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Abstract
Tracking changes in sea-surface height with ship-based GNSS can be used to detect tsu-
namis. One year of navigation data from ships in the Pacific is examined to investigate how 
well-distributed a cargo-ship network would be for tsunami detection. There is excellent cov-
erage of the most active tsunamigenic zones, with multiple ships predicted within 30-minutes 
travel time of notable tsunamis. Tsunamigenic regions with low ship density, such as the 
Southwest Pacific, require a greater percentage of ships participating to ensure sufficient 
data. The global nature of GNSS and ship routes make this a promising, low-cost approach, 
to augment tsunami detection.

Résumé
Le suivi des variations de la hauteur de la surface de la mer à l'aide d'un système GNSS embarqué peut 
être utilisé pour détecter les tsunamis. Une année de données de navigation de navires dans le Pacifique 
est examinée afin de déterminer l’étendue de la couverture d’un réseau de navires pour la détection des 
tsunamis. La couverture géographique est excellente pour les zones tsunamigènes les plus actives : 
plusieurs exemples notables de tsunamis soulignent qu’un grand nombre de navires est à chaque fois 
prédit dans un rayon de 30 minutes de temps de déplacement du tsunami. Les régions sources de tsu-
nami à faible densité de navires, telles que le Pacifique Sud-Ouest, nécessitent un plus grand nombre 
de navires participants pour garantir des données suffisantes. La couverture géographique permise par 
l’utilisation de GNSS à bord de navires en fait une approche prometteuse et peu coûteuse pour améliorer 
la détection des tsunamis.

Resumen
El seguimiento de los cambios de la altura de la superficie del mar basados en datos GNSS de buques 
puede ser utilizado para detectar tsunamis. Se examinó un año de datos de navegación de navíos en el 
Pacífico con el fin de investigar qué tan bien distribuida sería una red de buques de carga para la detec-
ción de tsunamis. Existe una excelente cobertura de las zonas tsunamigénicas más activas, con múltiples 
embarcaciones previstas en un tiempo de viaje de 30 minutos de tsunamis considerables. En cambio, 
las regiones tsunamigénicas con baja densidad de buques, como el Pacífico Sudoccidental, requieren un 
mayor porcentaje de barcos involucrados para garantizar datos suficientes. La naturaleza global de los 
datos GNSS y las rutas de estas embarcaciones hacen de éste un enfoque prometedor y de bajo costo 
para aumentar y mejorar la detección de tsunamis.
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1 Introduction
Many of the most devastating natural hazards that im-
pact our communities are generated over, or under, 
the oceans. Over the last 20 years, following the 
Indian Ocean tsunami, the number of tsunami related 
research publications and governmental actions in 
favor of faster tsunami detection and response has in-
creased substantially (Chiu & Ho, 2007; Cummins et 
al., 2009; Løvholt et al., 2014; Synolakis & Bernard, 
2006). However, many recent tsunamis were surpris-
ingly unexpected due to their amplitude, location or 
unusual source. For example, the 2011 Tohoku-oki 
tsunami exceeded maximum predictions (Goto et al., 
2011; Kagan & Jackson, 2013), and one year later, 
the 2012 Haida Gwaii tsunami occurred in an un-
common source region (Fine et al., 2015; Leonard et 
al., 2012). Later, the dual 2018 Indonesian tsunamis 
were generated by non-standard tsunamigenic earth-
quake mechanisms (Grilli et al., 2019; Schambach et 
al., 2021; Titov, 2021). More recently, the powerful 
2022 Hunga Tonga Hunga Ha’apai (HTHH) tsunami 
was generated by a rare combination of atmospheric 
forcing, volcanic eruption, submarine landslide and 
local resonance (Gusman et al., 2022; Han & Yu, 
2022; Lynett et al., 2022).

Most of the existing observing capacity to pre-
dict and detect these tsunamis is either located on 
land, like the seismic network and land-based Global 
Navigation Satellite System (GNSS), on the coastline, 
like the tide-gauges, or close to the shore, such as 
GNSS buoys. Deep water observations are provided 
by Ocean Bottom Pressure Gauges (OBPGs) and the 
Deep-Ocean Assessment and Reporting of Tsunami 
(DART) array (Bernard & Meinig, 2011; Bouchard 
et al., 2007). However, many tsunami events have 
emphasized that those sensors are sparsely lo-
cated (Gusman et al., 2016) and often offline due to 
weather conditions, maintenance difficulties or van-
dalism (Xerandy et al., 2015). Moreover, the DART 
observing network is very costly, installed mainly by 
wealthy countries such as the USA or Japan, and 
therefore unlikely to be adopted in a dense worldwide 
configuration (Jin & Lin, 2011; Mulia & Satake, 2020; 
Qayyum et al., 2022). Current Tsunami Early Warning 
Systems (TEWS) implemented worldwide are typ-
ically based on detecting and characterizing tsuna-
migenic earthquakes occurring in subduction zones 
and, therefore, do not always adequately address 
other sources like the ones detailed above (Amato, 
2020; Srinivasa Kumar & Manneela, 2021). Each of 
these tsunami events above showed issues with the 
observing capacity in the region, or during the com-
putation of tsunami models or inundation predictions, 
limiting our ability to predict, detect, and respond to 
these hazards. They demonstrate the urgent need for 
well distributed, more densely spaced, observations 
and direct measurements from the areas between 
the source region and the communities that may be 
impacted – that is, across the oceans. A key chal-
lenge, therefore, in improving our tsunami observing 

capacity in the oceans and filling up this “geodetic de-
sert” is how to achieve this at a minimal cost. Several 
new projects and technologies have emerged in re-
cent years, allowing us to directly obtain data of in-
terest for tsunami forecasting from the ocean.

