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Abstract
Automatic detection and classification of point clouds is a research topic of wide interest, as 
manual annotation of individual points is time consuming and inefficient for large surveys. This 
also holds for the emerging field of submerged vegetation detection, surveyed by bathymetric 
LiDAR. In the point clouds generated, current best practices perform sub-optimally in extract-
ing vegetation data. To date, only a modest number of methodologies have been proposed to 
overcome this problem and furthermore only briefly discuss their findings in an extensive eval-
uation with annotated data. In contrast to the domain of sonar, where the practice of feature 
selection and comparison to annotated data has been well established over the last decades. 
This study proposes a similar methodology based on high-dimensional data analysis and 
clustering that is commonly deployed in other fields of research. In addition to the method, 
two datasets are presented for a detailed comparison to manually annotated data, in which 
the method performed at a mean precision score of 0.70 to 0.86, for all manual annotations. 
This demonstrates that the method is able to detect aquatic vegetation based on its structural 
characteristics of the bathymetric LiDAR point cloud, yielding results that are comparable to 
those obtained through manual annotation. In conclusion, the method presents an alternative 
workflow to current best practices and improves automated vegetation detection through the 
application of high dimensional data analysis. 

Resumé
La détection et la classification automatiques des nuages de points est un sujet de recherche de grand intérêt, 
car l'annotation manuelle des points individuels est chronophage et inefficace pour les levés de grande enver-
gure. Cela s'applique également au domaine émergent de la détection de la végétation submergée, étudiée 
par LiDAR bathymétrique. Dans les nuages de points générés, les meilleures pratiques actuelles ne sont pas 
optimales pour l'extraction des données sur la végétation. À ce jour, seul un petit nombre de méthodologies 
ont été proposées pour résoudre ce problème et leurs résultats ne sont que brièvement discutés dans le cad-
re d'une évaluation globale avec des données annotées. En revanche, dans le domaine du sonar, la pratique 
de la sélection des caractéristiques et de la comparaison avec des données annotées est bien établie depuis 
des décennies. Cette étude propose une méthodologie similaire, basée sur l'analyse et le regroupement de 
données de haute dimension, qui est couramment utilisée dans d'autres domaines de recherche. En plus de 
la méthode, deux ensembles de données sont présentés pour une comparaison détaillée avec des données 
annotées manuellement, où la méthode a obtenu un score de précision moyen de 0,70 à 0,86, pour toutes 
les annotations manuelles. Cela démontre que la méthode est capable de détecter la végétation aquatique 
sur la base des caractéristiques structurelles du nuage de points LiDAR bathymétrique, produisant des résul-
tats comparables à ceux obtenus par annotation manuelle. En conclusion, la méthode propose un flux de 
travail alternatif aux meilleures pratiques actuelles et améliore la détection automatisée de la végétation grâce 
à l'application de l'analyse de données de haute dimension.
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Resumen
La detección y clasificación automáticas de nubes de puntos es un tema de investigación de gran interés, 
ya que la anotación manual de puntos individuales consume mucho tiempo y es ineficiente para grandes 
levantamientos. Esto también se aplica al campo emergente de la detección de vegetación sumergida, le-
vantada mediante LiDAR batimétrico. En las nubes de puntos generadas, las mejores prácticas actuales no 
son óptimas para extraer datos sobre vegetación. Hasta la fecha, sólo se ha propuesto un número modes-
to de metodologías para superar este problema y además sus resultados solo se debaten brevemente en 
una amplia evaluación con datos anotados. En contraste con el ámbito del sonar, en el que la práctica de 
la selección de elementos y comparación con datos anotados lleva bien establecida desde hace décadas. 
Este estudio propone una metodología similar basada en el análisis y agrupación de datos de alta dimen-
sión que se utiliza habitualmente en otros ámbitos de investigación. Además del método, se presentan dos 
conjuntos de datos para una comparación detallada con los datos anotados manualmente, en los que el 
método obtuvo una puntuación media de precisión de 0,70 a 0,86, para todas las anotaciones manuales. 
Esto demuestra que el método es capaz de detectar vegetación acuática basándose en las características 
estructurales de la nube de puntos LiDAR batimétrica, produciendo resultados comparables a los obteni-
dos mediante anotación manual. En conclusión, el método presenta un flujo de trabajo alternativo a las 
mejores prácticas actuales, y mejora la detección automatizada de vegetación mediante la aplicación de 
análisis de datos de alta dimensión.

1 Introduction
Aquatic vegetation plays a vital role in freshwater and 
marine ecosystems as the interaction between flora 
and fauna creates intricate systems susceptible to 
ecological changes. These systems correspond to 
interactions between different biological and physical 
processes, which shape the distribution of macro-
phytes population in the surveyed aquatic landscape 
(Lønborg et al., 2021; Coops et al., 2007; Carpenter 
and Lodge, 1986; Wood, 1963). Pronounced 
changes in submerged vegetation therefore lead to 
constant flux in species diversity and abundance, 
which becomes of importance for economic interests 
in water systems, as well as climate related analysis 
of ecosystem health (Yamasaki et al., 2021; Coops 
et al., 2007; Schmieder, 2004, 1995; Carpenter & 
Lodge, 1986). These changes can be observed 
through different remote sensing and in-situ measure-
ments, where geometric differences in the vegetation 
can directly be monitored. Therefore, enhancing the 
analysis of remote sensing data through automation 
can greatly improve the understanding of climatic fac-
tors upon the ecosystem (Carpenter & Lodge, 1986; 
Lønborg et al., 2021).

Current state-of-the-art surveying is still in-situ 
measurements with extensive measuring campaigns 
exploring pre-selected areas (Lønborg et al., 2021). 
For those areas of interest, diver- or boat-based sur-
veys are often deployed to collect biological samples, 
underwater images and annotate species distribu-
tions of the local vegetation in the selected transect 
or quadrant (Murphy et al., 2018; Zervas et al., 2018; 
Rowan & Kalacska, 2021; Lønborg et al., 2021). The 
data gathered during such field campaigns often con-
stitute just a short temporal insight into a much larger 
and complex system and, due to the subjective in-
terpretation by the diver, the observation is often diffi-
cult to reproduce. This limits the achievable accuracy 
apart from the high costs to deploy divers at a high 
frequency (Lønborg et al., 2021).

