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A NUMERICAL METHOD
FOR COMPUTING THE CRAFT’S POSITION 

DIRECTLY FROM OBSERVATIONS OF TWO CELESTIAL BODIES 
OR SIMULATION METHOD

by Petar CUMBELlC, B.Sc., Master Mariner**1

FOREW ORD

The modern concept of determining a craft’s position by observation of 

celestial bodies, now almost universally accepted, is the altitude method, often 

called intercept method, which was first proposed by Commander Marcq Saint- 

Hilaire, of the French Navy, who later became an admiral. The craft’s position, i.e. 

latitude and longitude, is thus computed indirectly, as the solution of the problem 

is to determine lines of position.

Several methods for computing the position directly have been proposed so 

far. All those proposals begin with simultaneous or quasi-simultaneous observa­

tions of two celestial bodies, or observations of one or two bodies within a short 

interval of time.

Spherical trigonometry formulae are used to compute different parameters 

and eventually to determine latitude and longitude.

Nowadays, with the achievements made in the field of electronics and 

computer technology, those proposals have become attractive.

Mathematical solutions which seemed inconvenient and cumbersome and 

involved work forms which were long and complicated, are now quite acceptable, 

as programmable calculators do all the work, giving us the final results after 

checking.

Today navigators can choose between different programmed and program­

mable calculators which solve navigational problems fast and with great accuracy, 

thus substituting for nautical tables and in some cases even almanacs.

(*) c/o Dabinovic S.A.M., 57, rue Grimaldi, MC 98000 Monaco.



Nautical tables and almanacs were, until recently, indispensable for solving 

navigational problems, in particular those of celestial navigation, and great circle, 

composite, plane and middle latitude sailing. These books have to be included, even 

now, in a craft’s library, but for routine work calculators can substitute for them 

successfully.

This article will try to demonstrate a new method and a new approach to the 

perennial problem of determining a craft’s position by observation of celestial 

bodies. This method has been called the “Simulation Method”, as in our calculations 

the latitude is simulated until the actual one is determined. The simulated latitude 

can differ considerably from a craft’s actual latitude without any adverse effect on 

the calculation and final result. We need not simulate longitude to determine the 

ciafl’s position ; however, by simulating it, too, we could shorten our program 

considerably. Once we have computed latitude, longitude is easily found.

The Simulation Method is based upon simultaneous or quasi-simultaneous 

observations of two celestial bodies, or observations of one or two bodies within a 

short interval of time. In the latter case, the altitude of the first body must be 

corrected for the craft’s run between the two observations, thus enabling the 

navigator to consider both observations as having been made in the same place. 

Better results will be obtained if three celestial bodies, symmetrically situated 

around the horizon, are observed. In this latter case, instead of a fix we have a 

triangle of position. The centre of the circle inscribed in the triangle is the craft’s 

position, or we can develop formulae for systematic (constant) error for observed 

altitudes.

By observing three celestial bodies with a difference in azimuth of about 120°, 

we eliminate constant errors in the observed altitudes, which are predominant in 

normal circumstances.

To compute latitude, first we enter the almanac to find the Greenwich hour 

angles, declinations and corrections for altitudes of the observed celestial bodies. (If 

we have a calculator with sufficient memory, we can program almanac data and 

corrections for observed altitudes). Then we have to compute local hour angles 

with simulated latitude, which in practice is dead reckoning or assumed latitude.

The differences between the Greenwich hour angles for two celestial bodies 

observed simultaneously and the local hour angles for the same two observed 

bodies are equal. However, when local hour angles are calculated with a simulated 

latitude, which is not actual latitude, these differences are not equal. We have to try 

another latitude, and perhaps yet another, until the differences actually become 

equal. This can be written mathematically as follows :

(GHA2 — GHA1) - (LHA2 - LHA1)= 0 (1)

In order to approach the zero in formula (1) as soon as possible we should not 

change the simulated latitude haphazardly ; instead, we should determine the rate of 

change of one variable with respect to another by means of differentiation. The 

independent variable in this case is the hour angle and the dependent variable is the 

latitude. The rate of change of the independent variable will be the difference of the 

above mentioned differences, i.e.,

dt = (GHA2 - GH A1 ) - (LHA2 - LHA1 ) (2)



As it will be demonstrated later in the calculations, the rate of change of the 

dependent variable is :

,. , cos aL , , , .
dL - + - -- ——  x dt (11)

cot Z 2 ± cot Zi

In normal navigational practice, and when observed celestial bodies are not 

close to the meridian, results will be obtained after the first trial. The first latitude 

obtained by correcting simulated latitude for dL will be named Approximate 

Latitude One (LI). By repeating the calculation with LI instead of aL the 

Approximate Latitude Two (L2) is obtained. The procedure should be repeated until 

Ln satisfies the precision criterion established earlier. However, LI will very often 

satisfy this criterion.