First, seafloor geodetic techniques offer unique 
possibilities to measure crustal deformation that can 
result in tsunami hazards (Bürgmann & Chadwell, 
2014). Several projects offshore Japan (Iinuma et 
al., 2021), Alaska (Brooks et al., 2023), Cascadia 
(Chadwell et al., 2018), Hawai’i (Brooks et al., 2021; 
Foster et al., 2020), and Chile (Kopp et al., 2022) 
have shown significant advances in the more precise 
understanding of the tectonic processes in areas 
usually inaccessible to standard geodetic instru-
ments. While most of these techniques are expen-
sive, recent technologies using Wave Glider ocean 
robots promise lower-cost seafloor geodetic systems 
(Brooks et al., 2021; Foster et al., 2020). Dedicated 
seafloor cable installations for tsunami detection and 
early warning have been implemented in Japan, first 
around the Nankai Trough with the Deep Ocean-
floor Network system for Earthquakes and Tsunamis 
(DONET; Kawaguchi et al., 2008), then with a larg-
er-scaled observatory along all the Japan Trench with 
the Seafloor Observation Network for Earthquakes 
and Tsunamis (S-net; Mulia & Satake, 2021). The 
North-East Pacific Time-Series Undersea Networked 
Experiments (NEPTUNE) on the west coast of 
Canada is another example of regional cabled ocean 
observatory: installed for multi-purpose research, it 
includes several instrumentations for tsunami mon-
itoring (Barnes et al., 2008). Science Monitoring 
And Reliable Telecommunications Subsea Cables 
(SMART) represent another promising approach 
for tsunami detection and observation by using the 
existing submarine telecommunications cables as 
sensors combining a pressure sensor, seismic in-
strument, and an accelerometer (Howe et al., 2019). 
New developments aim to cover all the oceans glob-
ally through regional pilot systems, for example, the 
triangle Europe – Azores – Madeira (Matias et al., 
2021), the Sumatra – Java region (Salaree et al., 
2023), and the New Caledonia – Vanuatu – Hawai’i 
line in the Pacific (Howe et al., 2022).

Other projects concentrate on data coming from 
above the ocean. The displacement of the ocean sur-
face during a tsunami directly transfers a fraction of 
this energy to the atmosphere through internal gravity 
waves. This causes measurable perturbations in the 
ionospheric total electron content (TEC) that dual-fre-
quency GNSS systems can detect (Astafyeva, 2019; 
Occhipinti et al., 2008). Initial projects based on this 
method use continuous GNSS ground-based sites to 
detect these variations (e.g. 2012 Haida Gwaii tsu-
nami: Savastano et al., 2017; 2010 Mentawai tsu-
nami: Manta et al., 2020). A few recent projects test 
these systems on board of ships (e.g. 2010 Maule 
tsunami: Ravanelli & Foster, 2020) highlighting new 
possibilities for open ocean tsunami detection. 
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A tsunami is a perturbation of the topography of 
the sea surface. Measurements of sea surface height 
(SSH) perturbations are already made on land by tide-
gauges and in the ocean by OBPGs. Some projects 
have explored airborne measurements of SSH using 
an aircraft equipped with a radar altimeter (Mulia et 
al., 2020). Satellite altimetry data also provides direct 
measurements of changes in sea level, enabling us to 
compare and validate tsunami models after an event 
(Hamlington et al., 2011; Hébert et al., 2020; Hirata 
et al., 2006; Okal et al., 1999). Satellites, however, 
are very costly and the temporal and spatial cov-
erage remain sparse thus limits their capability. More 
cost-effective improvements for operational tsunami 
monitoring deploy sensors on existing ocean plat-
forms. SSH measurements and tsunamis detection 
are already made using GNSS static buoys along the 
coast of Japan (Kawai et al., 2013). Several studies 
also demonstrated the effi ciency of using a GNSS-
based approach on board ships to measure SSH 
and even wave periods (Bonnefond et al., 2003; 
Foster et al., 2014; Rocken et al., 2005) and thus 
to be able to detect offshore tsunamis (Foster et al., 
2012; Inazu et al., 2016). 

Treated as moving tide gauges, ships can then 
provide a platform for new tsunami warning sensors. 
Packages have already been proposed and de-
ployed: they are composed of a GNSS receiver and 
antenna for data collection, as well as a communi-
cation link with a land-based server using a satellite 
communication antenna (Foster et al., 2012; Foster 
et al., 2024). To obtain precise real-time position esti-
mations at low-cost and avoid data loss, the onboard 
GNSS receiver directly processes the raw data using 
a commercial positioning service with a high accu-
racy on the vertical component (Foster et al., 2024). 
The fi nal positions are then broadcasted to a server 
located on land through a dedicated satellite commu-
nication antenna, or even better for a cost-effective 
solution, by directly using the existing internet service 

from the ship. The vertical position given is the ellip-
soidal height of the GNSS antenna. To estimate SSH 
perturbations from this raw data, a mean sea surface 
height model is applied and removed from the time 
series, followed by band-pass fi ltering to remove the 
ocean wave fi eld (Foster et al., 2012, Foster et al., 
2024). Tested both in coastal areas and in the deep 
ocean, this technique has shown the ability to de-
tect ~10 cm tsunami amplitudes (Foster et al., 2009; 
Inazu et al., 2016) and ~10 cm.s-1 accuracy of tsu-
nami currents (Inazu et al., 2020). Using offshore ob-
servations is a powerful tool to improve fi eld tsunami 
forecasting because they provide a snapshot of the 
open-ocean SSH and enable direct tsunami detec-
tion rather than inferring them through modeling the 
tsunami source (Mulia et al., 2022). The combination 
of offshore datasets, tsunami models and onshore 
datasets enables an iterative approach combining 
numerical modeling and comparison with observa-
tions and is already used in Japan for tsunami moni-
toring (Inazu et al., 2016; Mulia et al., 2017; Tsushima 
et al., 2014). 