Another commonly used approach to analyze 
submerged vegetation on a larger scale is photo-
grammetry. For this, there are two commonly used 
systems: (i) satellite based remote sensing (Luo et al., 
2016; Nelson et al., 2006; Mandlburger, 2022) and 
(ii) airborne imaging using high resolution, multi- and 
hyperspectral cameras. Techniques based on satel-
lite images have the advantage of large aerial cov-
erage and avoid the deployment of ground-borne 
teams across long surveys, resulting in cost and time 
efficient measurements compared to surveys of sim-
ilar extent conducted by survey teams (Mumby et al., 
1999). The down side of such measurements is the 
low spatial resolution, as most satellite images have a 
resolution of around 1 to 50 m (de Grandpr´e et al., 
2022; Rowan & Kalacska, 2021). Considering that 
for most processes of interest, higher resolutions are 
crucial, this entails inaccuracies due to averaging the 
gathered data across large pixels (O’Neill & Costa, 
2013; Ackleson & Klemas, 1987). The second option 
is using orthophotos and hyperspectral images, cap-
tured from either crewed or uncrewed aerial vehicles 
(Mandlburger, 2022). These images feature a much 
higher resolution, depending on the system used and 
the employed above-ground altitude of the airborne 
system. The compromise of high spatial resolution 
introduces a limitation of the spatial extent or pro-
longs the survey, as the altitude influences the field of 
view (Lønborg et al., 2021). The increased resolution, 
however, allows for detailed analysis of the vegeta-
tion distributions and provides indicative results on 
plant species, but provides limited insights on the 
structural component of the macrophytes population 
(Dierssen et al., 2021).

On-water remote techniques, such as boat-based 
hydroacoustic sensing methods (e.g. sonar), have 
been widely recognized in different areas of aquatic 
mapping (McCarthy, 1997; Sabol et al., 2002; 
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Aleksandra et al., 2015; Mandlburger, 2022). The 
application towards vegetation detection in particular 
has seen substantial improvement in terms of spa-
tial resolution due to the application of multi-beam 
sonar (Aleksandra et al., 2015; Held & Schneider 
von Deimling, 2019). Systems pioneered by RoxAnn 
(single beam) and Questor Tangent Corporation (multi-
beam), have introduced and improved the classifica-
tion of seabed types. Both systems utilize a similar 
classification method, based on the recorded acoustic 
variables and relate to these measures such as rough-
ness and hardness of the seabed (Schiagintweit, 
1993; Serpetti et al. 2011). Such feature-based ap-
proaches can furthermore be applied to the automatic 
vegetation detection and can cover vast areas in ac-
ceptable time periods (Blondel, 2008). 

The same applies to bathymetric LiDAR, where 
improvements in sensor technology and signal 
processing have overcome previous limitations 
(Mandlburger et al., 2023b). This has established 
LiDAR among the traditional approaches for map-
ping macrophyte populations in water ecosystems 
(Wagner et al., 2024; Calantropio et al., 2024; 
Mandlburger et al., 2023b). Furthermore, due to the 
rise of unmanned aerial vehicles (UAVs), the tech-
nology has become widely available enabling the 
implementation of those recent advances in prac-
tice (Espel et al., 2020). One of such advancements 
is the recent utilization of full waveform LiDAR (i.e., 
the availability of the complete temporal record of 
the returned echo pulse), which enables specifically 
tailored signal processing for bathymetric LiDAR, 
improving water surface detection and higher depth 
penetration (Schwarz et al., 2019). Overall, recent 
advancements have allowed users to not only cap-
ture detailed aquatic vegetation but furthermore 
create a basis for detailed data analysis, as a mul-
titude of features can be extracted from the ac-
quired point clouds (Mandlburger et al., 2023a). In 
this new type of data, one of the challenges is the 
classification of the acquired points into submerged 
terrain and vegetation, which can not sufficiently be 
achieved by established methods (Wagner et al., 
2024). Consequently, research related to the devel-
opment of new methods in the classification of mac-
rophyte subtypes is of great importance.

For classification methods of both sonar and LiDAR 
that are based on recorded variables (features), for 
each measured point, feature selection plays a vital 
role. In general terms, a classifier transforms an input 
vector into an output of a single value, the classifi-
cation (Domingos, 2012). Therefore, selection, trans-
formations, and the overall dimension of the data 
influence the generated output (Bellman & Kalaba, 
1959; Chen, 2009; Domingos 2012). Previous 
studies in both fields of LiDAR and sonar have ad-
dressed these challenges and introduced different 
approaches (Serpetti et al. 2011; Schi, 2021). In 
such recent results both general large feature space 
and manually selected feature approaches have 

been used to generate classifications of point clouds, 
where each approach has distinct advantages and 
challenges (Serpetti et al. 2011; Shi et al., 2021, 
Saputra & Radjawane, 2022). Single feature selec-
tion on one hand requires human supervision, while 
machine learning built on all features requires large 
amounts of data and training (Serpetti et al. 2011; 
García-Gutiérrez et al., 2015; Yang et al., 2020; Shi 
et al., 2021, Saputra & Radjawane, 2022).

Related scientific work has seen a large increase in 
the deployment of LiDAR across different fields related 
to geoscience over the last decade (Mandlburger et 
al., 2023b; Rowan & Kalacska, 2021; Lønborg et 
al., 2021). This is also the case for bathymetric ap-
plications, where LiDAR expanded from simple top-
ographic modeling to capturing detailed structures of 
submerged aquatic vegetation (Wagner et al., 2024; 
Rowan & Kalacska, 2021; Mandlburger et al., 2020). 
While the use of infrared LiDAR is already a common 
tool in forestry and other terrestrial ecological re-
search (Zhou et al., 2022; Michalowska & Rapiński, 
2021; Koma et al., 2021), the use of LiDAR for 
aquatic ecosystems is still limited due to expensive 
initial costs, which applies to airborne data acqui-
sition from both crewed and remotely piloted plat-
forms. Furthermore, only recent advances in sensor 
technology, specifically the increase in spatial reso-
lution (smaller laser footprints and higher scan rates) 
has enabled the detection of submerged objects be-
yond mere mapping of bathymetry (Mandlburger et 
al., 2023b; Lønborg et al., 2021). Therefore, many 
challenges such as vegetation classification in vege-
tated water bodies are still not entirely solved for ba-
thymetric LiDAR. To overcome the challenges posed 
by bathymetric LiDAR, different methods have been 
presented over the last years ranging from unsu-
pervised machine learning to LiDAR feature-based 
classification methods (Saputra & Radjawane, 2022; 
Amani & Mahdavi, 2021; Wagner et al., 2024). Each 
approach faces different challenges. While machine 
learning requires large annotated datasets, data 
driven approaches depend on the investigated area 
and the system used (Saputra & Radjawane, 2022; 
Wagner et al., 2024). Additional challenges arise in 
the evaluation of such methods as the lack of bench-
mark datasets does not allow for a general compar-
ison to other methods and thus introduces obstacles 
in comparison of effectiveness (Calantropio et al., 
2024). This further extends to the manual annotation 
in general, as manually labeled datasets are prone to 
differ if annotated by multiple experts (Calantropio et 
al., 2024; Zhu et al., 2019).