DEVELOPMENT OF THE FORMULAE

The rate of change of the independent variable has already been defined by 

formula (2). If we substitute local hour angles (LHA) with meridian angles (t) we get 

the following formula :

dt = (GHA2 - GHA1) ±(t2 - tl) (2a)

In computing meridian angles the law of cosine for sides for spherical triangles is 

used :

sin hi - sin aL sin di
ti = ± arc cos ------ ;---- ;----  (3)

cos aL cos di

sin ha - sin aL sin dj ,.,
t2 = ± arc cos ------ ;---- -----  (4)

cos aL cos d2

Subtracting equation (3) from equation (4), taking the absolute value and

substituting t2 — ti with At we have the following equation :

sin h2 - sin aL sin d: sin hi - sin aL sin di ,.,
4t=arccos ------- ----- ----- ± arc cos ------- ----- ----- (5)

cos aL cos d2 cos aL cos di

In equation (5) the variables are At et aL. After differentiation of equation (5) 

and transformation, we have equation :

d L = ±  ----Ï----^ ---- r - r — .---ï----: j (6)sin hi sin aL - sin d2 sin hi sin aL - sin di

cos2 aL cos d2 sin t2 — cos2 aL cos di sin ti

If it undergoes the following substitution :

sin hi/2 sin aL-sin di/2 = ai/2 

cos2 aL cos d 1/2 sin ti/2 = bi/2 

equation (6) can be written :

dL = ± --b'b2 dt (7)
a2bi ± aib2

Now approximate latitude one (Li) can be stated as :

L, = aL + dL (8)

and actual latitude :

L = aL + dL 1 + dL2 + dL 3 + ... + dLn (9)



dLi, dL2, dL3, etc., are computed by formula (6 ), so that we enter it with aL, Li, L2, 

etc., respectively.

For practical purposes in celestial navigation the first two summands on the 

right-hand side of equation (9) will suffice. In less convenient cases we should take 

three or four summands.

If formula (6 ) undergoes the following substitutions :

sin hi/2 sin aL - sin di/2 _ cosZi/2 1 _ cot Zix
cos2 aL cos di/2 sin ti/2 s inZ i/2 cos aL cos aL

we have formula :

dL = ± 7 ° l aL-77 Xdt (11)cot Z 2 ±cot Zi

Azimuth angles (Z 1/2) we compute by formula:
„ sin di/2 - sin aL sin i n /2 r ,
Zi/2 = ± arc cos -------;----r------

cos aL cos hi/2

As can be seen from the above, this method uses quite complex formulae, not 

particularly suitable for step-by-step calculation by means of logarithms and tables. 

However, now that compact, pocket-size, sophisticated and programmable calcula­

tors are at our disposal, the Simulation Method, in combination with a programm­

able calculator, I believe, has a significant advantage over other methods as will be 

seen from the examples in this article.

To compute longitude we use equation:
, sin h, - sin L sin d, ftn^
A = GHA| ±arc cos ----- ;-----j---  UO)

cos L cos di

or equation :
„  sin h2 - sin L sin d2 ,1n •>

À = GHA2±arccos --- ------ -:-- 1 (10a)
cos L cos d2

CRITERION  OF ACCURACY

Now we shall discuss the afore-mentioned Criterion of Accuracy, and also 

analyze the case when the calculator computes Li, L2, L 3, etc.

By definition we have the derivate of y with respect to x when dx becomes 

infinitesimal. In practice it means that both dt and dL must be small. This is normal 

nowadays except when one of the bodies comes close to the celestial meridian. In 

the latter case dt can be considerable though dL may be small. The consequence is 

that we must calculate L2 or L 3 to satisfy the accuracy criterion.

