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Investigation of tempo-spatial variability 
of the Black Sea hydrodynamics by 
means of neural networks

Abstract
The tempo-spatial variability of the Black Sea surface circulation was investigated using sat-
ellite data from the Archiving, Validation, and Interpretation of Satellite Oceanographic data 
(AVISO) project. Self-Organizing Maps (SOMs) were utilized, a neural network-based method 
known for its unsupervised learning capabilities, to analyze and categorize the circulation 
patterns, for the very first time. To assess the clustering precision achieved by the SOM 
algorithms the Davies-Bouldin Index (DBI) was employed as an internal validation metric. 
Through this comprehensive analysis, six distinct spatial patterns were identified, each ex-
hibiting unique temporal variabilities and occurrence rates. Pattern 1: Characterized by the 
Sevastopol Cyclonic and Batumi Dipole Eddies, occurring 21 % of the time; Pattern 2: De-
fined by the Cyclonic RIM Current and Anticyclonic Batumi Eddy, with a 16 % occurrence 
rate; Pattern 3: Consisting of Anticyclonic Sevastopol and Batumi Eddies, occurring 17 % 
of the time; Pattern 4: Featuring the Cyclonic RIM Current and Cyclonic Batumi Eddy, also 
with a 21 % occurrence rate; Pattern 5: Marked by the Anticyclonic RIM Current and Batumi 
Dipole Eddies, with a 15 % occurrence rate; Pattern 6: Characterized by the Anticyclonic RIM 
Current and Multi Eddies, occurring 10 % of the time. To further validate the identified pat-
terns, their relevance for predicting the hydrodynamics of the Black Sea was examined. This 
was achieved by exploring potential correlations between these patterns and major climato-
logical indices, such as the North Atlantic Oscillation (NAO), the East Atlantic/West Russian 
(EAWR) oscillation, and the El Niño-Southern Oscillation (ENSO). These indices are known to 
influence large-scale atmospheric and oceanographic conditions, and understanding their re-
lationship with the identified patterns can enhance predictive models of Black Sea dynamics. 
The findings from this study provide valuable insights into the complex circulation patterns of 
the Black Sea and their temporal behaviors. The use of advanced neural network techniques 
such as SOMs, combined with rigorous validation methods like the DBI, underscores the 
robustness of the analysis. Moreover, the established connections with climatological indices 
offer a promising avenue for improving long-term forecasts and understanding the broader 
climatic impacts on the Black Sea's surface circulation.
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1 Introduction
Recent military, political, and economic developments 
in the Black Sea region (Fig. 1) underscore the urgent 
need for a deeper understanding of the basin's nature 
and mechanisms. The tempo-spatial variation of the 
Black Sea is of critical importance, particularly for oper-
ational purposes in navigation, security, and resource 
management (MacFarlane, 2024; Kılıçer & Kök, 2024).

This research primarily focuses on obtaining a 
comprehensive dataset concerning the geostrophic 
velocity anomalies of the Black Sea. The objective is 
to analyze the tempo-spatial variations and identify 
recurrent patterns in the surface currents by applying 
sophisticated clustering algorithms. 

Self-Organizing Maps (SOMs) were specifically 
chosen for this study due to their high accuracy 
and effective performance in pattern recognition. 
Despite their proven efficacy, SOMs are not used in 
the Black Sea region, presenting a novel application 
in this context.

The integration of advanced clustering algorithms 
with satellite data provides a robust framework for 
understanding the complex circulation patterns of the 
Black Sea. This approach not only contributes to the 
scientific knowledge of the region but also has prac-
tical implications for addressing the emerging chal-
lenges posed by recent geopolitical and economic 
developments (Amarouche & Akpinar, 2023). 

Despite the steady advancement in data availability 
through both in-situ observations and remote-sensing 
techniques, there remains a significant gap in the ef-
ficient and consistent processing and usage of this 
data. It’s estimated that only around 1% of the im-
mense amount of satellite imagery collected is ever 
seen or analyzed by humans. This is largely due to 
the sheer volume of data produced by thousands of 
satellites constantly capturing images of Earth. As 
a result, artificial intelligence and machine learning 
technologies are increasingly relied upon to process 
and analyze this data, allowing for the identification of 
key patterns without requiring human review for every 
image (Frazier & Hemingway, 2021; Petrou, 2024).

The potential wealth of information contained within 
these unprocessed images is immense. Remote-
sensing data can offer unparalleled insights into 
various oceanographic, atmospheric, and terrestrial 
processes. However, the current bottleneck in data 
processing limits the ability to fully harness these 
insights for scientific and operational purposes. 
Advanced processing tools and algorithms, such as 
SOMs and other machine learning techniques, are 
increasingly essential to bridge this gap. These tools 
can automate the analysis of large datasets, identify 
significant patterns, and extract relevant features with 
high precision and efficiency.

