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Preamble
The following work was presented at the Hydrographic Conference HYDRO 2023, 7–9 No-
vember 2023, Genoa, Italy in the oral session Collaboration and Partnership, Quality, Enabling 
Technologies and Ocean Literacy.
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Abstract
Hydrographic offices are collecting hundreds of terabytes of data every day. This information 
not only comes from bathymetry data sensors, but also from weather stations, radar, ships, 
satellites, aerial and drone imagery, and other sensors. With all this data pouring in, hydro-
graphic offices need to be able to automate time consuming processes and adopt modern 
technologies. One such technology is GeoAI, the intersection of spatial data and artificial 
intelligence. GeoAI can be considered an enabling technology, in that it allows you collect the 
data once and apply different algorithms to the data for it to be for multiple purposes. Data 
collected from multibeam echo sounders can be analyzed to update ENCs by finding new 
obstructions such as rocks and shipwrecks. Using that same point cloud, GeoAI can then be 
used to understand marine animal habitat by identifying underwater structures and seafloor 
patterns that lead to increased biodiversity. GeoAI can be used to aid in coastal resilience 
projects by analyzing aerial imagery from drones captured in multiple seasons and years 
for change detection, highlight the areas that need the most attention. Machine Learning, a 
part of the GeoAI portfolio, can additionally use that same imagery data set to run predictive 
analytics, highlighting areas that are susceptible to erosion, flooding, and landslides. Many of 
the same GeoAI algorithms can be used to help maximize investments in the blue economy 
by bringing location intelligence to the decision-making process. Models can predict the best 
locations to establish aquaculture, Marine Protected Areas, and offshore energy production. 
In addition to its applications in coastal resilience projects and maximizing investments in 
the blue economy, GeoAI offers a wide array of benefits in the domain of hydrospatial data 
management. The integration of GeoAI in hydrographic offices revolutionizes the way hydro-
graphic data is processed and utilized. Traditionally, processing and interpreting vast amounts 
of hydrospatial data, including bathymetry, weather, radar, and imagery, required extensive 
human resources and time-consuming manual efforts. However, with GeoAI, these offices 
can automate complex tasks and streamline data analysis, significantly improving efficiency 
and accuracy.
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1 Introduction
Hydrographic offices are collecting hundreds of tera-
bytes of data every day. This hydrospatial information 
not only comes from bathymetry data sensors, but 
also from weather stations, radar, ships, satellites, 
aerial and drone imagery, and other sensors. With 
all this data pouring in, hydrographic offices need to 
be able to automate time consuming processes and 
adopt new technologies. One such technology is 
called GeoAI, the intersection of spatial data and ar-
tificial intelligence. GeoAI is an enabling technology, 
in that it allows you collect the data once and apply 
different algorithms to the data for it to be used for 
multiple purposes. Data collected from multibeam 
echo sounders can be analyzed to update Electronic 
Navigation Charts (ENCs) by finding hazards to nav-
igation, new obstructions such as rocks and ship-
wrecks. Using that same point cloud, GeoAI can then 
be used to understand marine animal habitat by iden-
tifying underwater structures and seafloor patterns that 
lead to increased biodiversity. GeoAI can be used to 
aid in coastal resilience projects by analyzing Satellite-
Derived Bathymetry (SDB) data and/or aerial imagery 
from drones captured in multiple seasons and years 
for change detection, highlighting the areas that need 
the most attention. Machine Learning, a part of the 
GeoAI portfolio, can additionally use that same im-
agery data set to run predictive analytics, highlighting 
areas that are susceptible to sedimentation, erosion, 
flooding, and landslides. Many of the same GeoAI al-
gorithms can be used to help maximize investments 
in the blue economy by bringing location intelligence 
to the decision-making process. Models can predict 
the best locations to establish aquaculture, Marine 
Protected Areas, and offshore energy production in 
the hydrospatial domain.

In addition to its applications in coastal resilience 
projects and maximizing investments in the blue 
economy, GeoAI offers a wide array of benefits in the 
domain of hydrospatial data management (Hains et al., 
2022). The integration of GeoAI in hydrographic offices 
revolutionizes the way hydrographic data is processed 
and utilized. Traditionally, processing and interpreting 
vast amounts of hydrospatial data, including bathym-
etry, weather, radar, and imagery, required extensive 
human resources and time-consuming manual efforts. 
However, with GeoAI, these offices can automate 
complex tasks and streamline data analysis, signifi-
cantly improving efficiency and accuracy.