As far as latitude and longitude are concerned, accuracy within half a mile 

will suffice for practical purposes; however, we calculate longitude with computed 

latitude and when the celestial body is close to the meridian a small error in latitude 

can produce a considerable error in longitude.



In order to analyze the magnitude of an error in longitude caused by an error 
in latitude, we must find the derivative of t with respect to L o f  the following 
equation :

sin h -  sin L sin dc°s t = --------- ;------ ------cos L cos d
sin h sin L -  sin d JTdt = ----- 2 1 -------  . dLcos L cos d sin t

dt = dL cot Z sec L (12)

From  equation (12), we can see that the change of t (dt) due to  the change of 
L (dL) increases w hen the azimuth decreases and latitude increases. W hen the 
azimuth approaches 0° (360°) or 180° and the latitude 90°, dt approaches an infinite 
number.

In order to make our calculations precise, we shall use 0.001° (3.6”) or about
0.05 nautical mile for our accuracy criterion. The program  is w ritten so that the 
calculator calculates the latitudes (Li, L2, etc.) as long as the above mentioned 
criterion is met, and after that it starts to com pute the longitude. The calculator also 
displays “L” for latitude and “long” for longitude, as well as the minus sign for 
south latitude and west longitude.

O BSERV A TIO N S FOR A RU NNING  FIX

W hen observations are taken at tw o different times, the correction for any
run made in between m ust be applied. The first observed altitude m ust be corrected
for the course and distance covered in between the two observations. To find the
rate o f change of altitude due to the rate of change o f latitude we m ust calculate the
derivative of h (altitude) w ith respect to L (latitude) from the equation :

sin h = sin L sin d + cos L cos d cos t
., cos L sin d -  sin L cos d cos t ,.dh = ------------------------------------------ dLcos h

dhi_ = dL cos Z (13)

To find the rate of change of altitude due to the rate of change of longitude 
(meridian angle) we m ust calculate the derivative o f h with respect to t from the 
same equation :

sin h = sin L sin d + cos L cos d cos t
cos L cos d sin t .dh, = -  ------------- ----------- dtcos h

d h t = dt cos L sin Z (14)
(the minus sign has been dropped because d h t will be applied to west longitude) 

From mid-latitude sailing we have the following formulae : 
dL = 1 = D cos C ; dt = DLo = D sin C sec L 

Now  we can write formulae (13) and (14) as :
dhL = D cos Z cos C (15)
dht = D sin Z sin C (16)



If we add formulae (15) and (16) we have formulae : 
dh = D (cos Z cos C + sin Z sin C) (17/1)

(17/2)and dh = D cos (Z -  C) = D cos RZ

The azim uth angle is calculated by formula
,, sin di -  sin aL sin hi Z = ± arc cos ----------------------------± arc cos (18)

SOLUTION BY CALCULATOR

For com puting the craft’s position i.e.. latitude and longitude, by this method 
we can use any program m able calculator, or even a simple, non-program m able 
one, but in the latter case we have to work out our problem step by step. If w e use 
a sophisticated calculator w ith sufficient m em ory we can incorporate data which 
we would normally obtain from  an almanac.

For this w ork, the Japanese m ade “CASIO FX-602P” program m able calcula­
to r has been used. It is an inexpensive , com pact, liqu id-crystal, pocket-size 
ca lcu la to r (see Fig. 1) w h ich , ap a rt from  four basic m athem atica l operations, 
incorporates logarithm ic, trigonom etric, hyperbolic and other functions. It has also 
a fixed program  for calculation o f standard deviation, alphabetic mode, as well as 
ten program m es. As its brochure notes “This unit has a variable range o f the input 
capacity from 32 program  steps with 88 independent memories to 512 steps with 22 
memories. These com binations can be selected optionally to execute an effective 
program m ing. The FA-1 adaptor, an optional accessory, allows the connection of a 
cassette tape recorder to the calculator for the storage o f program m es and m em ory 
content on cassette tapes for later re-loading”. The Casio Calculator, as we can see, 
has limited capacity, therefore the data from an almanac cannot be stored in the 
m em ory. The first step w ould be to extract from an almanac GHAi, GHA2, di, dî 
and corrections for the observed altitudes. These data should be put into the 
calculator m em ory and after that the calculator will do the rest, and after an 
interval o f time it will display “L” and “long” on the screen.

