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Abstract

Résumé

Global climate change leads to an increase in local heavy rainfall events causing 
nearly unpredictable flash floods worldwide. This paper introduces a novel and 
flexible low-cost water gauging technology, called Open Water Levels, using 
smartphones as low-cost measuring devices enabling the crowdsourcing of water 
levels on demand with accuracies of a few centimetres. This merely requires 
smartphone camera images of a riverbank and approximate values of the camera 
position and rotation measured by smartphone sensors. The images are analysed 
for the water line that is further projected into object space and intersected with a 3D 
model, e.g. from a GIS database, to derive water level information. 

Keywords: water level measurement, smartphone application, image processing, Photo-
grammetry, crowdsourcing, low-cost, flood event

Le changement climatique mondial entraîne une augmentation du nombre d’épi-
sodes locaux de fortes précipitations, qui provoquent des crues soudaines presque 
imprévisibles dans le monde entier. Cet article présente une technologie de mesure 
de l'eau novatrice et flexible, à faible coût, appelée Open Water Levels, qui utilise 
des téléphones portables comme dispositifs de mesure à faible coût permettant une 
bathymétrie participative à la demande avec une précision de l'ordre de quelques 
centimètres. Cela nécessite simplement des images de la rive prises par la caméra 
d'un téléphone portable et des valeurs approximatives de la position et de la rotation 
de la caméra mesurées par les capteurs du téléphone. Les images sont analysées 
pour détecter la ligne d'eau qui est ensuite projetée dans l'espace objet et croisée 
avec un modèle 3D, par exemple à partir d'une base de données SIG, pour obtenir 
des informations sur le niveau d'eau.

Mots clés: Mesure du niveau d'eau, Application smartphone, Traitement d'image, Pho-
togrammétrie, Bathymétrie participative, Faible coût, Inondation
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Resumen

El cambio climático global produce un aumento en los incidentes de precipitaciones 
localmente intensas, provocando inundaciones repentinas en todo el mundo que 
son casi imposibles de predecir. Este artículo introduce una tecnología de medición 
del agua novedosa, flexible y de bajo coste, llamada Open Water Levels (“Niveles 
de Agua Abiertos”), usando teléfonos móviles como dispositivos de medición de 
bajo coste que permiten un sistema de colaboración abierta de los niveles de agua 
a demanda, con exactitudes de unos pocos centímetros. Esto solo necesita 
imágenes tomadas con la cámara de un móvil de la orilla de un río, y valores 
aproximados de la posición y rotación de las cámaras medidas por los sensores del 
teléfono. La línea de agua a partir del análisis de las imágenes se proyecta en el 
espacio de objeto y se realiza una intersección con un modelo 3D, por ejemplo de 
una base de datos SIG, para derivar información sobre el nivel del agua.

Palabras clave:  Medición del nivel del agua, aplicación para teléfonos móviles, procesa-
miento de imágenes, Fotogrametría, Colaborativa, Bajo Coste, Inundación 
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1. INTRODUCTION

Along with droughts, floods are one of the two most important water-related disasters closely 
linked to global climate change (United Nations, 2021). A consequence of climate change is an 
increase in locally heavy precipitation (Lehmann et al., 2015, Mueller and Pfister, 2011), which 
can cause almost unpredictable flash floods occurring in shortest times at smallest water bodies. 
A dramatic example is the flood disaster in the north of Rheinland-Pfalz, Germany in the summer 
of 2021. Storm events led to several flash floods in the district of Ahrweiler resulting in numerous 
deaths and injuries as well as a widely destroyed infrastructure within a few hours. 