In the context of the Black Sea study, the use of 
SOMs exemplifies the application of advanced neural 
network methods to overcome the challenges of 
data processing. By leveraging such techniques, re-
searchers can maximize the utility of remote-sensing 

data, ensuring that a higher percentage of collected 
images are analyzed and utilized effectively. This ap-
proach not only enhances the understanding of the 
Black Sea's tempo-spatial variability but also sets a 
precedent for similar studies in other regions.

Ultimately, addressing the inefficiencies in data 
processing will enable more comprehensive and ac-
curate environmental monitoring and forecasting. By 
improving the tools and methods available for data 
analysis, we can better manage and interpret the vast 
amounts of information collected, leading to more in-
formed decision-making and a deeper understanding 
of the natural world.

The SOM is introduced as a viable solution to 
bridge the ever-widening gap between available 
data and processed data. SOM, also known as the 
Kohonen map, is an unsupervised neural network 
method grounded in competitive learning principles 
(Kohonen, 1988). One of the most significant fea-
tures of SOM is its ability to preserve the neighbor-
hood relationships of high-dimensional input data 
while projecting it onto a lower-dimensional, prefer-
ably two-dimensional, space. This capability makes 
SOM a topology-preserving technique.

2 Study area
The Black Sea's circulation is characterized by its 
dominant feature, the basin-wide cyclonic circulation 
known as the Rim Current, spanning 40–80 km in 
width. This distinctive circulation pattern is primarily 
driven by the mean cyclonic wind pattern prevailing in 
the region, coupled with the substantial input of buoy-
ancy (Oguz et al., 1995). Notably, model simulations 
have underscored the crucial role of bathymetric data 
in sustaining the Rim Current; without incorporating 
bathymetry, the Rim Current diminishes significantly 
(Oguz et al., 1995).

Furthermore, model simulations have revealed 
that variations in wind stress, particularly weakening 
during spring and summer, lead to a reduction in the 
intensity of the mean current (Stanev, 1990; Grégoire 
et al., 2008). This decrease in intensity triggers in-
tensified meandering of the Rim Current, particularly 
along the Turkish and Caucasian coastlines, giving 
rise to the formation of large meanders spanning 
100–200 km. These meanders not only alter the flow 
patterns but also play a significant role in the redistri-
bution of water masses and associated properties.

Satellite data analysis and hydrographic observa-
tions have provided further insights into the Black 
Sea's circulation dynamics. Both data sources have 
confirmed the existence of recurrent, near-shore, an-
ti-cyclonic eddies situated between the Rim Current 
and the coastline, alongside several cyclonic gyres 
within the central basin area (Oguz et al., 1992; Oguz 
et al., 1993; Oguz et al., 1994). These eddies and 
gyres contribute significantly to the local mixing and 
transport processes, influencing the distribution of 
heat, salt, and nutrients within the Black Sea.

The Black Sea's circulation exhibits a rich tapestry 
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of dynamical features, from the basin-wide Rim 
Current to the formation of meanders, eddies, and 
gyres along its coastline and central regions. These 
circulation patterns not only shape the physical en-
vironment of the Black Sea but also influence its 
biological productivity, ecosystem dynamics, and 
connectivity with adjacent water bodies (Fig. 2).

Understanding the complex interplay between 
these circulation features is essential for deciphering 
the Black Sea's dynamics and its broader implications 
for regional and global oceanographic processes. By 
integrating observational data, model simulations, 
and remote-sensing techniques, researchers can 
gain a comprehensive understanding of the under-
lying mechanisms driving the Black Sea's circulation 
and its response to external forcing factors.

Among these near-shore and anti-cyclonic eddies, 
two persistent eddies are noticeable: the Batumi 
Eddy and the Sevastopol Eddy. The interior part of 

the Rim Current, on the other hand, is composed of 
detached cyclonic gyres. These detached cyclonic 
gyres consist of either one gyre located in the eastern 
part of the sea and the other located in the western 
part of the sea, or a single extended cell dominates 
the basin. The scales of the central gyres and eddies 
vary from tens to hundreds of kilometers. Inter-annual 
variability of the Black Sea circulation is significantly 
affected by river discharges, local dynamics, and 
wind forcing’s seasonal variability (Stanev et al., 
1995). Mesoscale, seasonal, and inter-annual varia-
bility was best described by the observations made 
by satellite altimeters (Stanev et al., 2000).

3 Data
The AVISO project plays a pivotal role in advancing 
our understanding of ocean dynamics through the 
systematic collection, validation, and interpretation of 
satellite-derived oceanographic data1 (Ducet et al., 
2000). Initiated with the aim of harnessing the wealth 
of information provided by satellite observations, AVISO 
serves as a comprehensive repository for oceano-
graphic data, facilitating global-scale studies on ocean 
circulation, sea level variations, and related phenomena.