The interval o f time taken for Approximate Latitude One (L|) is about 9.5 
seconds, for L2 about 19 seconds, and for every next Approxim ate Latitude about 
9.5 seconds.

The question : “W here are we ?” no longer arises nowadays. Instead we ask 
ourselves : “Is our position there w here other navigational systems indicate ?” Dead 
reckoning or assum ed position is not far away from the real one. That means the 
result will appear on the screen after about 19 seconds for m ost problems.

To bring this analysis to a conclusion we may state : The navigator who uses 
this method, this calculator and this program  will have the craft’s position after 
about 19 seconds in most cases. The result is always accurate.

If by any chance we select a celestial body very close to the celestial meridian 
the result is not obtainable, as the cotangent of zero is infinite. In the latter case we 
may disregard that body or calculate latitude by meridian transit instead.
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Fig. 1. -  The calculator CASIO FX-602 P.

The same program is used for simultaneous observations as well as for 
observations in an interval o f time. A subordinate program corrects the first altitude 
for the run made in betw een , thus enabling the navigator to consider bo th  
observations as having been made in the same place.

Step-by-Step Instructions for the Use of the Calculator “ CASIO FX-602P”

1. Switch on the pow er and select program  PO. “h i?"  displays on the screen.
2. Write in the first observed and corrected altitude

Minutes and parts o f a minute write in the calculator as if they were parts 
of a degree, for example 25°56' write in as 25.56. A subordinate program 
converts it to 25.9333.

Press the execute key. “h2?” displays on the screen.



PROGRAMMES FOR CALCULATOR ''CASIO FX-602P" FOR COMPUTING LATITUDE AND LONGITUDE

Program PO DEG "hi?" HLT GSBP7 MinOl "h2?" HLT GSBP7 Min02 (GSBP9)

"dl?" HLT GSBP7 Min03 "d2?" HLT GSBP7 Min04 

"GI?" HLT GSBP7 + /- GSBPfi Min05 "G2?" HLT GSBP7 + /- GSBP8 

Min06 "aL?" HLT GSBP7 MinOO "aX?" HLT GSBP7 Min 10 

MR05 - MR10 = GSBP8 Min07 MR06 - MR10 = GSBP8 Min08 (GSBP4) 

(GSBP3) LBL3 90 - MR01 = Min09 90 - MR02 - Mini 1 MR03 + MR09 

= Mini 2 MR03 - MR09 = Mini 3 MR04 + MR1 1 = Min14 MR04 - MR11 

= Mini 5 MR12 MinF MROO XiF GOTO0 MR14 MinF MROO XiF GOTO0 

MROO MinF MR13 X&F G0T01 MR15 X>F G0T01 G0T02 

LB L 0 MR00 - .05 = MinOO G0T03 LBL1 MROO + . 05 = MinOO G0T03 

LBL2 MR03 Min 19 MR01 GSBP5 MR07 GSBP6 Min07 

MR04 Min 19 MR02 GSBP5 MR08 GSBP6 Min08 

MR01 Mini9 MR03 GSBP5 MR07 GSBP6 Min09 

MR02 Min 19 MR04 GSBP5 MR08 GSBP6 Mini 1 

MR06 - MR05 = - C MR08 - MR07 ) = Mini2 MR11 TAN 1/X - MR09 

TAN 1/X = : MROO COS X«Y = x MR12 = Mini 3 + MROO = MinOO 

.001 MinF MR13 ABS XïF G0T03 MR05 - MR07 = GSBP8 Min10 

MROO GSBP1 "L = # " HLT MR10 GSBPt "A=# "

Program PI Min19 INT + ( MR19 FRAC x .6 ) = FIX3

Program P2 + .7 = TAN 1/X+MR19 = : 60= + /- +

Program P3 MR07 COS x MR03 COS x MROO COS + MR03 SIN x MROO SIN = SIN 

Min 19 - MR01 = x 60 = FIX1 "a =#  " HLT MR03 GSBP5 MR07 

GSBP6 X*0 GOTO0 + 360 = LBL0 FIX1 "Zn " HLT MR02 MinOt 

MR04 Min03 MR08 Min07 GSBP3

Program P4 I MinF MR03 SIN - MROO SIN x MR01 SIN = : MROO COS : MROI 

COS = Mini 9 ABS X«F GOTO0 MR19 GOTOI LBL0 MR19 1/X LBL1 

COS-1 Min 19 MR07 GSBP6 Min09 0 "C?" HLT Min 12 "v?" HLT :