Hydrography is concerned with surveying and monitoring the physical characteristics of marine, 
coastal and freshwater environments, including rivers (IHO, 2022). One key parameter to be ob-
served is the water level. Conventional water gauging stations monitor water levels reliably in de-
fined ranges, but they are very expensive in construction, maintenance and operation. For this 
reason, they are usually installed at water bodies relevant for water management with large dis-
tances to each other while smaller water bodies remain often ungauged, e.g. Kirchner (2006). 
The associated high costs are also one reason why water resources are insufficiently monitored 
in many regions of the world, e.g. UNESCO and UN-Water (2020). In the case of extreme events, 
failures and destruction of such stations must be expected by unforeseen floods, as happened in 
the 2021 flood disaster, which were crucial for disaster management. The decisions made in re-
sponse are still heavily criticised (Spilcker, 2021).

In order to improve the prediction quality of flood events, novel, cost-effective and versatile water 
gauging tools are required. These should be oriented towards the accuracy potential of conven-
tional measuring systems to present an option for complementary use in existing infrastructures. 
Such a tool could be based on crowdsourcing – a concept that has gained popularity in recent 
years to collect large amounts of data in very short times with the help of volunteers, sometimes 
also called citizen scientists. In many crowdsourcing applications, people use their fully equipped 
smartphones, which include high-resolution cameras, a variety of position and orientation sen-
sors, powerful processors and large storage units, as measuring devices. 

Elias (2021) provides a comprehensive study on the use of smartphones for photogrammetric wa-
ter level measurement. The introduced Android smartphone app Open Water Levels (OWL) tar-
gets the crowdsourcing of water level data on demand, e.g. at ungauged rivers during heavy pre-
cipitation or during floods when data from measuring stations are not (anymore) available. Every-
thing people have to do is to take pictures of a riverbank using their smartphone camera to deter-
mine the prevalent water level. The app will then detect the water line in the image and transform 
it into a georeferenced water level measurement by intersection with an existing 3D model. Pro-
vided widespread use of this app, this method enables the spatio-temporal densification of hydro-
metric networks.

This article summarises the key points of the developed water-gauging tool and identifies remain-
ing tasks to be solved before bringing the tool into technical use. The structure is as follows: 
Chapter 2 gives some basic knowledge on conventional water gauging and shows novel alterna-
tive methods based on photogrammetry. Furthermore, some information on crowdsourcing is pro-
vided. Chapter 3 outlines the technology behind OWL and designates the requirements for suc-
cessful use. The workflow is summarised with regard to software design and implementation in 
chapter 4. Chapter 5 assesses the current accuracy potential of OWL by comparing water levels 
measured from OWL with those from a local gauging station serving as reference. Finally, chapter 
6 gives an outlook on future methodological and technological improvements.

2. BASICS

This section briefly discusses the requirements of conventional measuring systems that should be 
taken into account when developing new measuring methods to be used in a complementary 
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manner. Moreover, innovative photogrammetric solutions are presented that can already solve 
the problem of high costs in water gauging but might be less suitable in the event of flooding. In 
this case, crowdsourcing could be a remedy, whose concept, benefits, but also problems to be 
considered are explained below.

2.1. Conventional water gauging and accuracy requirements
Conventional gauging stations implement complementary measuring systems to reliably measure 
water levels, i.e. the distance between the water surface and the gauge zero, which is a locally 
defined foot point slightly below the lowest level measured over a longer period of time. In Germa-
ny, all requirements concerning gauge station installation and maintenance as well as data collec-
tion, evaluation, provision and quality assurance are defined in a national guideline called 
“Pegelhandbuch” (LAWA, 2018). It is defined that water levels, taken at running waters, have to 
be measured over 15 minutes (single values) and 24 hours (daily mean). The accuracy require-
ments amount to 2.5 and 1.0 cm for single values and daily mean, respectively. Consequently, 
novel gauging methods should target this accuracy level to serve as a complementary instrument 
in a hydrological measurement network.