This study aims to improve the current state-of-
the-art of vegetation detection via LiDAR bathym-
etry through the introduction of a new method for 
the classification of 3D point clouds. The method is 
based on working principles of single cell clustering, 
where groups of cells are classified and matched 
on the basis of genetic similarity, such as the genes 
extracted from the cells during RNA-sequencing 
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(Luecken & Theis, 2019). Related methods in the 
field of sonar signal processing have used acoustic 
variables from multibeam backscatter in combination 
with Principal Component Analysis (PCA) to identify 
main characteristics and assign each data observa-
tion to a specific class (Schiagintweit, 1993; Preston, 
2009; Serpetti et al., 2011; Held & Schneider von 
Deimling, 2019). Applied towards LiDAR data, this is 
equivalent to combine all measurements of the laser 
scanning setup into a high-dimensional dataset and 
group the points based on similarity of the recorded 
features through dimensional reduction and clus-
tering. The difference in the proposed method and 
current state of the art classification is the usage 
of Uniform Manifold Approximation and Projection 
for Dimension Reduction (UMAP; Sainburg et al., 
2021) instead of a standard PCA workflow. Through 
the application of UMAP in the dimensional reduc-
tion, points with close spatial proximity (in the 2D 
dimensionally reduced dataset) have a similarity 
of features in the initial high-dimensional dataset. 
This improves the extraction of points with similar 
features and thus enables vegetation classification 
based on geometric similarities. 

The workflow described in this article extracts the 
submerged LiDAR point cloud using the surface-vol-
ume-bottom algorithm (SVB) by Schwarz et al. (2019). 
The extracted data can be seen as a high-dimensional 
dataset made up of features for each point and can be 
dimensionally reduced to a two-dimensional dataset 
with UMAP, which can be clustered by density-based 
clustering algorithms. The extracted clusters can then 
be grouped into vegetation and non-vegetation la-
bels providing an automated classification of the point 

cloud. The aim of the study is to extend the bathy-
metric processing pipeline to match best practices in 
other areas of remote sensing applied to ecological 
monitoring such as forestry, where LiDAR has be-
come a standard tool to survey large areas and track 
biological changes over time (Michalowska & Rapiński, 
2021; Kumpumäki et al., 2015).

The article first introduces the dataset used for de-
velopment and evaluation, together with the deployed 
pre-processing (Section 2). In Section 3, we describe 
the construction of the high-dimensional feature 
space and the clustering of the dimensionally re-
duced dataset. This includes an introduction into di-
mensional reduction techniques and the classification 
of the created macrophytes groupings. The results of 
the developed method are further compared to pho-
togrammetric and manually annotated data (Section 
4) and critically discussed in the light of state-of-
the-art ecological research (Section 5). 

2 Materials
2.1 Study area
The study area is located near Loosdorf in the region 
of Lower Austria (48.2010 N, 15.4004 E; WGS 84). 
The entire region comprises a near-natural section of 
the pre-alpine Pielach river and around a dozen fresh-
water ponds in the adjacent flood plain. A subset of 
the ponds, including Ponds 2 and 3a, contain sub-
merged vegetation, which can clearly be seen in the 
orthophotos obtained throughout multiple surveys 
(Fig. 1). This vegetation is under constant flux across 
the seasons and therefore representative of the gen-
eral research related to the monitoring of submerged 
ecosystems. Furthermore, the combination of two 

Fig. 1 Study area (a) Location of Pond 2 (48.2166 N, 15.3744 E) and 3a (48.2158 N, 15.3755 E) near Loosdorf (BEV, 2024). (b) Orthophoto 

of Pond 2 during early summer (May 2024). (c) Orthophoto of Pond 2 during autumn (October 2023).
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different datasets (aerial images and LiDAR) provides 
a comprehensive foundation for post-analysis of the 
aquatic ecosystem.

2.2 Datasets
To capture the diverse landscape of submerged 
vegetation, two systems were deployed to generate 
a comprehensive dataset. First, the data was sur-
veyed using a topo-bathymetric LiDAR system, in 
this case a RIEGL VQ-840-G topo-bathymetric UAV 
laser scanner system. The sensor was mounted on 
a helicopter and flown at an average flying altitude of 
187 m, during a single day measuring campaign on 
the 9th of February, 2022. The system uses a wave-
length of 532 nm and medium sized footprints with 
an average footprint diameter between 0.82 m and 
1.04 m (RIEGL, 2012, 2023). The data recorded by 
the LiDAR system was exported as a point cloud 
(Figs. 2a and 2b) in LAS format in a georeferenced 
coordinate system (ETRS89, UTM33; EPSG: 25833). 
Secondly, to capture reference data, standard photo-
grammetric methods were deployed to generate an 
orthophoto of the surveyed area (Fig. 2c). The ortho-
photo has a resolution of 5 cm per pixel based on 
images captured with a 12.4 MPix Manta G1236C 
camera mounted on the same helicopter setup as 
the LiDAR system. The orthophotos served as visual 
guidance for the annotation of the LiDAR point cloud, 
which has surface point densities of 34.4 points/m2 
and 27.4 points/m2 for Pond 2 and 3a respectively.

The first pond (Pond 2) features a variety of vege-
tation with different vertical extent and varying den-
sity (Figs. 2b and 2c). The second pond (Pond 3a) 
is considerably smaller, with an irregular vegetation 
distribution and many smaller patches. The labels are 
generated using the PointCloudLabeler1 add-on from 
OPALS version 2.6.0 (Pfeifer et al., 2014). This tool 
allows manual annotation of the point cloud in tran-
sects perpendicular to a digitized 2D axis (polyline). 
The transect is chosen so that the width covers the 
entire lake and the view-depth is set between 2 m 

to 5 m depending on operator preferences. The data 
were manually labeled by three experts. To avoid bi-
ases, the data were labeled twice by each expert, 
based on south-west and north-east oriented axis 
directions, respectively. In total, this resulted in six in-
dependently labeled data sets.

One of the challenges in the Pond 2 dataset is that 
the points are merged from two overlapping flight 
strips. The strip overlap area features higher point 
densities and varying distributions compared to the 
rest of the dataset. These differences are detectable 
throughout most of the features of the point cloud. 
To compensate for the artificial similarity of the fea-
tures, we deploy point thinning in the overlap region. 
The thinning is based on an octree cutoff, reducing 
the number of points in the overlap to approximately 
match the rest of the point cloud. This leaves a final 
dataset comparable to the one of Pond 3a, which 
is only covered by a single flight strip. Together, 
both datasets are the input for the data processing 
(Section 3) and the final evaluation (Section 4). 

2.3 Data preparation and water surface detection
The data acquired by the topo-bathymetric LiDAR 
system captures all the features of the landscape, at 
land and underwater. To focus on the aquatic land-
scape, preprocessing of the data becomes necessary 
to remove all points not related to the submerged 
domain. For this, we introduce an initial step in the 
analysis that extracts the underwater area (Fig. 3c) 
from the recorded point cloud (Fig. 3a) by detecting 
the water surface within the study site and selecting 
only the points beneath the calculated water level. For 
this, we employed the SVB algorithm by Schwarz et al. 
(2019). The algorithm uses exponential decomposition 
of bathymetric laser waveforms (Schwarz et al., 2017), 
which provides a reliable classification of laser pulses 
hitting the water surface as a side product (Fig. 3b). 
From the initial identification of water surface points, 
the general water surface height in the respective co-
ordinate system of the point cloud can be estimated. 

1  https://github.com/TUW-GEO/opals PointCloudLabeler/ (accessed 17 August 2024).