60 = Min 13 "T1?" HLT GSBP7 Min14 "T2?" HLT GSBP7 - MR14 = 

Mini4 x MR13 x ( MR12 - MR09 ) COS = MR01 = MinOl

Program P5 

Program P6 

Program P7 

Program P8

Program P9

-1

SIN - MROO SIN - MR19 SIN = : MROO COS : MR19 COS = COS_1 Mini 9 

X^O GOTO0 MR19 +/- GOT01 LBL0 M R 19 LBL1

Mini 9 INT + ( MR19 FRAC x 2 10 ) 60

Min 19 180 MinF MR19 ABS XïF GOTO0 MS19 G0T01 LBL0 360 

+ MR19 = Mini 9 ABS XïF GOTO0 MR19 LBL1

"he?" H L T V  x 1.77 = Min19

MR01 GSBP2 MR01 = MinOl MR02 GSBP2 MR02 = Min02

F ig . 2

3. W rite in the second observed and corrected a ltitude1*1. Press the execute key. 
“he?” (height of eye) displays on the screen.

4. W rite in the height o f eye. Press the execute key. “d l? ” displays on the screen.
5. W rite in the declination o f the first body (South declination is written with the 

minus sign). Press the execute key. “d2?” displays on the screen.



6. Write in the declination o f the second body. Press the execute key. “G l? ” 
displays on the screen.

7. W rite in the Greenwich hour angle o f the first body. Press the execute key. 
“G2?” displays on the screen.

8. W rite in the Greenwich hour angle of the second body. Press the execute key. 
“aL?” displays on the screen.

9. W rite in the simulated (DR or assumed) latitude (South latitude is written with 
the minus sign.) Press the execute key. “al?” displays on the screen.

W hen a celestial body is close to the meridian, the simulated latitude may 
not fall within the required limits i.e., declination plus/m inus zenith distance. In 
the latter case the program  is compiled so that the latitude will be changed until 
it is brought within its limits.

10. Write in the simulated longitude (an integral degree). Press the execute key. For 
sim ultaneous or quasi-sim ultaneous observations after pressing  the execute 
key, the calculator starts computing and after about 19 seconds actual latitude 
will be displayed on the screen.

11. Press the execute key. Longitude displays on the screen.
W hen observations are made in an interval of time step 10 is as follows :

10. After pressing the execute key, “C?" displays on the screen.
11. W rite in the true course. Press the execute key. “v?” displays on the screen.
12. W rite in the craft’s speed in knots. Press the execute key. “T l? ” displays on the 

screen.
13. W rite in the time o f first observation. It is written in a similar way as other 

data i.e., minutes and parts of a minute are entered as if they were parts of 
an hour, for example l h30m is written 1.3. The same subordinate program  
converts it to 1.5.

After about 19 seconds latitude displays on the screen, for example 
L =  32.076 (that is lat. = 32°07.6'N).

14. Press the execute key. Longitude displays on the screen, for example 1 = 30.241 
(that is long. = 30°24.1'E).

This is the end o f the program.

E x a m p le  1. -  Two s t a r s  observed quasi-simultaneously

During the evening twilight on May 15th, 1979, the 19.12 DR position of the 
craft is lat. 30°06.5’N ; long. 44°45’W. At C =  22h10m37s the navigator observes 
Capella with a marine sextant having no IC, from the height of eye o f 10 metres, 
hs = 25°56'. At C = 22h12m05s the navigator observes Sirius, hs = 15° 16.5'.

Required. -  The observed position at 19.12 hours.

Solution. -  In table 1.
This is a typical problem  from actual navigating practice which the author of 

this article worked out on a ship o f which he was the Master.

If we wish to check this calculation by the intercept m ethod, we can do it with 
this same calculator with a program  stored in it, and if we use the latitude and 
longitude we calculated above, it will be found that ai = 0,Zni = 310°, a 2 = 0 and 
Z n2 = 240°. For this we do not need to feed any additional entries into the calculator 
as it already has all the data required and so all we need to do is to  press a program 
key.