This paper also aims to answer the question, how? 
by outlining the systems that need to be in place, the 
architecture of those systems, and the methodol-
ogies required for this analysis. The presentation at 
HYDRO 2023 used a few of the use cases above 
as examples to clarify the workflows. It also showed 
how a modern GIS, a platform that includes desktop, 
server, and web components, is essential to taking 
advantage of GeoAI capabilities.

2 What is GeoAI?
GeoAI is the application of Artificial Intelligence (AI) 
fused with geospatial data, science, and technology 
to solve geographic based problem sets (ESRI, 
2024). AI can be considered an umbrella term for any 
task performed by a machine that would traditionally 
require human intelligence, such as perception, rea-
soning, and learning. To solve spatial problems, we 
typically turn to two types of AI, Machine Learning 
(ML) and Deep Learning (DL). Machine learning is a 
subset of AI that refers to techniques that allow com-
puters to learn patterns withing data and acquire 
knowledge without being explicitly programmed to do 
so. As a subset of Machine Learning, Deep learning 
uses a specific machine learning process called an 
artificial neural network which is inspired by the lay-
ered approach to learning taken by the human brain. 
The relationship between AI, ML, and DL is best illus-
trated by the diagram Fig 1a. Spatial analysis tools are 
integrated with AI Models to help them find patterns, 
find anomalies, and make predictions. Geographic 
problems are solved through spatial analysis by using 
vector data, image and raster data, spatiotemporal 
statistics, and modeling. A non-exhaustive list of 
Spatial Analysis techniques is shown in Fig 1b. Put 
simply, the combining of AI techniques and spatial 
analysis is GeoAI. GeoAI, therefore, is not a product 
to be bought and sold, but an integrated method for 
conducting spatial analysis using the power of com-
puters. As Machine Learning is the method that is 
best fit for the hydrospatial data collected by hydro-
graphic offices, the focus will be on that process.

3 Machine learning
Machine learning has been tagged as 
“Revolutionizing”, or “Game Changing”. Removing 
that hyperbole, Machine learning can be used for 
five main tasks: Extracting features from imagery 
and LiDAR, finding patterns and clusters, detecting 
anomalies, extracting insights from unstructured text, 
and making predictions. As hydrographic organiza-
tion are being asked to go beyond chart production 
and provide additional hydrospatial services such as 
supplying scientific data, reporting on vessel traffic 
patterns, and using data to protect and promote the 
blue economy, leveraging some or all these capabili-
ties becomes essential. For organizations that are be-
ginning their journey of fulfilling these new mandates, 
the swirling of terms, processes, and technologies 
can be overwhelming. To get the most return for their 
efforts and investment, leveraging machine learning 
and deep learning algorithms integrated with image 
analysis tools.

4 Image classification
Image analysis is an excellent gateway into the realm 
of GeoAI for many organizations. Looking at the types 
and formats of data collected by the hydrographic 
survey teams and the types and formats of data 
available to them from other government entities, it is 
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correct. This “path” to the answer is given a higher 
value. For each data point this feedback loop is re-
peated until all the pixels have been classified (AWS, 
2024). Support Vector Machines work similarly to 
Neural Networks in that they have input and output 
layers, but it also considers the number of features in 
the input data set to find the optimal sets of classifi-
cation (IBM, 2023). SVM has been found to be more 
accurate in smaller datasets (Pal & Mather, 2005).

In supervised classification methods the analyst 
needs to have some subject matter expertise to 
create viable training samples. In a real-world ex-
ample, this could be a workflow for identifying the 
characteristics of the sea floor as it can be used 
to distinguish between rock, sand, and vegetation 
which can aid in undersea cable routing or sea life 
habitat studies. The analyst would provide the sam-
ples of what each region “looks” like and feed those 
into the algorithm. Another example would be shore-
line delineation. At the mesh point of land and sea, 
the littoral zone provides a great opportunity for the 
usage of GeoAI. The analyst can create training sam-
ples of what the water pixels look like and what the 
land pixels look like. We could even go as far as as-
signing soil type attributes to the shoreline by com-
paring the spectral signatures of different materials.