Fig. 2 (a) Illustration of an underwater transect with vegetation representative for the data used in the study. (b) Actual LiDAR point cloud 

corresponding to panel A. (c) Orthophoto of Pond 2 captured in February, 2022. 

https://doi.org/10.58440/ihr-30-2-a16

MACROPHYTE DETECTION WITH BATHYMETRIC LIDAR



IHR VOL. 30 · Nº 2 — NOVEMBER 2024 103

To select all points below the lowest part of the water 
surface, a threshold height is chosen based on the 
z-coordinate of all points classified as water surface, 
which fall in the range of the 2nd–5th percentile of the 
height. This accounts for potential outliers below 
the water surface. All points below the calculated 
threshold are expected to belong to the submerged 
area of interest. Lastly, to remove the remaining out-
liers, a simple clustering approach is applied to the 
data. Here, density-based clustering was chosen to 
remove all points not directly linked to the pond. In 
particular, we used DBSCAN (Pedregosa et al., 2011; 
Schubert et al., 2017; Ester et al., 1996), with a min-
imum distance of 1 m between the points. After this 
filtering step, the data is ready for further analysis, as 
only submerged terrain and vegetation remain (Fig. 3).

3 Method
The vegetation classification algorithm is split into 
three major components, consisting of six steps 
including the preprocessing (Fig. 4): (i) Feature se-
lection and normalization (Section 3.1–3.5), (ii) 
Dimensional reduction and clustering (Section 3.6–
3.7) and (iii) Vegetation classification with additional 
label improvement (Section 3.8–3.9). The features 
obtained from the LiDAR point cloud can be rep-
resented as a high-dimensional dataset, which is 
reduced to a two-dimensional dataset with UMAP. 
This dimensionally reduced dataset is first clustered, 
which generates an output of groups which are 
mostly vegetation. Subsequently, the generated clus-
ters are classified into two categories: vegetation and 
other, which is achieved through a clusterwise pla-
narity score and further improved by graph theoretical 
methods, as the clusters do not capture all points 
belonging to the submerged vegetation. 

3.1 LiDAR feature selection
The acquisition of LiDAR data yields a multitude of 
features for each recorded point, including the coor-
dinates in the selected reference coordinate system, 
amplitude and reflectance (Pfennigbauer & Ullrich, 
2010). Additionally, research-oriented processing 
of the LiDAR data also makes use of specialized 

software, such as OPALS (Pfeifer et al., 2014), to cal-
culate normal vectors and eigenvalues. The output of 
the OPALS software generates values such as σ

0
, λ

1
, 

λ
2
 and λ

3
 (Table 2), generated based on the covari-

ance matrix of the local neighborhood (10 neighbors) 
within the robust normal estimation (based on the 
three position vectors), where a robust plane fitting 
of the selected neighbors is used to calculate the 
corresponding normal vector (Jutzi & Gross, 2009; 
Pfeifer et al., 2014; Weinmann et al., 2015). In the 
same processing step an offset Δn(p) for the fitted 
plane of the normal vector is calculated, introducing a 
local planarity measure (Pfeifer et al., 2014). In addi-
tion, we calculate the umbrella curvature and volume 

Fig. 3 Visualization of input dataset Pond 2. (a) displays the amplitude values of the initial scan, (b) the water surface classification from the 

SVB algorithm Schwarz et al. (2019), and (c) the pond data set after outlier removal. 

Fig. 4 Flow chart of the major steps outlined in the method section with the intermediate results pro-

duced by each step. 

MACROPHYTE DETECTION WITH BATHYMETRIC LIDAR

https://doi.org/10.58440/ihr-30-2-a16



P-1 THE INTERNATIONAL HYDROGRAPHIC REVIEW104

of the local neighborhood of each point. For this, we 
first introduce a clear definition of the neighborhood 
(Section 3.2) and then calculate the umbrella curva-
ture (Section 3.3) and volume (Section 3.4) for the 
selected points. Lastly, we calculate two more pa-
rameters based on the OPALS processing output: the 
sphericity and the entropy. Both calculated features 
provide insight into the object's structure beyond the 
single eigenvalue variables and therefore finalize the 
feature space (Jutzi & Gross, 2009; Thomas et al., 
2018). The constructed array of features for each 
point (Table 1) contains substantial information about 
all points within the surveyed ecosystem and thus 
builds the basis for a higher-dimensional analysis. 
In conclusion, the more independent features de-
scribing the object can be extracted, the more stable 
the association becomes (Thomas et al., 2018). 

3.2 Neighborhood and kNN-graph
Before we introduce the umbrella curvature (Section 
3.3) and volume (Section 3.4), some preparatory 
steps are required, as these are measures of local 
neighborhoods within the point cloud. Let 𝒫 be the 
set of position vectors from the observation (the set 
of x-y-z coordinates of the point cloud) for each ob-
servation p ∈ 𝒫. We define the local neighborhood by 
selecting the 10 closest points for each point p ∈ 𝒫 
in 3D space, where the initial point p ∈ 𝒫 is counted 
as the first point of the selected set. As a result, we 
can define the partially ordered set of all distances 
from p ∈ 𝒫 as 𝒟(p) and apply this definition to char-
acterize the local neighborhood 𝒩(p) of p ∈ 𝒫 as:

In addition, the neighborhood definition allows 
us to create a network representation of the LiDAR 
point cloud. For this, we define the k-nearest neigh-
bors graph (kNN-graph) of the point cloud on the 
basis of the neighborhood 𝒩(p) for all p ∈ 𝒫. The 
created undirected unweighted graph consists of 
the subset of all unique edges and all points given 
by the neighborhood definition. Initially each point 
has 9 edges to its closest neighbors, but as two 
points in the local neighborhood are automatically 
each other’s neighbors, the duplicated edges re-
sulting in those connections are removed to obtain 
a simple graph. Furthermore, if the surveyed area is 
sufficiently connected, the graph also consists of a 
single connected component.

In accordance with current best practices in 
high-dimensional data analysis, the neighborhood 
parameter is again set to 10 (Luecken & Theis, 2019). 
However, this parameter can be adjusted depending 
on the dataset size, spatial resolution or other factors 
affecting the extent of the vegetation features that 
can be detected with the LiDAR system. The advan-
tage of the generated graph representation is shown 
in Section 3.9. There, the kNN-graph is used to im-
prove the final vegetation labels, and therefore the 
introduction of the neighborhood concept becomes 
a vital tool in the analysis of structural features within 
the point cloud dataset. 

Variable Description Reference Unit

px X-Coordinate [m]

py Y-Coordinate [m]

pz Z-Coordinate [m]

σ0 σ0 of normal estimation (Pfeifer et al., 2014)

λ1 Eigenvalue 1 of normal estimation (Pfeifer et al., 2014)

λ2 Eigenvalue 2 of normal estimation (Pfeifer et al., 2014)

λ3 Eigenvalue 3 of normal estimation (Pfeifer et al., 2014)

Amplitude Echo pulse amplitude (RIEGL, 2012) [dB]

Reflectance Reflectance of the target (RIEGL, 2012) [dB]

V(p) Volume (Virtanen et al., 2020)

κ(p) Umbrella curvature (Foorginejad & Khalili, 2014)

Δn(p) Normal plane offset (Pfeifer et al., 2014)

H(p) Entropy (Maity et al., 2010)

λ1/λ3 Sphericity (Thomas et al., 2018)

Table 1 Table displaying the different features of the LiDAR point cloud used for the high-dimensional data analysis. Each point p ∈ 𝒫 of the point cloud is an array made of 

these descriptors and ordered as passed to the dimensional reduction.