TABLE I

STEP DATA IN PU T O PERATION READ-OUT REMARKS

1 PO hsl Sextant altitude
2 (hsl) 25.56 EXE hs2
3 (hs2) 15.165 EXE he ? Height of eye
4 (he) 10 EXE dl ?
5 (dl) 45.586 EXE d2 ?
6 (d2) -  16.415 EXE Gl ?
7 (Gl) 126.547 EXE G2 ?
8 (G2) 105.004 EXE aL ? Simulated latitude
9 (aL) 30 EXE al ? Simulated longitude

10 (a) -  45 EXE L = 29.584 lat. = 29°58.4'N
11 EXE ] = -44.104 long. =44°10.4W

Example 2. -  Two stars in an interval o f time of 7“30!
(Data are given in table 2)

Required. -  The observed position.

Solution. -  In table 2.

TABLE 2

STEP DATA IN PU T O PERATION READ-OUT REM ARKS

1 PO hsl Sextant altitude
2 (hsl) 75.48 EXE hs2
3 (hs2) 37.225 EXE he ? Height of eye
4 (he) 10 EXE dl ?
5 (dl) 8.491 EXE d2 ?
6 (d2) -  26.231 EXE G l ?
7 (Gl) 291.526 EXE G2 ?
8 (G2) 344.097 EXE aL ? Simulated latitude
9 (aL) 11.20 EXE al ? Simulated longitude

10 (al) 54 EXE C ? Course
11 (C) 288 EXE v ? Speed
12 (v) 10 EXE Tl ? Time, first observation
13 (Tl) 18.15 EXE T2 ? Time, second observation
14 (T2) 18.225 EXE L = 11.184 lat. = 11°18.4 TS
15 EXE 1= 53.48 long. =53°48'E

If we wish to check this calculation by the intercept method we continue :

6 P3 a = 0.0 a i = 0.0
7 EXE Zn = 98.7 Zn, = 98.7°
8 EXE a = 0.0 a2 = 0.0
9 EXE Zn =223.8 Zn2 = 223.8°

Example 3. -  The Sun in an interval o f time of lb30"
(Data are given in table 1)

Required. -  The observed position. 

Solution. -  In table 3.



TABLE 3

STEP DATA INPUT OPERATION r e a d -o u t REMARKS

1 PO hi ?
2 (hi) 57.102 EXE h2 ?
3 (h2) 72.416 EXE dl ?
4 (dl) 17.052 EXE d2 ?
5 (d2) 17.042 EXE G l ?
6 (Gl) 297.328 EXE G2 ?
7 (G2) 320.101 EXE aL ? Simulated latitude
8 (aL) 32.1 EXE al ? Simulated longitude
9 (al) 30 EXE C ? Course

10 (C) 81 EXE v ? Speed
11 (v) 10 EXE Tl ? Time, first observation
12 (Ti) 10 EXE T2 ? Time, second observation
13 (T2) 11.3 EXE L = 32.077 lat. = 32o07.7 7M
14 EXE 1= 30.241 long. =30°24.1'E

If we wish to check this calculation by the intercept method we continue :
15 P3 a = 0.0 ai = 0.0
16 EXE Zn = 109.7 Zm = 109.7'
17 EXE a = 0.0 32 = 0.0
18 EXE Zn = 148.2 Zn2 = 148.2*

Position by three stars symmetrically situated around the horizon

As mentioned before, when three stars symmetrically situated around the 
horizon are observed, a triangle o f position is obtained, as each pair o f stars gives 
a position (a vertex of a triangle).

In the centre of the circle inscribed in the triangle is the craft's position, free 
of constant error, or, in other words, the best position one can obtain from celestial 
observations.

I have been determining my ship’s position, for more than twenty years spent 
at sea, by observing three stars symmetrically situated around the horizon and on 
most occasions the position was accurate within one mile.

Now, using the Simulation Method and a Casio FX-602P calculator, I can 
have the three stars’ position about 58 seconds after all the data have been fed into 
the calculator. It computes three positions (vertices of triangle of position) and, 
eventually, the best position free o f constant error. It displays only the best position, 
but, if we wished, we could take out from the memory the first three positions. 
Also, we can check the solution by the Intercept Method, merely by pressing a 
program key and without feeding the calculator additional data.