By collating data from a network of satellite missions 
equipped with altimeters and other remote-sensing 
instruments, AVISO provides researchers with a rich 
source of high-quality data spanning diverse spa-
tio-temporal scales. The project employs rigorous vali-
dation procedures to ensure the accuracy and reliability 
of the collected data, enabling scientists to analyze and 
interpret oceanographic processes with confidence.

Moreover, AVISO offers valuable tools and resources 
for data visualization, analysis, and model validation, fos-
tering collaboration and knowledge exchange among 
the global oceanographic community. Through its us-
er-friendly interface and comprehensive data archives, 
AVISO facilitates interdisciplinary research efforts aimed 
at addressing key scientific questions related to climate 
variability, ocean circulation, and marine ecosystems.

The geostrophic velocity data from 1992 to 2012 
were obtained from AVISO to provide data on the 
surface currents. Different time frames were selected 
and examined throughout the initial analyses. A ten-
year-long data set was found to be sufficient when 
extracting the patterns of the long-term temporal and 
spatial variation due to the fact that any data sets 
covering a period longer than 10 years do not affect 
the results. Therefore, this research focuses on data 
sets from 1999 to 2009.

4 Methodology
In this study, the extensive dataset provided by 
the AVISO project is leveraged to investigate the 
tempo-spatial variability of the Black Sea surface 
circulation. By combining satellite-derived data with 
advanced analytical techniques, such as SOMs, it’s 
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Fig. 1 Geographical location of the Black Sea.

Fig. 2 The schematic pattern of the Black Sea (Korotaev et al., 2003).
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aimed to uncover recurrent patterns and dynamics 
within the Black Sea, shedding light on its complex 
oceanographic processes and their interactions with 
larger-scale climatic phenomena.

The methodology involves the detailed examination of 
satellite-derived data from the Archiving, Validation, and 
Interpretation of Satellite Oceanographic data (AVISO) 
project. By applying SOMs, classification, and inter-
pretation of the variability in surface circulation is aimed 
to help providing valuable insights into the dynamical 
processes governing the region. The study then seeks 
to correlate these identified patterns with large-scale 
teleconnection indices, such as the North Atlantic 
Oscillation (NAO), the East Atlantic/West Russian 
(EAWR) oscillation, and the El Niño-Southern Oscillation 
(ENSO). Understanding these correlations is vital, as 
these indices significantly influence atmospheric and 
oceanographic conditions on a global scale.

4.1 ‘Learning’ in neural networks
Before we explore the learning capability of SOM, 
it's crucial to establish a clear understanding of the 
concept of learning in neural networks. Learning can 
be conceptualized in two distinct ways: biologically 
and mechanically. Biologically, learning refers to the 
process through which an organism undergoes ex-
periences that result in alterations to its state and 
enhance its performance in similar situations there-
after. In contrast, mechanical learning involves a 
computational approach aimed at achieving new in-
telligence and organizing this intelligence to acquire 
new abilities (Noyes, 1992). Considering these defi-
nitions, it becomes evident that for a neural network 
to be deemed useful, it must possess the ability to 
learn. The training process of neural networks fa-
cilitates learning, enabling the network to acquire 
knowledge and adapt its behavior for practical appli-
cations (Mishra, 2024).

Another approach to categorizing the learning pro-
cess involves considering the level of control over the 
data. In this context, two primary forms of learning 
emerge: supervised learning and unsupervised learning.

In supervised learning, the network is provided with 
accurately labeled data, and the objective is to train 
the network to produce corresponding outputs for 
given inputs. Both input and output vectors benefit 
from supervised learning. Once the output vectors 
are generated, they are compared with the expected 
outputs to assess the network's performance and 
identify any discrepancies.

Reinforcement learning represents a specialized 
form of supervised learning wherein the network re-
ceives feedback solely on the accuracy of its out-
puts. This feedback mechanism is often implemented 
through back-propagation algorithms (Mishra, 2024).

In unsupervised learning, the availability of accurate 
answers beforehand is either limited or absent alto-
gether. Unlike supervised learning, where accurate 
answers guide the training process, input vectors are 
handled independently in unsupervised learning. Output 

vectors play no role in the learning process. Instead, the 
network operates as a self-governing entity, tasked with 
autonomously extracting patterns from the input data 
without any external interaction, particularly human inter-
vention. This autonomous feature is particularly valuable 
when dealing with large and complex datasets, where 
manual computation is impractical or infeasible due to 
time constraints or computational complexity.

Unsupervised learning serves as the foundation 
for methodologies such as self-organizing maps 
(Guthikonda, 2005), wherein the network autono-
mously organizes and represents the input data in a 
structured manner, revealing inherent patterns and 
relationships without the need for explicit supervision.

4.2 SOM
SOMs are first introduced by Tuevo Kohonen 
(Kohonen, 1988) and derive their name from their in-
herent ability to organize themselves autonomously, 
without the need for external supervision. SOMs 
employ competitive learning, enabling them to learn 
independently.