(1)

(2)
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varying vertical extent due to the fact that the laser 
pulses are reflected at different heights throughout 
the vegetation, while the terrain in the pond is gen-
erally smooth. 

3.5 Entropy
Lastly, we also calculate the entropy H(p) of the 
scattering object, which relates to the randomness 
of the scattering target (Maity et al., 2010; Jin & 
Cloude, 1994). Low entropy values indicate a single 
dominant scattering element and high values imply 
that the target has scattering components, where 
no single component dominates (Maity et al., 2010). 
The entropy H of the point p and the eigenvalues λ

1
, 

λ
2
 and λ

3
 can be calculated through

The introduced parameter improves the under-
standing of the randomness of the scattered media 
and therefore further improves the understanding of 
the measured target (Fig. 5). A higher randomness 
corresponds to a higher diversity in the spatial distri-
bution of the points, which is associated with vege-
tation canopy (Liu et al. 2022)

3.6 Data normalization 
After feature selection, the next step in the analysis 
is to homogenize the value range of the individual 
features (z-score transformation), as they have dif-
ferent scales (Sainburg et al., 2021; Pedregosa et 
al., 2011). Taking all features F as one part of the 
dimensional input and the number of points in the 
point cloud as the second, a high-dimensional da-
taset with dimension of |F| can be constructed. This 
dataset cannot be visualized in conventional ways, 
as the data structure now has |𝒫| points along |F| 
dimensions. In terms of data structure, the new 

3.3 Umbrella curvature
To measure the roughness in the point cloud, we 
deploy the measure of umbrella curvature in the 
local neighborhood of each point. The umbrella cur-
vature for a point p ∈ 𝒫 is defined as the sum of 
the curvatures between the current point p and its n 
closest neighbors, using the inner product and the 
normal vector n to the fitted plane at p (Foorginejad 
& Khalili, 2014).

Calculating this curvature for each point in the 
neighborhood, we get the umbrella curvature of p as

This measure can be compared to the amount an 
umbrella opens up with p as the umbrella’s center 
(Foorginejad & Khalili, 2014). In the context of sub-
merged vegetation, this measure indicates whether 
the neighborhood of a point is smooth or whether it 
has a varying vertical extent (Fig. 5).

3.4 Volume
To further expand the feature space related to struc-
tural features, we add a measure of volume for each 
local neighborhood. This measure is based on the 
volume of the convex hull of the points, which by 
definition is the smallest convex enclosement of the 
points selected (Moklyachuk, 2021).

Through the triangulation of the convex polytope, 
the volume V(p) can be numerically calculated, e.g., 
using SciPy (Virtanen et al., 2020). The convex hull 
is a measure for the general neighborhood size 
and also an estimate of the volumetric point den-
sity. Therefore, vegetation points should have larger 
volume as the points within the neighborhood exhibit 

(3)

(4)
(5)

Fig. 5 Visualization of a selection of features introduced in Table 1 for Pond 2. (a) Vertical coordinate Z. (b) Recorded amplitude in dB. (c) 

Umbrella curvature for each point using a neighborhood of 10 points (Foorginejad & Khalili, 2014). (d) Entropy of each point (Jin & Cloude, 

1994). In (d) the scan pattern of the LiDAR system and the overlapping regions of the scans becomes visible. 
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high-dimensional dataset corresponds to a matrix of 
the shape |𝒫| × |F|. To finalize the data preparation 
for the dimensional reduction, a standard scaler has 
to be applied to all feature values (z-score normal-
ization), otherwise the values would form different 
distributions based on their maximum or mean 
values rather than displaying similar patterns across 
all features. Let Φ ∈ F be a feature of the point 
cloud with feature values v(Φ), mean value µΦ and 
standard deviation σΦ, then the standard scaler is 
given by the following mapping.

3.7 Dimensional reduction and clustering
All points of the point cloud are now in a form that 
allows to look for patterns regarding their features. 
But as these features are given in a high-dimen-
sional space, they are affected by the “curse of 
high-dimensionality”, meaning that commonly used 
unsupervised methods create unconventional re-
sults depending on the metrics used (Assent, 2012; 
Beyer et al., 1999). Therefore, we deploy a tech-
nique often used in single-cell clustering (Luecken & 
Theis, 2019), where we use dimensional reduction 
techniques to project the feature space to a regular 
two-dimensional space, using UMAP (Sainburg et al., 
2021). This dimensional reduction method approx-
imates the high-dimensional shape of the data and 
creates a two-dimensional image of the underlying 
manifold through mathematical processing (Sainburg 
et al., 2021). This is comparable to a workflow based 
on PCA, with the additional advantage of capturing 
the shape of the high-dimensional dataset and trans-
lating high-dimensional similarity of features to a 
two-dimensional spatial proximity, which can be de-
tected using clustering methods (Kurita, 2019). 

To separate the dimensional reduction into groups 
of interest, clustering is applied to the created di-
mensionally reduced dataset. To group the points 
into clusters of interest and remove outliers, a den-
sity-based clustering algorithm (DBSCAN) is applied 
to the dimensionally reduced dataset (Pedregosa et 
al., 2011; Schubert et al., 2017; Ester et al., 1996). 
DBSCAN strongly depends on the selection of the ep-
silon parameter, which defines the maximum distance 
between two samples to be considered in the neigh-
borhood of one other (Pedregosa et al., 2011). This 
in turn influences the size and furthermore the number 
of clusters. For the vegetation classification, epsilon is 
fine-tuned within a range of 0.04 to 0.06, which cor-
responds to a sufficiently small neighborhood in the 
dimensionally reduced dataset. The epsilon parameter 
is selected within this range, to avoid over-clustering 
the data and simultaneously extract more than a single 
cluster. By applying DBSCAN, the different clusters 
of similar features can be extracted, which then form 
the basis for the following vegetation annotation. The 
extracted clusters are furthermore filtered in size by 
a general minimum cluster size of 500 points, as the 

vegetation should contain a large number of points and 
this helps to avoid excessive clustering of the data. 
The identified clusters can now be backtracked into 
the original LiDAR point cloud leaving multiple group-
ings of points with similar features, which are rooted in 
higher dimensional similarity rather than close spatial 
proximity. These clusters, extracted from the dimen-
sionally reduced dataset, represent an initial extraction 
of the geometric similarities, displayed by the vegeta-
tion. Therefore, the groups detected by DBSCAN can 
be seen as the initial classification of submerged vege-
tation, with a subset of terrain that displays similar fea-
ture characteristics. 