Dense observatories of sensors for earthquake 
and tsunami detection and warning would be helpful 
throughout the ocean. In this context, this study 
investigates a proposed cargo ship network for 
GNSS-based tsunami detection to fi ll this geodetic 
observation gap in the ocean by tracking changes 
in SSH and detecting even small, ~10 cm ampli-
tude tsunamis from different sources. The fi rst ques-
tion that arises is the temporal coverage of such a 
cargo network, specifi cally: are there enough ships 
underway in the Pacifi c Ocean at all times? A corre-
lated question concerns the spatial coverage of this 
network, to identify areas with less maritime traffi c 
and therefore fewer observation points of data. A fi rst 
overview of the shipping lines in the Pacifi c Ocean 
shows an excellent temporal and spatial coverage 
of ships (Fig. 1). Thus, this study aims (i) to ana-
lyze in detail the traffi c using Automatic Identifi cation 

Fig. 1 Map of main commer-

cial ship routes color-coded 

by frequency (data from Kaluza 

et al., 2010). Green triangles: 

sources of historical fatal tsu-

namis (NGDT, 2023). Purple 

dots: DART instruments 

(NOAA, 2023).
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Ocean. The choice of a 500 km cell size matches the 
average distance between DART sensors (calculated 
from DART data provided by NOAA, 2023). We look 
at the hourly mean number of ships in each cell, cre-
ating a heat map of ships in the Pacific region for dif-
ferent epochs. For reference, at typical propagation 
speeds (800 km/h), a tsunami wave would cross one 
of our boxes in less than 40 minutes, while a cargo 
ship with a typical cruise speed of 40 km/h would 
take more than 12 hours to cover the same distance. 
An overlap of these spatial and temporal coverage 
maps with tsunami travel time (TTT) and tsunami 
models enables a direct comparison with known 
tsunami source regions. For this study, a 10 cm tsu-
nami threshold is used as a constraint to identify the 
ships’ network coverage during a tsunami propaga-
tion. This choice also corresponds to ~10 cm deep-
ocean tsunami threshold used in warning purposes 
to identify land threatening tsunamis. We note that if 
modern precise real-time position GNSS estimations 
can easily reach vertical accuracies less than 5 cm 
(Li et al., 2015; Nie et al., 2020; Trimble, 2024), on-
going studies show that the signal filtering process 
identify for now a tsunami detection threshold of 10 
cm (Foster et al., 2012; Foster et al., 2024; Inazu et 
al., 2016).

3 Results: first insights on geographic 
ships’ coverage of fatal tsunamis

Over one year of data, there are on average 
~38,000 cargo and tanker ships at any time spread 
out in the Pacific Ocean (Fig. 2). Different epochs of 
study can be used as a base of comparison: for ex-
ample, the hourly mean number of ships over each 
season shows a similar pattern in the overall cov-
erage, with a density slightly higher during spring 
and autumn periods corresponding to an increase 
in trade exchange for holiday seasons, known as 
peak season (Yin & Shi, 2018). The highest num-
bers are located along coastlines, especially in East 
Asia: ~36,000 ships, on average, are located less 
than 500 km from coast at any time. More than 
10,000 ships on average are in the cell centered in 
(29.3,122.6) corresponding to Shanghai, the bus-
iest port in the world (WSC, 2023). Complementary 
monthly time series of the average number of ships 
for some cells locating historic tsunamis are shown 
in Fig. 3, highlighting an overall similar trend along the 
year with few seasonal variations. These patterns pre-
cisely match the common maritime routes along the 
coastlines in America and Asia, between the islands 
in Southeast Asia and Oceania, and across the North 
Pacific through Hawai’i (Rodrigue, 2017). However, 
the standard deviation and/or interquartile range of 
the AIS data in these cells shows some important 
variabilities. This can be explained partly by breaks in 

Service (AIS) datasets recorded from ships and (ii) 
to compare an average network of ships to tsunami 
sources. Our goal is to assess this proposed ship 
network for GNSS-based tsunami detection: (i) on its 
contribution to trans-oceanic tsunami detection and 
characterization, (ii) on its early warning possibilities, 
and (iii) on its worldwide application as a cost-effec-
tive solution for tsunami warning. The paper finally 
explores the suitability of such a moving platform in 
the oceans to host a tsunami detection network.

2 Methodology: mapping ship traffic for 
a tsunami detection application 

The International Maritime Organization (IMO) regula-
tions state that all commercial ships exceeding 300 
gross tonnages have to send their AIS information 
via very-high-frequency radio transmission: these are 
either received by coastal stations when the ships 
are less than 100 km from the coast, or through low-
Earth-orbit satellites (Carson-Jackson, 2012; IMO, 
2002). The AIS messages provide essential infor-
mation in both static components – Maritime Mobile 
Service Identity (MMSI), ship type, and ship name 
– and dynamic components – time, coordinates ex-
cept height, speed over ground, course over ground, 
and ship heading – (Le Tixerant et al., 2018). Real-
time data is available through tracking browsers such 
as MarineTraffic1.

The present study focuses on the Pacific Ocean, 
the region with the highest tsunamigenic potential 
(Gusiakov et al., 2019; Lander et al., 2003; Röbke & 
Vött, 2017). We use the records of hourly positions 
of ships (latitude and longitude) from one year of AIS 
navigation data from the commercial shipping fleet 
to generate coverage maps of large vessels in the 
Pacific region. Multiple records in an hour from the 
same ship are removed by verifying the MMSI (nom-
inally unique) for each ship. On the contrary, breaks 
in the ships’ AIS data stream make them not always 
visible in every hourly file. The data provided by 
commercial company SPIRE Maritime was collected 
from October 15, 2018 to October 14, 2019. Only 
records of large commercial vessels designated as 
cargo or tankers are used in our analysis as these are 
the types of ships most likely to easily and effectively 
participate in a tsunami detection program as they 
spend most of their time underway and typically have 
satellite internet connections. The study covers a pre-
COVID-19 pandemic period with similar patterns in 
ship lines as now (UNCTAD, 2023). We note that the 
ship positions reported in AIS messages are not gen-
erally available in real-time, are low accuracy, and do 
not include the ship elevation, which prevents current 
AIS system itself to be applied to tsunami detection.