The term "maps" in SOMs refers to their method 
of handling input datasets, wherein they endeavor to 
map the weights of the data. Nodes within the SOM 
network strive to mimic the characteristics of the 
input datasets they receive initially. This responsive 
behavior of the nodes forms the cornerstone of the 
entire learning process.

Central to the functioning of SOMs is the principle 
of preserving the essential characteristics of the input 
datasets. This principle distinguishes SOMs from 
other methods and underscores their significance. 
By retaining the topological relationships among the 
input data and mapping these relationships onto an 

Fig. 3 Illustration of the structure of a SOM (Maung, 2012).
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SOM network, SOMs offer a valuable means of rep-
resenting complex datasets (Guthikonda, 2005)

SOMs exhibit a relatively simple structure, with 
several noteworthy aspects. Fig. 3 illustrates a 4 × 
4 SOM network, serving as the competition layer. 
Each input node establishes connections with every 
map node, resulting in a considerable number of 
connections even in small networks, such as the 
one depicted in Fig. 3 (e.g., 4 × 4 × 4 equals 64 
connections). In contrast, there are no direct con-
nections between map nodes within the network. 
The organization of nodes forms a two-dimensional 
grid, facilitating visualization of outputs and aiding in 
the implementation of the SOM algorithm. Each node 
in the network is assigned a unique coordinate (i,j), 
simplifying node referencing and range determina-
tion. However, it's important to note that map nodes 
are unaware of the values held by their neighbors, as 
they solely interact with input nodes. Consequently, 
each node must rely on information from input vec-
tors to update its weights.

The weight vectors of both the map nodes and the 
input vectors should match to enable the algorithm to 
perform properly (Mishra, 2004).

As an unsupervised learning algorithm, SOM has 

learning and prediction phases. During the learning 
phase, map is built; network organizes using a com-
petitive process with a training set. During the predic-
tion phase, new vectors are quickly given a location 
on the converged map, easily classifying, or catego-
rizing the new data. The algorithm of the self-organ-
izing map can be described as six main steps, which 
are presented in Table 1 in detail (Kohonen, 2013).

The degree of influence that the node’s distance 
from the Best Matching Unit (BMU) has on the node’s 
learning is shown by the influence rate. Initially, influ-
ence rate is set to 1 for all the neighboring nodes of 
the BMU and zero for the ones that are away from the 
BMU. At the end, due to weights’ random distribution 
and numerous iterations, SOM is able to settle down 
to a map of stable zones (Fig. 4), where nodes that 
do not fall into the neighborhood radius are entirely 
ignored (Kohonen, 2013).

The fact that the network is composed of nodes 
that are on a two-dimensional grid makes the calcu-
lation possible. The amount learned by the nodes on 
the edge of the neighborhood radius is a fractional 
value that is smaller than 1.0.

4.3 Davies-Bouldin index
Davies-Bouldin index (DBI) is exerted to the data 
sets along with the SOM, to determine the number 
of patterns that best represents a data set. DBI was 
introduced by Davies et al. (1979) and is a measure 
that is used for assessing clustering algorithms.

DBI operates as an internal scheme, and the au-
thentication of how precise the clustering has been 
accomplished is made using characteristics of the 
data set (Davies et al., 1979). In Eq. 1, N is the 
number of clusters, σ

i
 is the average distance of all 

patterns in cluster i to their cluster centers (c
i
, σ

j
) is 

the average distance of all patterns in cluster j to 
their cluster centers c

j
, and d(c

i
,c

j
) is the distance be-

tween cluster centers c
i
 and c

j
. Small values of DBI 

correspond to clusters that are compact, and whose 
centers are far away from each other. Consequently, 
the number of clusters that minimizes DBI is taken as 
the optimal number of clusters.

1st step Each node’s weight is initialized with a random number between 0 and 1.

2nd step A random vector is selected from the training data set and introduced to the network.

3rd step
Each node in the network is inspected in order to find out which one resembles the input vector more accurately in terms of weights. BMU 
is the name given to the winning node. The Euclidean distance formula, which measures the similarity between two data sets, is used to 
do this selection. The BMU is found by the calculation of the distance between the weights of node and the input vector.

4th step The radius of the neighborhood of the BMU is calculated. This radius is initialized as the network’s radius and decays with each time-step 
until reaching the BMU itself.

5th step
All the nodes that fall in the radius of the BMU are adjusted to make them as similar as possible to the input vector. The weight of the 
closest node to the BMU is changed the most, and the degree of this change diminishes as the range between the BMU, and the nodes 
increases.

6th step The second step is repeated for N iterations.

Table 1 Main six steps of the algorithm of the SOM.

Fig. 4 An illustration of the process of updating BMU along with its 

neighbors towards the “x”, which in this case is the input sample 

(Vesanto et al., 2000).