3.8 Vegetation classification via plane fitting 
For each cluster that is not removed due to the min-
imum point filtering or DBSCAN outlier detection, a 
plane is based on the x-y-z-vector positions of the 
points and the distance to the plane is calculated for 
each point of the cluster, as this improves the vege-
tation within the clustering by removing planar clusters 
(terrain). Vegetation generally results in uneven sur-
faces with high vertical differences of the points due to 
multiple reflections in different height levels, recorded 
by the LiDAR system. In contrast, the underwater 
terrain of the surveyed ponds is generally smooth. 
Additionally, with the medium sized footprint of the 
deployed LiDAR system, small deviations in height 
are smoothed out. Therefore, the plane fitting creates 
two groups of clusters on a macro scale (compared 
Section 3.1), with either small or large pointwise de-
viations from the plane. To classify the vegetation, we 
introduce here a filtration of the plane fitting residual, 
where points with above mean residual are classified 
as vegetation and those below as terrain. 

3.9 Label propagation
The vegetation detection method has so far introduced 
an initial classification based on UMAP, clustering and 
plane fitting. However, this classification is sparse, as 
the clustering fails to extract all vegetation points and 
therefore does not sufficiently capture the vegetation 
within the submerged ecosystem. We therefore im-
prove the existing labels through label propagation, a 
tool commonly deployed in graph theory (Raghavan et 
al., 2007). For the label propagation, the neighborhood 
in the form of the kNN-graph introduced in the Section 
3.2 is used. The labels from the initial classification 
are transferred to the vertices of the kNN-graph and 
the method then compares the labels of neighboring 
vertices, updating the vertex label based on a majority 
of labels within the current neighborhood (Csardi & 
Nepusz, 2006). By only adjusting the terrain labels and 
keeping all initial vegetation labels, the label propaga-
tion can extend the vegetation labels to vertices in the 
neighborhood that feature a high connectivity to ver-
tices with the same label. Through this extension of the 
vegetation labels, the general under-performance of 
the UMAP extraction can be compensated and thus 
denser vegetation clusters can be annotated.

(6)
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3.10 Macrophyte canopy height estimation
Based on the aquatic vegetation extracted from the 
dataset, a map of the vegetation height can be cre-
ated. This canopy height estimation uses the points 
classified as vegetation to estimate the height in re-
lation to a digital terrain model (DTM) generated from 
the points classified as underwater terrain. To con-
struct the DTM, we use the point cloud processing 
software CloudCompare (CloudCompare 2.12.4, 
2024), which features a rasterization tool to gen-
erate DTMs. There the DTM is based on the shoalest 
z-values of the non-vegetation points for each grid 
cell, accounting for potential outliers in the water 
column. Furthermore, the z-values are computed 
based on a grid distance of 2.5 m. To derive the 
macrophyte canopy height above the interpolated 
ground, we can now subtract the height of each 
vegetation point from the closest DTM ground point 
and record all positive differences for the canopy 
height. The height estimation based on the averaged 
z-values, holds true for the surveyed ponds, as the 
vegetation within the pond predominantly consists 
of Charophyceae. This type of vegetation grows as 
a dense population and thus the majority of laser 
pulses are being reflected by the canopy. This gener-
ates a generally uniform point cloud, representing the 
uppermost layer of the vegetation as only few LiDAR 
echo pulses of the stem are recorded.

3.11 Area and volume estimation of the macrophyte 
population

The area of the ponds covered with submerged 
vegetation can be estimated by rasterizing both 
the water surface area and the submerged vegeta-
tion and comparing the created cells. This is done 
by first rasterizing the pond into 1m 𝗑 1m cells, both 
for the clustered vegetation 𝒞(P

V
) and the pond’s 

water surface 𝒞(P
W
). For this, let 𝒫

V
 be the set of 

points classified as vegetation and 𝒫
W
 be the set of 

water surface points extracted with the SVB method 
(Schwarz et al., 2019). This approximation of the 
water surface could further be enhanced by manual 
annotation, but to improve on the automated de-
tection, the provided surface model is solely based 
on the SVB algorithm. Therefore an underestimation 
of the water surface has to be taken into account, 
which typically only affects the closest . The cells are 
calculated by rounding the x- and y-coordinates of 
the vegetation and the water surface to the nearest 
integer and merging all cells with the same rounded 
coordinates. Dividing the vegetated area by the water 
surface area then provides an estimation of the vege-
tation coverage A(𝒫

V
) [%] of the pond.

Furthermore, by multiplying the area of the vegetation 
cell c

i
 ∈ 𝒞(𝒫

V
) with the average vegetation height of 

the cell h
mean

(c
i
), a cell-wise vegetation volume can be 

calculated. by summing up all cell volumes, an overall 

estimation of the vegetation volume of the pond 𝒱(P
V
) 

[m3] can be derived, based on the canopy type and 
canopy height estimation (Section 3.10).

4 Results
To establish the context for the subsequent discus-
sion, the results presented in this section display the 
labels produced by the classifier, a visual comparison 
using orthophotos and an overall quantitative evalua-
tion. This provides an extensive insight into the labels 
produced by the classification, as well as a quantita-
tive evaluation approach. 

4.1 Vegetation classification 
The results of the introduced vegetation classifica-
tion can be seen in Fig. 6, where each major step 
of Section 3 is shown for Pond 2. After the pre-
processing (Section 2.3) and the feature selection 
(Section 3.1–3.5), the vegetation classifier normalizes 
the data and extracts clusters of potential vegetation 
through dimensional reduction (Sections 3.6 and 
3.7). The extracted clusters can be seen in Fig. 6a, 
where each cluster is larger than the minimum of 500 
points and consists of points sharing a similarity of 
features. For each cluster, the plane fitting is applied 
(Section 3.8), distinctly separating the clusters into 
two groups of high and low plane fitting residuals 
(Fig. 6b). The high residual clusters are classified as 
vegetation and create an initial sparse classification 
(Fig. 6c), which is improved by the label propagation 
(Section 3.9). Leading to the final vegetation classifi-
cation of the point cloud displayed in Fig. 6d.

(7)

(8)

Fig. 6 (a) Clustering step after the dimensional reduction using UMAP (Sainburg et al., 2021). The points 

are colored by the clusters of Section 3.7 (b) Residual plot of the plane fitting from Section 3.8. Ground 

points have near zero deviation from the fitted plane, while the vegetation has a deviation higher than 

the mean. (c) Vegetation points as extracted after the plane fitting in orange and all other points in black.

(d) The final vegetation labels after the label propagation of Section 3.9.
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4.2 Visual comparison to photogrammetric data
The orthophotos allow for a visual comparison be-
tween the generated labels and the vegetation visible 
in the two ponds. In both cases, the classified LiDAR 
vegetation points can be compared with the vegeta-
tion visible in the ortho images (Fig. 7). 