Several statistical coverage maps of ships are gen-
erated using a 500 km × 500 km grid over the Pacific 

1 	https://www.marinetraffic.com/ (accessed 27 March 2024).
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the ships’ records. Secondly, when creating the grid, 
each cell location is defi ned and treated separately 
from the neighboring ones; thus, depending on the 
specifi c distribution of the maritime traffi c and the in-
stantaneous locations of ships with respect to the cell 
boundaries, the total number of vessels can signifi -
cantly fl uctuate. This variability is meaningful for cells 
with an hourly mean number of vessels above 100. 
For regions with low traffi c, variations in the specifi c 
locations of those few ships lead to large standard 
deviations for the cells, but do not represent propor-
tionately signifi cant variations in regional traffi c. In one 
key tsunami area with low ship counts – the South 
West Pacifi c – there is at least one ship in each cell.

Tsunamigenic areas in the Pacifi c Ocean are mainly 
located along the subduction zones where tectonic 
processes generate earthquakes, volcano activity, 
landslides and tsunamis. This so-called Pacifi c Ring 
of Fire is highlighted in Fig. 2 and unfolded as a 
histogram of the mean number of ships per cell lo-
cation in Fig. 4: starting from the southern point of 
New Zealand, through the South-West Pacifi c is-
lands, curving around Indonesia before reaching the 
Philippines then following the trench along Japan to 
Russia and up to Alaska, to fi nally run along all the 
west American coast (where a large section of the 
tectonic boundary is a strike-slip fault) from Canada 
to Chile. We explore the geographic relationship be-
tween the ships’ locations and some of the deadliest 
tsunami sources. Of the 124 cells studied, half of 
them have been a source of a fatal tsunami: the 30-
min TTT corresponds then to the cell size (for a typical 
deep-ocean tsunami speed of 800 km/h), meaning 
that we can consider that the number of ships repre-
sented in each cell (Fig. 2), or each line (Fig. 4) cor-
responds to the number of ships located in a 30-min 
TTT. Based on the deadliest tsunami taking its source 

from the mentioned cells, the total death count rises 
above 400,000 (Fig. 4). Our data suggests that a 
total of ~4,000 ships are located on average in the 
124 cells studied. A zoom in shows that seven cells 
are sources of tsunamis with local and trans-oceanic 
death tolls above 10,000 and have a count of more 
than 800 ships on average per hour. As observed in 
Fig. 2 and confi rmed in Fig. 4, the South-West Pacifi c 
zone lacks heavy ship traffi c despite two thirds of its 
area being a source of fatal tsunamis. This is true 
to a lesser extent, for the Kamchatka – Alaska area 
and some of the Central America west coast. These 
maps demonstrate that commercial shipping lines 
offer a unique and broader range of observations 
that could augment the existing observing systems 
by providing (i) an excellent spatial coverage of the 
ocean globally, (ii) a spatial coverage very dense near 
coastlines critical for local and regional early warning, 
and (iii) an excellent temporal coverage of the ocean 
globally with few blind spots in the South Pacifi c.

4 Discussion: contribution of a ship-
based GNSS network for tsunami 
detection 

We envision the proposed GNSS package as being 
installed on ships through a voluntary participation 
program. As a realistic goal for our proposed net-
work, we use the existing Voluntary Observing Ship 
(VOS) program which provides observations of ma-
rine meteorology (Foster et al., 2012; Kent et al., 
2010) as a template. It is estimated that 11 % of the 
commercial fl eet is part of the VOS scheme which 
equates to ~4,000 ships in the Pacifi c. For our study, 
we imagine a similar network of “Voluntary Tsunami 
Observing Ships” (VTOS) that comprise of 11 % of 
the cargo and tanker ships reported in the AIS da-
tabase. The following discussion aims to deliver 

Fig. 2 Map of the hourly mean 

number of ships per 500 km 

square, based on one year of 

AIS data provided by SPIRE 

Maritime. Triangles: source 

location of historic fatal tsu-

namis color-coded by death 

toll (NGDT, 2023). Green high-

lighted cells locate the Pacifi c 

Ring of Fire, based on trench 

locations (Bird, 2003). 
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answers on the potential contribution to tsunami 
warning of these VTOS ships located in the near-fi eld 
and in the far-fi eld of a tsunami event.

4.1 Ships in the near-fi eld of tsunami events
On October 28, 2012, a major Mw 7.7 thrust earth-
quake occurred along the Queen Charlotte Fault 
Zone off the southern west coast of the Haida Gwaii 
archipelago in Canada (USGS, 2012), and generated 
a non-destructive tsunami measured all along the 
USA west coast, in Hawai’i and throughout the Pacifi c 
(Cassidy et al., 2014; ITIC, 2012). However, apart 
from a few observations from post-tsunami fi eld sur-
veys with run-ups up to 13 m in neighboring islands 
(James et al., 2013; Leonard & Bednarski, 2014), no 
other observation in the near-fi eld zone was reported. 
Few tide gauges are installed locally, and the tsunami 
occurred in the middle of the largest 1,360 km gap 
in the DART network along the North America coast 
(Fig. 5). Moreover, the near-fi eld warning can be chal-
lenging with older-generation DART buoys that would 
likely miss a tsunami signal due to the aliasing with 
high-frequency acoustic noise within the source re-
gion (Tilmann et al., 2016). As summarized by Fine et 
al. (2015), the on-land instruments such as seismic 
and GPS stations do not provide enough information 
for a precise seafl oor displacement estimation in the 
source area, which makes it challenging to obtain an 
accurate tsunami model in the near-fi eld zone. 