(1)
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5 Results and discussion
To study the temporal and spatial variation of the sur-
face geostrophic velocities, the Black Sea basin is 
subject to iterative SOM analysis. The DBI demon-
strates the best option with regards to the selection 
of total number of clusters to represent the whole 
data set. The smaller the DBI, the better and more 
practical the data representation is. Therefore, con-
sidering the DBI, the SOM analysis for the surface 
currents is based on six clusters (Fig. 5).

5.1 Six (spatial) patterns
Pattern 1 (Sevastopol Cyclonic and Batumi Dipole 
Eddies):  The first pattern represents more than 20 % 
of the whole data set. In this pattern, the Batumi dipole 
eddies are detected at the southeastern corner of the 
basin. The eddy on the right is strong, cyclonic, and it 
spins at ~8 cm/s, whereas the other eddy is weak and 
anti-cyclonic. At the northwestern corner of the basin, 
the cyclonic Sevastopol eddy which spins at ~5 cm/s 
is evident. The general circulation is comprised of two 
main gyres. The western main gyre is anti-cyclonic and 
weak. The eastern main gyre, on the other hand, is 
cyclonic and strong. The northerly boundary current 
forms in the west. No eddy formation is observed in 
the open parts of the basin (Fig. 6).

Pattern 2 (Cyclonic RIM Current and Anti-cyclonic 
Batumi Eddy):  More than 16 % of the data set is rep-
resented by the second pattern. The main feature of 
this pattern is the strong, anti-cyclonic Batumi eddy 
spinning at ~8 cm/s. Apart from the Batumi eddy, no 
other eddy structure, including the major Sevastopol 
eddy, is observed. The general circulation is formed 
by the strong and cyclonic RIM current flowing at ~5 
cm/s. The basin's open parts are relatively calm com-
pared to the coastal regions. Therefore, this particular 
pattern is mostly dominated by the RIM current (Fig. 7).

Pattern 3 (Anti-cyclonic Sevastopol and Batumi 
Eddies):  The third pattern represents almost 16 % 
of the whole data set. The major eddies of the basin 
are the Batumi and Sevastopol eddies which spin at 
~7–8 cm/s. Both of these major eddies are strong 
and anti-cyclonic. The RIM current does not appear 

which means that the general circulation is formed 
by the western and eastern main gyres. The weak 
Caucasus eddy exists in the northeastern corner, 
while the strong northerly boundary current is present 
in the west (Fig. 8).

Pattern 4 (Cyclonic RIM Current and Batumi Eddy):  
The fourth pattern comprises more than 20 % of the 
whole representation of the data set. In this pattern, 
the Black Sea basin is almost entirely dominated by 
the strong cyclonic RIM current which flows at ~10 
cm/s. The open parts of the sea stay relatively calm, 
and the very weak cyclonic Batumi eddy is detected 
but it is nearly absorbed by the RIM current (Fig. 9).

Fig. 5 The DBI results concerning the proper number of clustering of surface geostrophic velocity data (which justifies the six different patterns 

provided by the SOM).

Fig. 6 The first pattern and its 

percentage.

Fig. 7 The second pattern and 

its percentage.
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Pattern 5 (Anti-cyclonic RIM Current and Batumi 
Dipole Eddies):  The fifth pattern represents 15 % of 
the whole data set and it demonstrates a basin-wide, 
chaotic environment. At the southeastern corner the 
Batumi dipole eddies take place and the stronger 
eddy spins at ~7 cm/s. The weak, anti-cyclonic 
Crimea eddy is observed in the north, whereas the 
Sevastopol eddy disappears. The general circulation 
is formed by the strong, anti-cyclonic RIM current 
which flows at ~6–7 cm/s (Fig. 10).

Pattern 6 (Anti-cyclonic RIM Current and Multi 
Eddies):  More than 10 % of the total representation 
for the data set is covered by the sixth pattern. The 
southeastern corner of the basin is entirely domi-
nated by the strong, anti-cyclonic Batumi eddy spin-
ning at ~8 cm/s. At the north of the Batumi eddy, 
the cyclonic Suchumi eddy is detected. The weak, 
anti-cyclonic Kerch eddy is observed in the north. 
At the northwestern corner the strong anti-cyclonic 
Sevastopol eddy forms, which spins at ~6 cm/s. The 
general circulation is comprised of the strong, an-
ti-cyclonic RIM current (Fig. 11).