4.3 Comparison of manual annotations
For the manual annotation of the dataset, three 
experts in the field of bathymetry were selected. 
To evaluate labeling biases and put the results of 
Section 4.4 into a more comparative context, the in-
dividual manual annotations are cross-validated and 
furthermore compared to a randomly shuffled array of 
vegetation and terrain labels (Fig. 8). The results from 
Fig. 8 highlight the subjectivity of annotating point 
cloud data and the difference depending on the field 
of view from which the data is annotated. In addition, 

the distinction between true vegetation echoes and 
echoes from volume backscattering in the water 
column represents a general challenge for research 
in the extraction of underwater LiDAR echoes (Li et 
al., 2024). Therefore, the comparison underlines the 
minimum and maximum possible scores for the veg-
etation clustering.

4.4 Accuracy assessment with annotated data
To evaluate the vegetation detection method on a 
quantitative basis, we compare the generated labels 
to manually annotated labels for the same pond. 
This is done for several metrics, displayed in Table 
2. Each score compares the annotated vegetation 
labels to the labels of the classification algorithm 
and outputs a score between 0 and 1. The lowest 
possible score is 0, indicating a bad fit, and 1 indi-
cates an ideal consensus between the two sets of 
labels (Pedregosa et al., 2011).

With the dataset introduced in Section 2.2 we can 
evaluate the labels generated by the described veg-
etation classification method. The quantitative results 
are reported in Fig. 9 displaying the confusion matrix 
of each manual annotation compared to the auto-
matically generated labels. The matrices furthermore 
indicate the type I errors (false positives) and type II 
errors (false negatives) of the classification, which 
fall within a 10–30 % margin. Similarly, the true pos-
itives are approximately 80 % to 99 %. The results 
for Pond 3a display a true positive rate of close to 
100 %, while for Pond 2 the scores reach a max-
imum of 87 %. Contrary, the true negatives are lower 
for Pond 2 compared to Pond 3a. This indicates that 
the method overestimated the vegetation in Pond 2, 
while in Pond 3a the vegetation was underestimated. 

The applied metrics (RI, FMI, F1, Jaccard, 
Precision, Recall) are commonly used for assessing 
clustering methods, especially for two-class prob-
lems as in our case (Amigo et al., 2009; Fahad 
et al., 2014; Pedregosa et al., 2011). Most of the 
evaluation metric scores are in the range from 0.54 
to 0.96 (Figs. 9a and 9c). For the majority of the 
scores (all except Jaccard), the scores are based 
on a comparison between true positives and true 
negatives and false positives and false negatives. 
Therefore, a score close to 1 reflects high true pos-
itives and true negatives, with furthermore low type I 
and II errors. The Jaccard index in contrast is based 
on set intersection, a score of 1 indicating that the 
labels share the exact same points. Comparing the 
different metrics therefore outlines how high the 
type I and II errors are for each pond and further-
more how identical the sets of labels are. In Pond 2, 
this mathematical basis of the metrics is reflected in 
a lower overall score due to the presence of higher 
errors. Contrary, Pond 3a, which exhibits more dis-
tinct vegetation, has an increased score. 

We can conclude that the performance of the 
vegetation classification for Pond 2 and Pond 3a 
stands between 0.74 and 0.84 mean performance, 

Fig. 7 Comparison of the orthophotos derived from the aerial images acquired within the measuring 

campaigns (pixel size: 5 cm) and the vegetation labels generated by the suggested vegetation detection 

method. (a) and (b) display the orthophotos and the labels for Pond 2. (c) and (d) display the corre-

sponding data for Pond 3a, which also contains a small extent of vegetation.

Fig. 8 Comparison of all manually annotated labels and the random labels (truly random annotation) 

to one another, for the Pond 2 dataset. The number of each tick label corresponds to one of the ex-

perts annotating the data and the lengthwise- and across-nomenclature represent the direction of the 

annotation. Each value represents the mean score of the metrics introduced in Table 2, for the two 

labels compared. Additionally, each label is also compared to a random annotation for each point as a 

reference.
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across all metrics. Pond 3a has an increased score 
due to higher true positives and true negatives, 
compared to Pond 2.

4.5 Vegetation parameters
The vegetation parameters obtained through the 
methodology, outlined in Section 3.10, can be ex-
pressed as a map of the canopy height (Figs. 10a 
and 10c) and distribution plots (Figs. 10d and 10b). 
For the calculated parameters of the Section 3.11 the 
results for the ponds are shown in Table 3. 

The vegetation height map (Fig. 10) highlights the 
differences in vegetation growth for both ponds. 
The complex structures visible in Pond 2 show var-
ying vertical extent. Patches of larger vertical extent 
are mostly concentrated in dense regions with small 

spatial extent and regions of low grown vegetation 
span across larger areas of the pond. Pond 3a, in 
turn, has a limited macrophyte population with a single 
patch of notable vegetation. These differences are 
furthermore reflected in the quantitative parameters 
of both ponds displayed in Table 3. Additionally, the 
differences in vertical extent can be seen in the two 
distributions displayed in Figs. 10b and 10d. There, 
Pond 2 displays a wide range of different heights with 
a higher degree of low vegetation (<0.5 m) compared 
to high vegetation (0.5–3 m), while Pond 3a displays 
a distribution of similar vertical extent. 

5 Discussion
5.1 Challenges through scan strip overlap 
One of the challenges in the dataset of Pond 2 is 

Acronym Name Scoring Reference

F1 F1 score [0, 1] [(Pedregosa et al., 2011)

Recall Recall [0, 1] [(Pedregosa et al., 2011)

RI Rand Index [0, 1] (Pedregosa et al., 2011)

Jaccard jaccard Index [0, 1] (Pedregosa et al., 2011)

Precision Precision score [0, 1] (Pedregosa et al., 2011)

FMI Fowlkes-Mallows Index [0, 1] (Pedregosa et al., 2011)

Table 2 Table containing the different metrics used in the evaluation of new vegetation classification labels.

Fig. 9 (a, c) Boxplot of the evaluation scores for each comparison of the manually annotated data to the generated vegetation clustering. 

Each distribution contains the six different annotations from the three experts. The name and additional information about the metrics are 

displayed in Table 2. (b, d) Confusion matrices for each manual annotation used in the evaluation. The columns represent the individual 

experts and the rows the two employed axis directions used for labeling (first column: SW to NE / along, second column: SE to NW / 

across).2, for the two labels compared. Additionally, each label is also compared to a random annotation for each point as a reference.
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that the dataset contains points from two partially 
overlapping flight strips, requiring downsampling to 
achieve a homogeneous point density, which is a 
prerequisite for the introduced method. A disadvan-
tage of the selected approach is that through the 
cutoff, the distribution of the point cloud changes 
and thus a partial bias towards the overlap remains. 
This change in point distribution is clearly visible 
in Fig. 5d and can also be detected in Fig. 6a. In 
Fig. 6a, the change in structure can be seen in the 
green and orange cluster. There, the clusters from 
the same outlines as seen in Fig. 5d highlight the 
similarity within the strip overlap and furthermore in 
the high-dimensional feature space. 

The artificially increased similarity of the strip 
overlap could potentially be overcome by the selec-
tion of a fixed distance neighborhood instead of a 
k-nearest neighborhood and should improve devi-
ations of the eigenvalue related measures, as the 
neighborhood selection is influenced by the point 
density. Therefore, the vegetation classification 
method underperforms in the case of Pond 2, which 
suggests using a more homogeneous thinning ap-
proach to avoid bias in the strip overlap.