The 2012 Haida Gwaii tsunami provides an instruc-
tive case for examining the potential contribution to 
tsunami warning of ships in the near-fi eld of a tsu-
nami. The tsunami model and the predicted ampli-
tudes are compared to the coverage of vessels in 
the Pacifi c (Fig. 5). On average, there are ~15 VTOS 
ships within the area encompassed by the 30-min 
TTT – where no real-time tide gauges or DART sites 
were located. In the dense cells with more than 50 

ships (deep blue circles in Fig. 5), the standard de-
viation climbs to 40 % of the average of ships. The 
minimum count of ships in each cell shows that, 
temporally speaking, at least 7 VTOS ships are al-
ways present in the 30-min TTT. In the near-fi eld 
of a tsunami event, the important data to obtain is 
estimations of heights and periods to detect the 
propagating tsunami wave. This zone had predicted 
amplitudes greater than 10 cm (color-scale in Fig. 5 
in purple and red). If a ship-based network had been 
operational during this event, ~15 SSH observations 
would have been added, enabling a tsunami detec-
tion less than half an hour after the earthquake. This 
set-up of more than fi ve ships would be suffi cient to 
trigger a confi dent warning: Foster et al. (2012) show 
that with fi ve or more vessels, the chance of a false 
positive detection is less than 0.1 %. Within a 1-hour 
TTT, the network would be composed of ~33 VTOS 
ships that could contribute even more to a real-time 
imaging of the tsunami propagation.

The 2012 Haida Gwaii tsunami can be compared 
to the 2011 Tohoku-oki tsunami. As noted above, 
the Haida Gwaii region is not covered by permanent 
and overlapping instrument networks. In contrast, the 
Tohoku region is surrounded by a signifi cant number 
of in-land, coastal and deep-ocean instruments pro-
viding numerous records and ensuring a quick cal-
culation of the tsunami source function (Hayashi et 
al., 2011; Satake et al., 2013). The Haida Gwaii area 
is an uncommon source region for such a tsunami; 
indeed, only two other very small tsunamis were re-
ported in this region (Leonard et al., 2010; Rabinovich 
et al., 2008; Soloviev & Go, 1975). The low expected 
probability of a tsunami generated in this region 
(Leonard et al., 2012) demonstrates the potentially 
critical role of open-ocean tsunami observations in 
augmenting existing systems (Fine et al., 2015). Such 
a ship-based GPS network in this location would (i) 

Fig. 3 Monthly time series of the hourly mean number of ships for fi ve cells locating historic tsunamis (for the mentioned tsunamis in Fig. 2). 
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GPS network would be a major contribution to tsu-
nami early warning and fast response emergency by 
adding numerous observation points in the near-fi eld 
open-ocean tsunami area (Hossen et al., 2021).

Tsunamis in the Pacifi c are often trans-oceanic. 
Although the death toll and damages are primarily 
focused in the near-fi eld, they can strongly impact 
regions thousands of kilometers away from the initial 

validate the existence and arrival time of a tsunami 
and (ii) give accurate fi rst estimates of tsunami height 
and period in one of the most major maritime lines in 
the Pacifi c. For the 2011 Tohoku-oki tsunami ~100 
VTOS ships on average are located in the 30-min 
TTT. This compares to the actual 16 near-coast ships 
that sent AIS information in this time frame (depth of 
~100 m) (Inazu et al., 2018). Therefore, a ship-based 

Fig. 4 Histogram of the hourly 

mean number of ships (axe x) 

per cell along the Pacifi c Ring 

of Fire, based on trench loca-

tions (Bird, 2003). The name of 

the deadliest tsunami that took 

source in the area defi ned by 

the cell is indicated left of each 

bar and the color scale shows 

its death toll (NGDT, 2023). 

The blue cells indicate possible 

zones source of tsunamis, but 

with no historic fatal tsunami 

recorded. The map inset pre-

cisely indicates the direction 

of the Pacifi c Ring of Fire un-

folding. Numbers indicate the 

position of the cell / fatal tsu-

nami along axe y. 
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4.2 Ships in the far-fi eld of tsunami events
On February 27, 2010, a megathrust earthquake of 
Mw 8.8 occurred in the subduction zone where the 
Nazca plate is under thrusting the South American 
plate and generated a destructive trans-oceanic tsu-
nami in the Pacifi c known as the 2010 Maule tsunami 
(Fritz et al., 2011; USGS, 2010). The Maule tsu-
nami killed hundreds of people and caused severe 
damage locally. It was observed and forced evacu-
ation of coastal communities all around the Pacifi c. 
The 2010 Maule earthquake is one of a long history 
of similar events occurring offshore of Chile either 
in the same area in central-southern Chile (1928 
Mw 8.0 event: Beck et al., 1998), or more north 
(1906 Mw 8.4 event: Lomnitz, 1970; 1985 Mw 7.8 
event: Nakamura, 1992), or more south with the fa-
mous 1960 Mw 9.5 event (Cisternas et al., 2005). 
All these events generated tsunamis observed 
throughout the Pacific Ocean with significant 

source. The International Tsunami Information Center 
(ITIC) lists tsunamis that have caused deaths more 
than 1,000 km from the source (ITIC, 2019). Haida 
Gwaii is listed with one death in Hawai’i (USA) during 
the evacuation, as well as several tsunamis gener-
ated in Chile and impacting several South-West 
Pacifi c islands, the Philippines, Japan and North-
America west coast. The Pacifi c Tsunami Warning 
Center (PTWC) also generates “enhanced products” 
which provide more targeted predictions of run-up 
for specifi c coastlines during tsunami events (IOC, 
2014). These allow for more effective responses to 
events. Optimizing these products requires spatially 
dense imaging of the tsunami wavefi eld. Thus, the 
next step of this study is to analyze the contribution 
of a GNSS-based ship network tsunami detection on 
far-fi eld events and impacts.