5.2 Temporal variation
To better illustrate the monthly and seasonal variability 
of the surface currents, the rate of occurrence of the 
six patterns was computed and the results are shown 
in Fig. 12. Pattern 1 is one of the two patterns that 
dominates winter-like and fall-like months. Its max-
imum contribution is in January with ~45 % and it 
disappears completely in June. Even though there is 
less than 35 % chance it will appear, it is the pattern 
most likely to be observed in December. Pattern 2 is 
more likely to be observed during springtime. Its max-
imum contribution is detected in April with more than 
50 % and it has the highest percentage among the 
six patterns in this particular month. In summer and 
fall it tends to stay at around 20 %, it declines in win-
ter-like months, and it completely disappears in June. 
Pattern 3 tends to appear towards the end of spring 
and the beginning of summer. It reaches its maximum 
in May and becomes the pattern most likely to ap-
pear during that time of the year. It oscillates during 
fall-like months and never shows up in January 
and February. The first three months of the year are 
dominated by Pattern 4. It tends to appear strongly 
during cold periods, whereas during warm periods, 
it exhibits a weak contribution. Pattern 4 disappears 
in May and doesn’t appear again until September. 
Although Pattern 5 shows maximum percentages 
in fall-like months and dominates in October, it has 
no significant seasonality and occurs occasionally 
throughout the year. Pattern 6 completely disappears 
from November to April, appearing only five months 
during the year. It dominates the period from June to 
September and reaches its maximum in July. With 
more than 40 % contribution, it becomes the pattern 
most likely to be detected in July.

The time series of the six patterns of the surface 
currents from 2000 through 2009, with year 2004 

Fig. 8 The third pattern and its 

percentage.

Fig. 10 The fifth pattern and its 

percentage.

Fig. 9 The fourth pattern and its 

percentage.

Fig. 11 The sixth pattern and its 

percentage.
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overlapping, that was derived by SOM is 

Fig. 13 The inter-annual variability of the six patterns of the surface 

currents.

Fig. 15 Comparison of the inter-annual variability of the six patterns 

regarding the surface currents with the EAWR index

Fig. 17 Comparison of the inter-annual variability of the six patterns regarding 

the surface currents with the ENSO index.

Fig. 16 Comparison of the inter-annual variability of the six patterns regarding the 

surface currents with the NAO index.

Fig. 14 The frequency of inter-annual variability of the six patterns.

Fig. 12 The monthly percentage of the six patterns of the surface 

currents.

Fig. 18 Distribution of each pattern of the surface currents between positive (red) 

and negative (blue) phases of the teleconnection indices. The darker shades rep-

resent the strong phases for which the index's absolute value is greater than 

corresponding standard deviation

TEMPO-SPATIAL VARIABILITY OF THE BLACK SEA HYDRODYNAMICS
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shown in Fig. 13 and the evolution of the duration 
and the frequency of the same patterns is shown in 
Fig. 14 in order to illustrate the inter-annual variability.

Furthermore, Figs. 15, 16, and 17 demonstrate the 
contemporaneous EAWR, NAO, and ENSO indices 
respectively, along with the times series of the sur-
face currents. In addition to those figures, Table 2 is 
provided to allow a deeper understanding of the rela-
tionship between the surface currents and the large-
scale teleconnection indices. The potential influence 
of large-scale teleconnection indices on the recur-
rent patterns of the surface currents (shown in Figs. 
5–10) are evaluated by estimating for each recurrent 
pattern the value of the climate indices (i.e. EAWR, 
NAO, ENSO), acquired for different months mapped 
towards this pattern. This process enables deter-
mining whether a recurrent pattern is associated to 
either positive or negative value of a particular index 
significantly, and therefore a prospective connection 
between the surface currents over the Black Sea and 
large-scale teleconnection indices. Fig. 18 shows 
for each recurrent pattern of the surface current, the 
distribution of positive and negative phases of the 
three teleconnection indices. According to this figure, 
the EAWR index and the ENSO index are negative 
significantly during months mapped towards Pattern 
5, which indicates that the occurrence of Pattern 5 
(Anti-cyclonic RIM Current and Batumi Dipole Eddies) 
is promoted by the absence of these indices. On 
the other hand, ENSO index is significantly positive 
during months mapped towards Pattern 2 (Cyclonic 
RIM Current and Anti-cyclonic Batumi Eddy) and 
therefore influences the surface current structure.

6 Conclusion
Surface geostrophic velocity data from 1999 to 2009 
were obtained from AVISO as the base dataset on 
the surface currents. Six patterns as to these veloc-
ities were found after conducting the SOM analyes. 
The inter-annual variability of the surface currents was 
also obtained.

The rate of occurrence of the six patterns was 
computed. Pattern 1 is one of the two patterns that 
dominates winter-like and fall-like months. Its max-
imum contribution is in January with ~45 % and it dis-
appears completely in June. Pattern 2 is more likely 

to be observed during springtime. Its maximum con-
tribution is detected in April with more than 50 %. It 
declines in winter-like months, and it completely dis-
appears in June. Pattern 3 tends to appear towards 
the end of spring period and the beginning of the 
summer period. It reaches its maximum in May and 
becomes the pattern most likely to appear during that 
time of the year.