Unsupervised classification, as its name implies, 
does not rely on input from the analyst or training 
samples. Instead, it uses clustering algorithms based 
on the spectral characteristics of the image to assign 
the classes. The most common of these algorithms 
is K-Means Clustering (Madhugiri, 2022). K is the 
only value needed for input and reflects the number 
of classes in which to sort the pixels. In the Land 
Classification example, it is necessary to separate 
water, impervious surfaces, and pervious surfaces, so          
K would equal three. A centroid is selected for each 
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Fig. 1 (a) The relationship between AI, ML, and DL. (b) Spatial Analysis techniques.

(a) (b)

easy to see why. From imagery collected by drones, 
planes and satellites to data collected by various fla-
vors of echosounders and LiDAR scanners, these of-
fices are sitting on virtual mountains of data in raster 
or point cloud format. These data formats are rich in 
information just waiting to be extracted. Furthermore, 
with GeoAI, the notion of imagery can be expanded 
to include the visual output from echosounders and 
the raster output of multidimensional raster datasets. 

Image analysis takes many forms, but the end goal 
is to extract information out of an image. The classic 
image analysis technique is image classification in 
which analysts quantify the identification of features 
or objects in Imagery Classification is lumped into two 
categories, Supervised or Unsupervised, depending 
on the interaction with the analyst. Supervised 
classification involves creating training samples to 
“teach” the ML algorithm what it needs to find in the 
imagery or how to classify groups of pixels with the 
same value. This method can be a more time con-
suming as you need to create the training samples 
yourself until you have a representative amount for 
each class you want to detect. The reward is usu-
ally a more accurate result as it is comparing known 
quantities. There are three main supervised clas-
sification algorithms to know and they are simpli-
fied here. Maximum Likelihood (ML), Artificial Neural 
Network (ANN), and Support Vector Machines (SVM). 
Maximum Likelihood works by calculating a proba-
bility score based on the value of the pixel. The pixel 
gets assigned to the class with the highest proba-
bility score (NV5, 2024). Neural Networks are built to 
function similarly to the human brain. Like your brain, 
it contains numerous nodes (neurons) that are con-
nected in layers of experience. By leveraging the “ex-
perience” of each layer the algorithm makes a guess 
on the value of the node, checks if the guess was 
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cluster and distances are calculated. The centroid 
and clustering process is repeated until convergence 
has been met or all data points have been classified. 
Again, this is an oversimplification of the methodology, 
but it is good background information. Unsupervised 
classification has a couple advantages, one is analysts 
do not need to create training data as input. Second, 
it can quickly detect patterns that may be difficult to 
detect otherwise. These advantages make unsuper-
vised classification perfect for exploratory analysis or 
anomaly detection (Madhugiri, 2022). In a real-world 
example, this could be leveraged to find shipwreck or 
plane crash debris from rasters generated from echo 
sounder point clouds. Simply point the algorithm at a 
folder full of images and tell it to look for anything ab-
normal. This method, however, is less accurate as the 
algorithm treats all anomalies as equals.

Another method that needs to be discussed is the 
Object Based Imagery Analysis (OBIA). The key to 
OBIA is segmentation. Segmentation can mimic the 
way the human eye can pick out certain objects by 
grouping similar pixels into objects, rather than as-
signing individual pixels to classes (GISGeography, 
2023). Due to the initial segmentation, objects 
are classified not only by their spectral signature, 
but also their shape, size, and spatial properties. 
Buildings, cars, swimming pools, etc. are all ob-
jects that are easily detected by OBIA. For hydro-
graphic purposes, shipwrecks are an example, as 
are coral reef or sea grass patches. The method for 
detecting shipwrecks has been well documented by 
Rohit Singh and Vinay Viswambharan of Esri (Singh 
& Viswambharan, 2020). The goal of their research 
was to update the S-57 Chart with new shipwrecks 
after a disaster such as a hurricane. Manually 
searching for and digitizing all of the shipwrecks 
would have been a herculean effort as their study 

area represented over 100 km2. in Jamaica Bay, NY. 
By combining segmentation methods with super-
vised classification, they were able to identify 100s of 
uncharted wrecks (Fig. 2).