2.2 New alternatives for water gauging
Since conventional gauging stations have to meet high standards, they are expensive in pur-
chase, installation and maintenance. Thus, they are sparsely installed and mainly at river sections 
of relevance to water management. Due to increasing heavy precipitation events, there is a grow-
ing demand for alternative water level measuring methods being less expensive, widely and flexi-
ble usable and applicable during extreme events. Recently, innovative photogrammetric measure-
ment techniques have been developed based on low-cost cameras to monitor rivers of different 
sizes. The cameras face targets that have been installed close to the water surfaces or inside the 
water bodies enabling the derivation of water level information, e.g. Eltner et al. (2018), Mor-
genschweis (2018), Lin et al. (2018), Bruinink et al. (2015). These are valuable tools to establish 
monitoring networks in so far ungauged catchments, but they are limited to waters where camer-
as and targets can be permanently and safely installed. In addition, most approaches require 
calm water as the water line must be marked linearly on the target for automatic detection. Both 
impedes the use in case of floods.

The smartphone-implemented water-gauging tool presented in this paper aims to take up this 
point. It provides a flexible option to measure water levels by crowdsourcing at almost any time 
and river targeting the accuracy requirements of conventional gauging stations of a few centime-
tres.  

2.3 The idea behind “Crowdsourcing”
According to the definition of NOAA (2020), Citizen Science means the involvement of citizens in 
solving scientific questions. The level of participation ranges from making unused computing 
resources available to scientists supporting computationally intensive calculations, to active 
participation in data collection and analysis (Haklay, 2013). A well-known form of Citizen Science 
is the use of citizens as human sensors to collect large amounts of data in shortest times, which 
is referred to as crowdsourcing (Heipke, 2010). In this regard, crowdsourced bathymetry (CSB) 
initiatives are experiencing a significant growth in the hydrographic community. Their activities 
include the integration of shipborne depth measurements targeting a global seafloor mapping, 
e.g. Pavić et al. (2020), Mayer et al. (2018). Necessary CSB guidelines are defined and 
maintained by the CSB working group (CSBWG) of IHO. 

With the increasing functionality of smartphones, crowdsourcing is becoming more and more pop-
ular in applied sciences. Examples are collecting lots of training data for machine learning, e.g. 
Ahn and Dabbish (2004), improving navigation services, e.g. Wright (2021), mapping, e.g. Sarker 
et al. (2021), or data assessment, e.g. Strobel et al. (2019), Etter and Strobel (2018). This makes 
crowdsourcing particularly interesting for smartphone-based water level measurement because 
the required measurement tool, the smartphone, is largely owned by the people, which makes 
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water gauging possible at the places where the data is needed. Responsibilities always lie with 
the experts. Thus, they should send instructions and warnings regarding data collection via a spe-
cific app to volunteers who might be close to areas of interests (AOIs). A dedicated app also 
helps to remedy the well-known crowdsourcing problem of limited quality control and data hetero-
geneity (Burghardt et al., 2018) providing explicit user instructions for correct data acquisition and 
running a preliminary data review regarding expert-defined constraints. For example, the meas-
urement results could be checked for plausibility by including location information or by compari-
son with data sets from other users captured at one location. 

3. METHODOLOGY

The development of a smartphone-implemented photogrammetric water-gauging tool involves 
two problems to be solved. First, an image analysis method is needed to measure water lines in 
handheld smartphone images without imposing specific requirements on the water body and to 
the user, e.g. pre-installed targets or the need for a specific smartphone or additional equipment. 
Second, a method is needed to transfer the image-measured 2D water line into 3D object space 
to derive georeferenced metric water level information. The principle is shown in Figure 1.

Figure 1: Illustration of OWL. Left: Detection of water lines in smartphone camera images. Right: Projection 
and intersection of the 2D water line in 3D object space to derive water level information.

3.1. 2D water line detection

As described by Kröhnert and Meichsner (2017), there are various methods in the literature to 
detect and segment water surfaces in images. However, most are neither implementable on 
smartphones nor applicable to running waters. Therefore, the authors present a semi-automatic 
solution to measure water lines in close-range images based on the extension of the 2D image 
space by the dimension of time.