Fig. 5 Hourly mean number of 

ships coverage over the 2012 

Haida Gwaii tsunami model. 

The tsunami model of max-

imum amplitude (colormap) 

is based on a RIFT model 

(Wang et al., 2009) from the 

Haida Gwaii MW 7.7 earth-

quake (source parameters: 

Dziewonski et al., 1981; 

Ekström et al., 2012). White 

contours: TTT (http://www.

geoware-online.com/). Blue-

coded circles: ships coverage. 

Green squares: DART in func-

tion during the event. Red 

squares: DART not in function 

during the event (NOAA, 2023). 

Pink squares: tide gauges 

(Holgate et al., 2013; PSMSL, 

2024).
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coastal impacts (ITIC, 2019). In comparison with 
the 1960 tsunami, the 2010 tsunami waves were 
at least three times smaller when hitting the coast of 
North America or Japan (Rabinovich et al., 2013).

The 2010 Maule tsunami is an interesting example 
of how ships both in the near-fi eld and in the far-fi eld 
of a tsunami could contribute to tsunami warning. In 
the 30-min TTT shown in Fig. 6, ~10 VTOS ships are 
located close to the coast with a standard deviation 
of 25 %. Thus, these ships could have provided re-
al-time data to warning centers: a vital dataset that 
would contribute to more precise evacuation as the 
observed run-ups vary signifi cantly on a local and 
regional scale (Fritz et al., 2011). In the far-fi eld, the 
tsunami model shows amplitudes above 10 cm over 
almost two third of the Pacifi c (color-scale in Fig. 6 
ranging from purple to green). Estimations from our 
AIS mapping in this area suggest ~300 VTOS ships 
on average. A quick comparison with the other his-
torical events in the region and the seasonal frame of 
the events, shows similar numbers in ships coverage 
which suggest an excellent spatial and temporal cov-
erage locally near the coast in Chile and confi rms an 
overall excellent coverage on the Pacifi c. These num-
bers on the far-fi eld aspect also underline that even 
if the tsunami event is small in amplitude, there are 
always ~300 new observation points capable of tsu-
nami detection. The high number of ships in the far-
fi eld emphasizes how a warning center could benefi t 

if this network was in place, by having large numbers 
of SSH observations against which to compare its 
numerical model predictions.

During a tsunami event, as soon as new observa-
tions of the tsunami are available, they are either in-
corporated into the tsunami numerical models or 
used to validate the numerical model predictions. The 
models can then be repeatedly iterated, improving the 
real time knowledge and calculation of the tsunami 
propagation and enabling a more effi cient warning. 
Several tsunamis have shown how diffi cult it is to 
obtain a real-time precise tsunami model as uncer-
tainties remain on the magnitude and the slip distri-
bution. For example, the 2012 Haida Gwaii tsunami 
numerical models didn’t predict any big inundations 
in Hawai’i (Santos et al., 2016). However, a tsunami 
warning was issued by the PTWC after misestimating 
wave impacts (Zimmerman, 2012). During the 2010 
Maule tsunami, tsunami models also didn’t closely 
match the reality: tsunami amplitude forecasted in 
the USA showed an average of 38 % error in estima-
tion (Wilson et al., 2013), while the arrival time on the 
Japanese coast was delayed of about 30 min (Kato 
et al., 2011). If observations from ships in the far-fi eld 
can seem less timely, their contribution as snapshots 
of the tsunami passage in the deep ocean constitute 
a unique dataset to improve tsunami numerical models 
in real time. Furthermore, despite the 2008 fi nancial 
crisis, the COVID-19 pandemic and the effects of 

Fig. 6 Hourly mean number of 

ships coverage over the 2010 

Maule tsunami model. The 

tsunami model of maximum 

amplitude (colormap) is based 

on a RIFT model (Wang et al., 

2009) from the Maule MW 8.8 

earthquake (source parame-

ters: Dziewonski et al., 1981; 

Ekström et al., 2012). White 

contours: TTT (http://www.

geoware-online.com/). Blue-

coded circles: ships coverage. 

Green squares: DART in func-

tion during the event. Red 

squares: DART not in function 

during the event (NOAA, 2023).
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actual wars around the world, maritime trade is set to 
grow overall (ADB, 2020; UNCTAD, 2018; UNCTAD, 
2023), with shipping costs back to pre-COVID-19 
levels (UNCTAD, 2023) and minor port traffi c varia-
tions (UNCTAD, 2022), assuring a stable temporal and 
spatial maritime coverage by ships for at least far-fi eld 
events. Finally, the 2010 Maule tsunami is of great in-
terest for the large datasets it benefi ted. Indeed, during 
the event, one ship equipped with the GNSS SSH 
measurement system was underway to Guam from 
Hawai’i and detected a ~10 cm amplitude (Foster et 
al., 2012), OBPGs deployed offshore Japan recorded 
the pressure change (Saito et al., 2010), and ground 
based GNSS TEC measurements were associated to 
the tsunami in Hawai’i and Japan (Galvan et al., 2011). 
The complementarity of all these datasets with the ac-
tual warning systems demonstrates how the tsunami 
models could be improved in real-time and in the long-
term for future events.

During the 2010 Maule tsunami event, several 
DART buoys were out of function (NOAA, 2023). 
These important gaps in coverage are recurrent: in 
2023, the DART system was functioning only 65 % 
uptime, and the new 2024-2028 mandated target 
performance is 70 %, lower than the one planned in 
2018 (NOAA, 2024). A total of 39 DART is fi nanced 
by the US in the Pacifi c, meaning that at least 10 
DART are not in function at any time. Deployment 
cost for DART climbs to $0.5M/site (Bernard & Titov, 
2015) and the network maintenance is estimated at 
$0.3M/site/year (Silva et al., 2021), which brings to 
a $78M total over fi ve years. On the other hand, a 
complete ship-board system is estimated at $5k 
with $1k maintenance cost mostly dedicated to re-
placement (Foster et al., 2024). This does not in-
clude costs for internet and the precise positioning 
service as industry representatives have suggested 
these might be donated. Over fi ve years, which is a 

reasonable lifetime for such a GNSS system, and for 
4,000 VTOS ships in the Pacifi c, that would bring a 
total of $40M. The ship-based GNSS network would 
then clearly provide a higher spatial resolution of re-
al-time observations complimentary to the DART 
system for half of the cost.

