, 15,2: 43-50.

Krippes, K. 1991. A linguistic enigma: the Altaic numerals. General Linguistics 31,3-4: 141-52.
LEHMAN, F. K. 1990. Outline of a formal syntax of numerical expressions with special reference to the phenomenon of numeral classifiers. Linguistics of the Tibeto-Burman Area 13,1: 89-120.
LUO, CHENG. \& WILSON, F. 1996. Acquisition of the ESL high-digit numerical expressions: a reflection on Transfer Theory. In A. Pasquini, L. Rowsell \& L. C. Smith (eds.), Proceedings of the 1996 Annual Conference of the Canadian Linguistic Association. Calgary, Alberta, (Calgary Working Papers in Linguistics), 221-234.

MACEK, D. 1985. A contrastive study of numerals in English and SerboCroatian. In Filipovic, Rudolf (ed.), Chapters in Serbo CroatianEnglish Contrastive Grammar. Zagreb: Faculty of Philosophy., Zagreb University, 135-166.

MANCZAK, W. 1935 . Indo-European numerals and the sexagesimal system. In Jacek Fisiak (ed.), Papers from the 6th International Conference oit Historical Linguistics. Amsterdam: J. Benjamins, 347352.

MARCOS, M. \& FR $\operatorname{ANCISCO}, \mathrm{A} .1992$. Numerals and typology in minority languages of China. In André Crochetière, J. Boulanger \& C. Ouellon (edi.), Actes du XVe Congrès International des Linguistes: Les Langues menacées/Endangered Languages: Proceedings of the XVth Intervational Congress of Linguists Sainte-Foy: Presses Universitaires Laval, 169-72.

MILLER, K. \& ZHU, J. 1991. The trouble with teens: Accessing the structure of number names. Journal of Memory and Language 30,1: 48-68.

OLIVERIO, G. 1993. Tutelo numeral types. In E. Smith \& F. Zephir (eds.), Proceedings of the 1992 Mid-America Linguistics Conference and Conference cn Siouan/Caddoan Languages. Columbia: University of Missouri-1-olumbia, 339-346.

PIAGET, JEAN. 196L. La construction des nombres naturels. In Jean Piaget (ed.), Episte nologie mathématique et psychologie. Paris: Presses Universitaires de France, 276-299.

PICARD, M. 1986. On the structure of the lower numbers in Pre-PA. International Journal of American Linguistics 52,1: 72-77.

POTET, J. 1992. Nu neral expressions in Tagalog. Archipel 44: 167-82.
RONG, P. 1990. Ch nese and English numeral compact expressions: a contrastive stud γ. Waiguoyu 3: 1-7, 67.

SEILER, H. 1990. A dimensional view on numeral systems. In W. Croft et al. (eds.), Studits in Typology and Diachrony. Amsterdam: Benjamins, 187-208.

SHARMA, D. D. 1985. Numeral system of Tibeto-Himalayan. Panjab University Ri'search Bulletin (Arts) 16,2: 75-90.

SHIONOYA, T. 199J. Syntactic properties of Samoan numerals. Journal of the Linguistic Society of Japan 97: 18-43.

SIROMONEY, R. 1968 . Grammars of number names of certain Dravidian languages. In H.B. Corstius, (ed.), Grammars for Number Names. Foundations of Language Supplementary Series, Vol. 7. Dordrecht: D. Reidel, 82-90.

SOYOYE, F. \& OLAJUYIGBE, A. 1993. Numerals in Yoruba: an investigation of native speakers' knowledge of a language. Research in Yoruba Language and Literature 4: 68-77.

WINTER, WERNER. 1992a. Some thoughts about Indo-European numerals. In Jadranka Gvozdanovic (ed.), Indo-European Numerals. Berlin : Mouton de Gruyter, 11-28.
WYNN, K. 1992. Children's acquisition of the number words and the counting system.' Cognitive Psychology 24,2: 220-51.

[^0]: 1 An earlier version of this work was presented at the 1997 Mid-America Linguistic Conference at Columbus, Missouri, at which I benefited from the remarks and suggestions from the audience. I would like to thank the anonymous reviewer for helpful comments and suggestions. Any mistakes or remaining discrepancies are my sole responsibility.

[^1]: $4 \mathrm{P}=$ pivot, $\mathrm{N}=$ number, $\mathrm{A}=$ anchor, $\mathrm{M}=$ modifier, $\mathrm{R}=$ residue.

[^2]: 6 The East Asian group refers to Chinese, Japanese, and Korean ESL learners.