The first three months of the year are dominated 
by Pattern 4. It tends to appear strongly during cold 
periods, whereas during warm periods it exhibits 
a weak contribution. Pattern 4 disappears in May 
and does not appear again until September. Even 
though Pattern 5 shows maximum percentages 
in fall-like months and dominates in October, it has 
no significant seasonality and occurs occasionally 
throughout the year. Pattern 6 completely disappears 
from November to April and appears only five months 
during the year. It dominates the period from June to 
September and reaches its maximum in July. With 
more than 40 % contribution, it becomes the pattern 
most likely to be detected in July. The EAWR index 
and the ENSO index are detected significantly nega-
tive during months mapped towards Pattern 5, which 
indicates that the occurrence of Pattern 5 is pro-
moted by the absence of these indices. On the other 
hand, ENSO index is detected significantly positive 
during months mapped towards Pattern 2 (Pattern 
2 has the highest possibility to form among the six 
patterns at 25 %) and therefore influence the surface 
current structure. As the last example of the signif-
icant indications, Pattern 6 has the smallest possi-
bility of occurring at only 8 % when the ENSO index 
is negative.

The topology-preserving nature of SOM ensures 
that similar patterns in the input data are mapped to 
neighboring regions on the output map. This char-
acteristic offers a substantial advantage in pattern 
recognition and feature extraction from complex data-
sets. By clustering similar data points together, SOM 
facilitates the identification of underlying structures 
and trends within the data, which might otherwise be 
obscured in high-dimensional spaces.

In practical applications, such as the analysis of 
Black Sea surface circulation that is carried out in 
this research, SOM can efficiently handle large and 

Geostrophic velocity

(+) NAO (-) NAO (+) EAWR (-) EAWR (+) ENSO (-) ENSO

Pattern 1 20% 13% 20% 14% 11% 20%

Pattern 2 25% 15% 25% 16% 30% 11%

Pattern 3 14% 16% 11% 18% 14.5% 14.5%

Pattern 4 15% 24% 22% 16% 20% 23%

Pattern 5 17% 17% 12% 22% 7% 23.5%

Pattern 6 9% 15% 10% 14% 17.5% 8%

Table 2 The percentages of the six patterns regarding the surface currents with the large-scale teleconnection indices superimposed.
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complex datasets derived from satellite observations. 
It enables researchers to discern meaningful patterns 
and variations in the data, which are crucial for un-
derstanding the tempo-spatial dynamics of the re-
gion. The ability to visually represent these patterns 
in a two-dimensional map simplifies the interpretation 
and communication of results, making SOM an inval-
uable tool for both data analysis and decision-making 
processes.

Moreover, the application of SOM in this context 
highlights its potential to enhance the processing 
and utilization of remote-sensing data. By reducing 
the dimensionality of the data while preserving its 
intrinsic relationships, SOM allows for more efficient 
data processing and more accurate identification of 
key features. This not only maximizes the utility of the 
available data but also paves the way for more in-
formed and effective environmental monitoring and 
management strategies. The integration of SOM into 
the data processing workflow addresses the critical 
challenge of managing large volumes of high-dimen-
sional data. Its topology-preserving properties and 
ability to cluster similar patterns make it a powerful 
tool for extracting valuable insights from complex 

datasets, thereby bridging the gap between data 
availability and data utilization.

The research findings are expected to enhance 
predictive models and operational strategies for the 
Black Sea. By identifying the tempo-spatial patterns 
and their driving mechanisms, we can better antici-
pate changes in the basin's dynamics. This, in turn, 
will support various operational activities, from mari-
time navigation to environmental monitoring and dis-
aster response. The innovative application of SOMs 
in this region highlights the potential for advanced 
neural network techniques to offer new perspectives 
and more accurate analyses of oceanographic data.

Acknowledgements
I would like to offer my sincere gratitude to 
distinguished Professor Peter C. Chu, for his en-
couragement, scientific guidance, and instructions 
throughout the course of the research. This study 
would not have been this educational and exciting 
without his wealth of knowledge and motivation. I also 
want to express my heartfelt appreciation to Doctor 
Ming-Jer Huang for his support and sharing his ex-
pertise unconditionally.

References
Amarouche, K. and Akpınar, A. (2023). Long-term spectral wave 

climate in the Black Sea based on directional wave spectra. 

21 February 2023, PREPRINT (Version 1) available at Research 

Square https://doi.org/10.21203/rs.3.rs-2596229/v1

Davies, D. L. and Bouldin, D. W. (1979). A Cluster separa-

tion measure. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, 2, pp. 224–227. https://doi.org/10.1109/

TPAMI.1979.4766909

Ducet, N., Le Traon, P. Y., Reverdin, G. (2000). Global high-reso-

lution mapping of ocean circulation from TOPEX/Poseidon and 

ERS-1 and -2. J. Geophys. Res., 105(C8), 19477–19498.