Other factors to consider are the alignment of the 
point clouds. In case of Pond 2, the two point clouds 

were not perfectly aligned, leading to discrepancies 
in the point cloud features. Such offsets of the two 
flight strips could lead to misaligned terrain points, 
which could be interpreted by the method as low-
grown vegetation. This could be improved through 
better georeferencing and should ideally minimize 
distribution-based errors (Pöppl et al., 2024). Overall, 
the observations from the dataset suggest the im-
portance of ensuring the highest possible quality of 
alignment through pre-processing of the LiDAR data 
and to correct remaining feature offsets based on dif-
ferences in densities to overcome potential offsets.

5.2 Parameter selection and supervision
A common challenge in high-dimensional data 
analysis, in addition to dimension reduction, is the 
extraction of features from the projected space 
(Luecken & Theis, 2019; Allaoui et al., 2020). In a 
two- or three-dimensional projection of the data, the 
distances do not relate to physical based metrics, 
which can induce problems in the parameter selec-
tion of clustering algorithms. Therefore, the selection 
of the correct clustering algorithm combined with a 
good parameter selection is essential for extracting 
good results from the dimensionally reduced da-
tasets. For many of the commonly used clustering 

Dataset Water surface area Vegetation covered area Vegetation volume

Pond 2 9.904 m2 42.9% 6.598 m3

Pond 3a 3.546 m2 21.6% 643 m3

Table 3 Vegetation parameters extracted for each of the two ponds.

Fig. 10  (a, c) Plane view of the aquatic vegetation extracted from Pond 2 and Pond 3a datasets. Each point of the extracted vegetation is 

colored by the vegetation height in relation to the DTM. The second panel (b, d) shows the histogram of the extracted vegetation heights for 

each point of the two ponds, given as percentage compared to all points of the submerged vegetation.
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methods for two-dimensional projection of the data, 
a supervision or revisiting of the clustering step is 
required. This often results in fine-tuning distance 
parameters or clustering centroids (Luecken & Theis, 
2019). Other algorithms use graph-based methods 
or multi-resolution clustering to reduce human su-
pervision and time spent on parameter fine-tuning 
(Luecken & Theis, 2019; Levine et al., 2015; Wolf et 
al., 2019; Zappia & Oshlack, 2018). These methods 
show promising results in other fields, but require 
more complex workflows or, in the case of graph-
based methods, data with more dimensions than 
the LiDAR dataset provides (MacQueen et al., 1967; 
Levine et al., 2015; Wolf et al., 2019).

Therefore, we use a simpler approach in this paper 
based on commonly used density-based clustering 
(DBSCAN), which further provides an integrated out-
lier detection (Pedregosa et al., 2011; Schubert et 
al., 2017; Ester et al., 1996). The downside of this 
method is the necessity of a resolution parameter for 
the dimensionally reduced space. DBSCAN uses a 
Euclidean distance measure to extract the clusters, 
which, if run with standard parameters, might lead to 
an over- or under-clustering of the projection space. 
This parameter requires supervision and a general 
knowledge of the dispersion of vegetation in the lake 
to achieve maximum accuracy. A promising solu-
tion for the extraction of detailed clusters without 
over-clustering is the emerging multi-resolution 
consensus clustering approach (Goggin & Zunder, 
2023). This would cluster at different resolutions and 
merge clusters based on similarity, making the pa-
rameter selection obsolete (Goggin & Zunder, 2023; 
Zappia & Oshlack, 2018).

5.3 Annotation in submerged datasets
A different source of uncertainty is the lack of ob-
jective and reliable ground truth data. The general 
approach of labeling data is by human annotation 
and comparison of the labels to the method’s output. 
The challenge in manual annotation is that in regions 
of ambiguous groupings, the annotations are dif-
ferent due to subjective assessments, which is why 
the labels must not only be compared to the gen-
erated labels by the method, but also among each 
other (Zhu et al., 2019). This creates the opportunity 
to give an evaluation range for the labeled data. In 
general, the evaluation of point cloud data profits 
from cross-comparison, as the large volume of data 
and the general complexity of 3D point clouds lead 
to differences in manual labeling by human opera-
tors (Anand & Rajalakshmi, 2023; Ye et al., 2021). 
It is furthermore noted that aerial images could po-
tentially further be used for scene reconstruction via 
Dense Image Matching (Mandlburger, 2019). Such 
a comparison is currently outside the scope of this 
study, as the resolution and quality of the images are 
sub-optimal. Nonetheless, future studies could use 
high resolution images to reconstruct the vegetation 
canopy and through the comparison of the data, 

could potentially improve the evaluation.
5.4 Ecological insights
The extraction of the surface area covered with sub-
merged vegetation and the vegetation volume both 
are quantities of importance in the analysis of the 
aquatic ecosystem. These measurements are already 
common for forestry LiDAR data (Zhou et al., 2022) 
and are important to the monitoring of ecosystems. 
The area and volume of the vegetation are used to 
estimate the biomass in the surveyed area and mon-
itor vital changes of the ecosystem (Michalowska & 
Rapiński, 2021; Kumpumäki et al., 2015). Due to the 
larger footprint (0.91 m diameter) of the LiDAR system 
used in the survey, the measures introduced in this 
survey are based on large cells (1 m2) and thus do 
only represent rough estimates of the vegetation pa-
rameters. This could potentially be improved by using 
UAV-borne surveys or smaller beam divergences 
for classical data acquisition with crewed aircraft, 
as this would allow for a higher point density and a 
higher spatial resolution, making smaller cells pos-
sible. In conclusion, the area and volume estimation 
techniques introduced in this study do not require 
expensive in-situ measurements and are solely data 
driven. This improves bottlenecks in the analysis of 
vast regions of aquatic landscapes, but could benefit 
from higher spatial resolutions. 

6 Conclusion
The introduced vegetation detection method benefits 
from recent advancements in high-dimensional data 
analysis and establishes an automated workflow for 
vegetation detection with minimal parameter selec-
tion. Through the extension of standard LiDAR features 
in addition with calculated structural descriptors, a 
high-dimensional dataset of the LiDAR point cloud can 
be obtained. This high-dimensional dataset can then 
be analyzed for similarities of features through dimen-
sional reduction and clustering. Each detected cluster 
is further tested for planarity to extract the clusters 
representing vegetation, which (i) builds the basis for 
vegetation labeling of the point cloud with only minimal 
parameter tuning and (ii) furthermore allows for estima-
tion of vegetation area and volume. 

This enables ecological analysis of submerged 
ecosystems, which is beneficial in a broader context 
as obtaining fundamental insights into the working 
principles and changes of aquatic ecosystems 
have become a primary focus of climate monitoring. 
Overall, the introduction of bathymetric LiDAR shows 
promising results for the automated extraction of veg-
etation in LiDAR point cloud and enables future work 
to go beyond what is currently possible using only 
in-situ measurements.
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