The additional feature here is a subordinate program which corrects the 
sextant altitudes we feed into the calculator.



Example 4. -  Three stars observed in an interval o f 7m

During the evening twilight on December 23rd, 1982, the 18.41 satellite 
position of the vessel is lat. 36°N, long. 6°33.5'W . At C = 17h34m23s the navigator 
observes Fom alhaut w ith a marine sextant having no IC, from  the height of eye o f 
16 metres, hs = 24°16'. At C = 17h36ml l s the navigator observes Capella, hs = 25°29', 
and at C = 17h41m26s, Vega hs = 34°39.2'. Course is : C = 112°, speed is: v = 1 0 .5  
knots.

Required. -  The observed position at 18.41 hours.

Solution. -  In table 4.

TABLE 4

STEP DATA IN PU T O PERATION READ-OUT REM ARKS

1 PO hsl ? Sextant altitude
2 (hs 1 ) 24.16 EXE hs2 ?
3 (hs2) 25.29 EXE hs3 ?
4 (hs3) 34.392 EXE he ? Height of eye
5 (he) 16 EXE dl ?
6 (dl) -  29.43 EXE d2 ?
7 (d2) 45.589 EXE d3 ?
8 (d3) 38.461 EXE Gl? GHA
9 (Gl) 371.213 EXE G2 ?

10 (G2) 637.071 EXE G3 ?
11 (G3) 438.128 EXE aL ? Simulated latitude
12 (aL) 36 EXE al ? Simulated longitude
13 (al) -  6 EXE C ? Course
14 (C) 112 EXE v ? Speed
15 (v) 10.5 EXE TI ? Time, first observation
16 (TI) 17.344 EXE T2 ? Time, 2nd observation
17 (T2) 17.362 EXE T3 ? Time, 3rd observation
18 (T3) 17.414 EXE L = 36.002 lat. = 36°00.2'N
19 EXE 1= -6 .343 long. = 6°34.3'W

The above position is free from constant error and if we wish the other three positions 
(vertices of triangle) we continue :

EXE L = 36.007
EXE 1= -6 .358
EXE L = 36.006
EXE 1= -6.331
EXE L = 35.592
EXE 1= -6 .3 4 0

Fomalhaut-Capella 

Fom alhaut - Vega 

Capella - Vega

If we wish to solve the problem by the intercept method, where aL = 35°59.2'N and 
al = 6°34'W, that is the position from Capella - Vega, we continue :

P3 a = - 1 .4 ai
EXE Zn = 184.6 Zni
EXE a = 0.0 a2
EXE Zn = 50.2 Zn2
EXE a = 0.0 &}
EXE Zn = 296.1 Zn3



If we w ork out positions with the above param eters (a and Zn) we shall 
obtain about the same results as those above worked out directly by the Simulation 
Method.

Theoretically speaking, the results obtained by the Simulation M ethod are 
m ore accurate than those obtained by the Intercept M ethod especially for high 
altitudes.

C O N C LU SIO N

Calculators can be used by applying this method o f program m ing for solving 
m ost navigational problems, such as position by intercept m ethod, identification of 
stars, great circle, composite, plane and mid-latitude sailing. If we have a “Casio 
FX-602 P ” calculator, once all the m em ory has been used up and the steps have 
been completed, we can feed our program m es into a cassette and reload them  when 
needed.

A NNEXE

ABBREVIATIONS

a, difference o f altitudes
aL, assumed latitude
c, chronom eter time, course
d, declination
D, distance
DLo, difference o f longitude
DR, dead reckoning
dh, differential o f h (altitude)
dhL, differential o f  h with respect to L
dh,, differential o f h with respect to t
dt, differential o f t (meridian angle)
4 t, difference o f t
G, Greenwich hour angle
GHA, Greenwich hour angle
h, altitude
hs, sextant altitude
L, latitude
1, difference of latitude, longitude
LHA, local hour angle
RZ, relative azim uth angle
T, time, interval o f time
t, meridian angle
z, azimuth angle
Zn, azimuth
A, longitude
v, speed
he, height o f  eye