4.3 Areas with less maritime traffi c
The 2022 powerful eruption of the HTHH volcano in 
the Kingdom of Tonga resulted in one of the most 
impressive and unconventional tsunamis ever ob-
served (Gusman et al., 2022; Han & Yu, 2022). It 
constitutes a very instructive case in our approach 
as (i) the source is multi-hazard and non-seismic, (ii) 
the Kingdom of Tonga is located in a maritime zone 
with few shipping routes, (iii) however, this area is 
covered by hundreds of small and exposed islands 
with high human density on the coast, and (iv) the 
resulting trans-oceanic tsunami was also recorded 
in other oceans. 

The Kingdom of Tonga is composed of 172 small is-
lands, 45 of them inhabited distributed on a 650 km × 
200 km frame along the Tonga-Kermadec subduction 
zone. The population is exposed to a diverse range 
of strong geological processes and hazards that reg-
ularly affects the archipelago (Thomas et al., 2023a). 
Tsunamis in Tonga may be generated from subduc-
tion megathrust earthquakes (past events: Okal et al., 
2004; in 2006: Tang et al., 2008; the doublet earth-
quake in 2009: Lay et al., 2010), subaerial (volcano 
fl ank collapse) or submarine landslides (Frohlich et al., 
2009), volcanic eruptions (Terry et al., 2022), or mul-
ti-hazard events (Lynett et al., 2022) with even a pos-
sible meteorite impact (Lavigne et al., 2021). The 2022 
Tonga volcanic tsunamigenesis is often compared to 
the one during the 1883 Krakatau eruption and both 
show how crucial local and far-fi eld observations are 
to improve modeling techniques and volcanic tsunami 

Fig. 7 Hourly mean number 

of ships coverage (blue-coded 

circles) over two 2022 Tonga 

tsunami models. (a) The max-

imum tsunami amplitudes 

(colormap) based on the 

DART-inverted model (NOAA, 

2022). (b) The observed and 

simulated maximum tsunami 

amplitudes of the air-wave 

generated tsunami model 

(colormap) (Gusman et al., 

2022) calculated using a 

COMCOT model (Wang & 

Power, 2011). 
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hazard assessment (Terry et al., 2022). Moreover, if no 
large earthquakes are associated with these events, 
the seismic networks are of limited use.

The 2022 Tonga tsunami also points out again the 
possibility of poor model prediction performance for 
non-standard source events: the tsunami surprised 
the scientific community by arriving two hours ear-
lier and much larger than expected with the fast-
moving atmospheric waves inducing a forerunner 
sea height rise (Han & Yu, 2022; Hu et al., 2023). 
It also lasted longer than conventionally expected 
due to a combination of moving and static sources 
(Carvajal et al., 2022; Kubota et al., 2022). Several 
models attempting to combine all sources have been 
computed. In Fig. 7a, the first quick DART-inverted 
model realized by the NOAA shows amplitudes 
in all directions above 10 cm, easily reaching New 
Zealand, Australia, Solomon Islands, Hawai’i and 
French Polynesia. In Fig. 7b, Gusman et al. (2022) 
analyze the air-wave generated tsunami with ampli-
tudes above 10 cm only in the southeast direction, 
a propagation similar to Omira et al. (2022) model 
based on air-forcing. The overlap of the ships’ density 
indicates then different estimations: between 10 to 
150 ships in the +10 cm amplitude area depending 
on the model. A quick look at the DART observations 
confirms that only the nearby ones located in New 
Zealand had amplitudes above the 10 cm threshold 
(NOAA, 2023). The first classical NOAA model is 
thus unrealistic. However, it is used as a base for 
early warning and immediate action, meaning that if 
we consider the potential 150 ships in the +10 cm 
amplitude area defined by this model, we then have 
150 observations of SSH perturbations in the open-
ocean that would actually show smaller amplitudes or 
even not see the tsunami perturbation at all. This no 
tsunami perturbation greater than 10 cm information 
is also useful because the 150 ships’ observations 
would then directly feed the real-time model and in-
dicate that what was expected to be above 10 cm is 
actually way less. By providing a higher spatial res-
olution of real-time observations complimentary to 
the actual ones (c.f. Fig. 7b compared to DART loca-
tions), the ships would validate or improve real-time 
models. In this case, faster calculations of displaced 
water volume from the volcanic eruption and/or the 
underwater landslide could be realized (Heidarzadeh 
et al., 2022), models could be adapted taking into 
account the impact of atmospheric waves on ocean 
waves, by especially being able to determine the 
leading waves (Lamb waves) as a meteorological tsu-
nami phenomenon (Carvajal et al., 2022; Suzuki et 
al., 2023). Ships equipped with ionospheric perturba-
tions sensors as proposed in the introduction could 
improve the number of GNSS observations needed 
to analyze acoustic-gravity waves propagated by this 
eruption and tsunami (Ghent & Crowell, 2022).

The 2022 Tonga tsunami is of particular interest in 
this study due to its location away from large populated 
centers and thus away from observational infrastucture. 