Instead of a single image, the user takes a short time-lapse sequence targeting the riverbank 
where the water level is to be measured (Figure 1, left). The images are co-registered to calculate 
a spatio-temporal texture of the scenery, which outlines areas being rigid or in motion within the 
time-lapse interval. Herein, waves on the surface of running or stationary water bodies will usually 
create a distinct spatio-temporal texture. This information enables the segmentation of dynamic 
image content, i.e. running water, from static image areas, i.e. the bank area. The user is shown 
an average image of the time-lapse sequence that allows for a good visual assessment of the wa-
ter line. S/he is asked to roughly trace the water line on the smartphone display to limit the area 
where the water line has to be finally measured (Figure 2, left). The traced line is translated into 
the camera image and the variability of the adjacent image areas is analysed. A region growing 
approach is used to find clusters of static and dynamic image content whose boundary approxi-
mate the water line. Potential outliers are removed by a locally weighted regression. The final 
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water line is determined by a spline fit allowing for subpixel resolution. 

Note that the coordinates of the 2D water line are measured in relation to the image coordinates 
of the master image. This is the first image of the time-lapse sequence to which the remaining 
images are co-registered for spatio-temporal texture calculation. OWL displays the calculated 2D 
water line to be reviewed by the user (Figure 2, right). If the water line could be reliably detected, 
it can be released for further processing. If the measurement must be rejected, it can be repeated 
or the coarsely user-selected water line can be accepted.

Figure 2: Visualisation of user interactions in OWL (from Elias, 2021). Left: pre-selection of the water line in the 
time-lapse sequence, Right: Acceptance / Rejection of the image-measured water line.

Metadata acquisition 
When starting the time-lapse sequence acquisition, parameters about the camera, e.g. focal 
length, image format or pixel size, as well as geographic information about the smartphone cam-
era position and rotation measured by built-in smartphone sensors are acquired and stored as 
metadata. This data is needed to approximately describe the imaging geometry, which is key for 
transferring the image-measured water line into object space. 

3.2. Water level determination

The initial method for interpreting water level information from smartphone-measured water lines 
has been introduced by Elias et al. (2019). In the following, key points and subsequently imple-
mented optimisations are outlined.

Requirements
The projection of the 2D water line into object space requires, on the one hand, precise 
knowledge about the interior and exterior orientation parameters (IOP/EOP) of the master image 
and, on the other hand, 3D reference data to derive metric information about the water level 
(Figure 1, right). This 3D data can be a simple point cloud of the environment around the 
extracted water line, or a digital surface model (DSM) stored in a geo information system contain-
ing geographic and colour information. Such data can be quickly generated via Structure-from-
Motion (SfM) tools, e.g. using images from Google Street View (Bruno and Roncella, 2019) or 
Google River View (Bowles and Babcock, 2015). In addition to this, images might be captured 
from UAVs quickly and cost-effectively at relevant locations along rivers that should be monitored 
by citizen scientists. Another option is the use of unoccupied water vehicles (UWVs), which are 
equipped with numerous measurement systems to map water and shore areas in large scales 
within short times, e.g. Eltner et al. (2020), Bertalan et al. (2020), Sardemann et al. (2018). 

Image-to-geometry registration
It is well known that the accuracy and reliability of smartphone sensors is not comparable to pro-
fessional geodetic instruments, impeding a direct measurement of smartphone cameras EOP. 
Merry and Bettinger (2019) report lateral position accuracies of several meters when measured 
by a standard smartphone-implemented global navigation satellite system (GNSS). Although 
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smartphone sensor fusion enables the measurement of camera rotation parameters, Elias and 
Maas (2020) report serious errors of more than 90 degrees when measuring the azimuth, i.e. 
compass angle, due to magnetic perturbations. Besides EOP-related issues, determining the IOP 
requires a rigorous camera calibration. This, however, contradicts the flexible usability of the tool 
and its applicability for crowdsourcing due to required expert knowledge. Furthermore, Elias et al. 
(2020) and Chikatsu and Takahashi (2009) show that the geometry of smartphone cameras is 
highly susceptible to self-heating and physical forces, which would make any pre-calibration inva-
lid.  