GeoAI does not need to constrained to search for 
stationary objects on the sea floor. Vessel traffic mon-
itoring is now a common task that has been laid at 
the feet of hydrographic offices. GeoAI models can 
be used to detect moving vessels and reconstruct 
their paths to understand patterns in a given port. 
Likewise, fragile ecosystems can be monitored with 
space-borne sensors. Vessels that turn their AIS off 
hoping to avoid detection can still be found. As seen 
in Fig. 3, the spectral signature of a vessel (bright 
white) is easily distinguishable from the black of the 
sea surface. This imagery is from Synthetic Aperture 
Radar (SAR) which can penetrate cloud cover and 

Fig. 2 Shipwrecks have a pattern in bathymetric surfaces that can identified by GeoAI models.

Fig. 3 Vessels detected using 

GeoAI models with Synthetic 

Aperture Radar.
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does not rely on light from the sun. Meaning, that crit-
ical areas can be monitored in all types of weather 
and all times of day. By employing GeoAI to sort 
through the noise, humans only need to be notifi ed if 
there is a new detection.

5 The case for GIS 
The advantages of using GeoAI are numerous. 
Hydrographic offi ces can save time and money 
when updating charts and providing datasets to the 
public. They can also spare manpower to aid in the 
conversion to S-100 standards. For all the clarity on 
the advantages brought by GeoAI, machine learning, 
deep learning, etc., how to leverage these tools is 
much less apparent. Integrating GeoAI into your 
workfl ows is not without challenge. New skills need 
to be developed, potentially new hardware needs to 
be purchased, and legal hurdles need to be cleared. 
However, the barrier of entry can be lowered by 
turning to a modern Geographic Information System 
(GIS). The modern GIS, such as ArcGIS produced by 
ESRI contains a multitude of tools, wizards, and pre-
trained models that enable the analyst to leverage 
GeoAI methodologies in a comprehensive package. 
From Image management, to training and running 
the models, to deriving insights, you only need one 
system. Many users get what they need from a single 
desktop application called ArcGIS Pro. Analysts do 
not have to run the analytics in one application, in-
terpret the results in another, and share them in yet 
another application.

The models, algorithms, and methods described 
above involve complex mathematics and statistical 
modeling techniques that have been limited to use 
by data scientists and statisticians. Using a modern 

GIS, such as ArcGIS, allows the everyday GIS an-
alyst to leverage the power of GeoAI by using tools 
that have the algorithms already built-in. For example, 
the Image Classifi cation Wizard in ArcGIS Pro can 
take the analyst from training sample creation, to 
training the model, all the way to fi nal classifi cations. 
GIS also can reduce the time it takes to create the 
training samples for supervised classifi cation. The 
ArcGIS Living Atlas has over sixty pre-trained models, 
including shipwreck detection and models for de-
tecting moving vessels. Vessel detection models can 
be used over streaming datasets for real-time moni-
toring in traffi c management situations or even run on 
a schedule, only alerting humans if there is a detec-
tion as seen in Fig. 4 of an ArcGIS Dashboard. Pre-
trained models can also be retrained to cope with the 
challenges presented by new geographies. With GIS 
and an integration with Python it is possible to organ-
izations to create their own domain specifi c models, 
with the only limitation being the imagination of the 
analyst.

6 Closing
Hydrographic offi ces need to be able to meet their 
main mission of providing for safe navigation for 
the waters in their country while also meeting the 
changing of political wills along with the demand for 
data and analysis. They are constantly being asked 
to do more with less or unchanging budgets. They 
must also prepare for the migration to S-100 stand-
ards. With all of these pressing needs occurring si-
multaneously, these offi ces need to leverage new 
technology. GeoAI and the associated methods and 
algorithms provide the tools needed for these organ-
izations to be more effi cient in their daily work. GeoAI 
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Fig. 4 GeoAI models can be ran on a schedule so analysts received new updates every morning.
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also provides many options and opportunities for 
automation. Examples include creating a data pipe-
line to update S-57 and S-100 charts from the same 
source data, creating seafloor classification from side 
scan sonar point clouds, and monitoring coastline 
changes. GIS provides the starting point and the 
system for taking advantage of the efficiencies to be 

gained by using GeoAI. Using GIS, offices can lev-
erage supervised, unsupervised, and object-based 
classification to find uncharted hazards, detect new 
patterns from older datasets, and create authoritative 
mapping of the sea floor for use by other scientific 
organizations. 
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