Frazier, A. E. and Hemingway, B. L. (2021). A Technical Review of 

Planet Smallsat Data: Practical Considerations for Processing 

and Using PlanetScope Imagery. Remote Sens., 13, 3930.

Grégoire, M., Raick, C. and Soetaert, K. (2008). Numerical mode-

ling of the central Black Sea ecosystem functioning during the 

eutrophication phase. Progress in Oceanography, 76(3), pp. 

286–333. https://doi.org/10.1016/j.pocean.2008.01.002.2004

Guthikonda, S. M. (2005). Kohonen Self-Organizing Maps. 

Wittenberg University.

Kılıçer, A. and Kök, O. (2024). Is the Black Sea Already a NATO 

Sea? Atlântica, 5. https://doi.org/10.58867/DBYO3056

Kohonen, T. (1988). Self-Organization and Associative Memory. 

Springer-Verlag, ISBN 0-387-18314-0.

Kohonen. T. (2013). Essentials of the self-organizing map. Neural 

Networks, 37, pp. 52–65.

Korotaev, G., Oguz, T., Nikiforov, A. and Koblinskyet C. (2003). 

Seasonal, interannual, and mesoscale variability of the Black Sea 

upper layer circulation derived from altimeter data. Journal of 

Geophysical Research: Oceans, 108(C4).

MacFarlane, S. N. (2024). NATO and Black Sea Security. In K. 

Kakachia, S. Malerius and S. Meister (Eds.), Security Dynamics 

in the Black Sea Region. Contributions to International Relations. 

Springer, Cham. https://doi.org/10.1007/978-3-031-62957-0_5

Maung, P. P. (2012). Augmented Reality using a Neural Network. 

Ripon College

Mishra, V. (2024). Neural networks and deep learning: theo-

retical insights and frameworks. https://doi.org/10.61909/

AMKEDTB022409

Noyes, J. L. (1992). Artificial Intelligence with Common Lisp: 

Fundamentals of Symbolic and Numeric Processing. D. C. 

Heath, Lexington, MA.

Oguz, T. V., Aubrey, D. G., Latun, V. S., Demirov, E., Koveshnikov, L., 

Sur, H. I., Diaconu, V. S., Besiktepe, S., Duman, M., Limeburner, 

R. and Eremeev, V. (1994). Mesoscale circulation and thermo-

haline structure of the Black Sea observed during HydroBlack 

’91. Deep-Sea Research I, 41, pp. 603–628.

Oguz, T. V., Latun, V. S., Latif, M. A., Vladimirov, V. V., Sur, H. I., 

Markov, A. A., Ozsoy, E., Kotovshchikov, V. V., Eremeev, V. 

V. and Unluata, U. (1993). Circulation in the surface and inter-

mediate layer of the Black Sea. Deep-Sea Research I, 40, pp. 

1597–1612.

Oguz, T., La Violette, P.E. and Unluata, U. (1992). The upper layer 

circulation of the Black Sea: its variability as inferred from hy-

drographic and satellite observations. Journal of Geophysical 

Research, 97(C8), 12569–12584.

Oguz, T., Malanotte-Rizzoli, P. and Aubrey, D. (1995). Winds and 

thermohaline circulation of the Black Sea driven by yearly mean 

climatology forcing. Journal of Geophysical Research, 100(C4), 

pp. 6845–6863.

TEMPO-SPATIAL VARIABILITY OF THE BLACK SEA HYDRODYNAMICS

https://doi.org/10.58440/ihr-30-2-n12



P-1 THE INTERNATIONAL HYDROGRAPHIC REVIEW146

Petrou, M. (2004). Special issue – Pattern Recognition for Remote 

Sensing (PRRS 2002) Preface. Pattern Recognition Letters, 25, 

1459, ISSN: 0167-8655.

Stanev, E. V. (1990). On the mechanisms of the Black Sea circu-

lation. Earth-Science Reviews, 28(4), pp. 285–319. https://doi.

org/10.1016/0012-8252(90)90052-W.1990

Stanev, E. V., Le Traon, P. Y. and Peneva, E. L. (2000). Sea level var-

iations and their dependency on meteorological and hydrological 

forcing: analysis of altimeter and surface data for the Black Sea. 

Journal of Geophysical Research, 105 (C7), 17203–17216.

Stanev, E. V., Roussenov, V. M., Rachev, N. H. and Staneva, J. V. 

(1995). Sea response to atmospheric variability, Model study for 

the Black Sea. Journal of Marine Systems, 6, pp. 241–267.

Vesanto, J., Himberg, J., Alhoniemi, E. and Parhankangas, J. 

(2000). SOM toolbox for Matlab 5. Helsinki, Finland: Helsinki 

University of Technology.

https://doi.org/10.58440/ihr-30-2-n12

INVESTIGATION OF TEMPO-SPATIAL VARIABILITY OF THE BLACK SEA HYDRODYNAMICS 