Local observations from social media videos and in-
terviews were available only a few weeks later, Tonga 
being under strict international lockdown during the 
COVID-19 pandemic. In an archipelago where more 
than 60 % of the population lives below 15 m eleva-
tion (Thomas et al., 2023a), communication was im-
possible due to deep-sea telecommunications cables 
being severed (Terry et al., 2022), creating a lack of re-
al-time data. The tsunami was recorded on nearby tide 
gauges and DART sensors (Gusman & Roger 2022), 
as well as all across the Pacific Ocean, with impacts 
in Japan (Tsukanova & Medvedev, 2022), China (Wang 
et al., 2022) and Mexico (Ramírez-Herrera et al., 2022). 
Most records were from coastal gauges, leaving a huge 
gap in observations in the ocean. Most of the South-
West Pacific is affected by a lower coverage of ships 
both temporally and spatially, while at the same time 
being a major geological hazard region as one quarter 
of the world’s seismicity and tsunami sources have oc-
curred there (calculated from NGDT, 2023). There are 
only on average ~7 ships within the area encompassed 
by the 1-hour TTT just before arriving at Fiji’s east coast. 
With a random 11 % fleet participation, there would be 
no, or only one, VTOS ship in this area to capture near-
field observations. This questions the potential value of 
a GNSS-based ship tsunami detection network in the 
near-field of a tsunami in areas with less maritime traffic. 
This lack of possible observations points in one of the 
highest vulnerable tsunami hazard region echoes how 
poorly documented this region is in tsunami-related 
publications compared to other regions. A literature 
search show that Tonga totals around 100 tsunami-re-
lated publications, half of them published after the 2022 
event and almost two orders of magnitude fewer than 
Japan (Thomas et al., 2023b). GNSS-based ship data-
sets would offer a unique cost-effective tool to fill gaps in 
ocean observations (Metcalfe et al. 2018), contributing 
to more research studies and more real-time knowledge 
of tsunami hazard in this region. To address areas of 
low density of ships in our hypothetical network, we 
note that our VTOS concept here simply applied an 11 
% selection from the full database. It is entirely possible 
to propose that an actual VTOS network would deliber-
ately focus effort on soliciting collaboration from ships 
that operate in low-density coverage zones, resulting in 
a much higher percentage representation there than the 
11 % average. 

Another approach would be to envision the use 
of other type of ships in the network. Cruise ships 
cover all oceans and regularly transit through the 
South-West Pacific region making several stops 
around the touristic islands (e.g. cruise ships op-
erators Compagnie du Ponant or Royal Caribbean 
Group destinations). Although less temporally regular, 
their communication links are usually excellent and 
would assure quick data transfer. Finally, the AIS data 
studied in this paper shows that 60 % of the ships 
in the South-West Pacific region are fishing boats, 
usually located all around the archipelagos and cov-
ering a wide range of the ocean never accessed by 
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cargo ships. If the same methodology presented 
in this paper is applied to both cargos and fishing 
ships with the same rate of 11 % VOS ships, then 
the fishing ships contribution would definitely assure a 
minimum of 5 VTOS ships at all time in the near-field 
of any tsunami events. Additionally, it might be that 
the connectivity between ports of small islands in the 
South-West Pacific Ocean and the traditional trading 
partners in Oceania, Southeast Asia, East Asia and 
North America will increase, tending to more traffic 
and thus more potential VTOS data (ADB, 2020).

The worldwide impact of the 2022 Tonga tsunami 
(Gusman et al. 2022) even affected the atmosphere 
in the Black Forest in Germany, almost at the antipode 
of Tonga (Widmer-Schnidrig, 2022). If this can be 
seen as an exceptional case, several tsunamis have 
impacted different coastlines from different oceans: 
the unprecedented 2004 Indian Ocean tsunami was 
clearly observed in the Pacific Ocean and the 2021 
South Sandwich Islands tsunami was observed in 
all oceans (Roger et al., 2022). Those examples re-
veal how crucial more observations covering all the 
oceans are needed to understand such extraordinary 
phenomenon. Our VTOS concept is not in any way 
limited to the Pacific, and although the Pacific Ocean 
is the zone of highest number of historical fatal tsu-
namis, they have occurred in all ocean basins. The 
global trade volume is at 80 % seaborne (UNCTAD, 
2022) and never ceases to increase as shipping 
routes schedule gain in frequency and crossovers 
(Carlini et al., 2022; Rodrigue, 2017; Tournadre, 
2014). By crossing three oceans with regular tsu-
nami events, the Atlantic, the Indian and the Pacific, 
as well as the Mediterranean Sea known as another 
historical hotspot for tsunamis, a worldwide network 
of ships equipped with tsunami sensors would thus 
temporally and spatially cover all tsunami sources. 

5 Conclusion
Tsunamis have claimed the lives of hundreds of thou-
sands of people and are always associated with 
significant economic losses through infrastructure 
damages and costly evacuations. More temporal 
and spatial observations across the oceans are 

necessary to improve warnings and protect coastal 
communities. Recent studies demonstrate that a 
ship-based GNSS network analyzing in real-time 
the SSH is capable of detecting tsunamis, thus 
adding precise tsunami observations in an actual 
geodetic observational gap, and hence improving 
tsunami warning at a reasonable cost. We find that 
the commercial shipping fleet represents a vast ex-
isting infrastructure, with ~38,000 ships on average 
at any time in the Pacific Ocean, with the ship density 
highest along coastlines and most source regions of 
tsunamis. The one year of AIS records studied here 
demonstrates that 73 % of the Pacific Ocean is con-
stantly covered by ships less than 1,000 km distant 
from each other, and more than 90 % of the tsunami 
source regions are covered by a dense ship network 
that could augment local and regional early warning of 
near-field tsunamis. For far-field events, ships would 
be new observations points, improving in real-time 
models and enabling more effective and reliable 
tsunami forecasting and warning. For geographic re-
gions less visited by large ships, several options are 
available to densify a potential VTOS network in these 
low-density coverage zones. Using the global cargo 
ship fleet, with its persistent spatial and temporal cov-
erage, including in tsunamigenic regions, to form a 
ship-based GNSS network would be a cost-effective 
approach for augmenting tsunami detection.
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