Both, IOP and EOP of the master image during the actual measurement can be determined 
simultaneously by an on-the-job calibration, e.g. Luhmann et al. (2015). In the case of OWL, this 
is done without the need for any user input by registering the camera image with a synthetic, 
photorealistic image of the 3D reference data. This synthetic image is rendered from colour 
texture information of the 3D data, using the smartphone-measured approximations of the IOP 
and EOP to replicate the perspective of the camera image. The fully automatic image-to-image 
registration of the master image to the synthetic image storing well-distributed 3D object 
information in different depths based on the camera position enables the determination of the IOP 
and EOP by spatial resection. 

The original approach of Elias et al. (2019) uses interest operator point features to perform 
camera-to-synthetic image registration, which works well in most conditions but likely fails when 
both images show too different perspectives or colour textures. Interest operator point features 
are usually characterised by gradients, stored in feature vectors, describing directional changes of 
grey value intensities between neighbouring pixels. Features are assumed similar in two images 
when the distances of the corresponding feature vectors are minimal. When perspective and 
colour texture of both images are too different, this matching criterion is difficult to accomplish. 
Perspective problems usually result from inaccuracies in the smartphone-estimated EOP. Colour 
texture problems must be considered when both images show different vegetation or illumination. 

New feature matching approaches based on deep learning are able to learn and recognise com-
plex image semantics such as specific object structures. These learned features show impressive 
results when matching images captured under highly different perspectives or showing different 
colour textures. Some examples are DISK (Tyszkiewicz et al., 2020), R2D2 (Revaud et al., 2019) 
and D2Net (Maiwald and Maas, 2021, Dusmanu et al., 2019), with the latter currently implement-
ed in OWL. Elias (2021) demonstrates the benefit of using learned features over interest operator 
point features in camera-to-synthetic image registration considering the aforementioned pro-
blems. An example is given in Figure 3 where camera and synthetic image show different 
colour textures due to high water level (top) and illumination (bottom). Obviously, the use of 
learned features outperforms the use of interest operator point features.

Figure 3: Camera-to-synthetic image registration using interest operator point features (left) and learned features 
(right). Both images show different colour textures. Red lines correspond to matched feature points. 
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Water level determination
After calculating IOP and EOP, the geometric transformation between the master image and the 
3D reference data can be established. The 2D water line is projected pixel by pixel onto the 3D 
data to obtain a 3D water line through intersection points. The final water level is calculated from 
the median level and georeferenced in the super-ordinate coordinate system of the 3D data. 

4. SOFTWARE DESIGN AND IMPLEMENTATION

According to Nielsen (2006), crowdsourcing tasks should be kept simple and avoid technical, 
logistical and intellectual barriers to activate users from different backgrounds and to reduce 
errors when solving the assigned tasks. Providing suitable software can make a significant contri-
bution to this. OWL aims to overcome these barriers using an appropriate system- and application 
design, which will be discussed in more detail below.

To reduce technical barriers, the workflow, outlined in Chapter 3 and visualised in Figure 4, has 
been implemented using a three-tier client-server architecture, e.g. Eckerson (1995), to distribute 
processes to dedicated systems. These are:

• Client tier (smartphone app OWL)

• Data-server tier (database)

• Application-server tier (remote workstation)

Figure 4: Workflow and implementation of OWL. 

The user only interacts within the client tier using a provided front end, here in the form of the 
smartphone app OWL. This app should be performant and therefore only perform lightweight 
tasks, i.e. time-lapse sequence acquisition, 2D water line processing and metadata collection 
from smartphone sensors (see Chapter 3.1). Furthermore, the app is designed according to the 
model-view-presenter principle to separate the user interface from the business logic, so that the 
smartphone remains responsive at all times, e.g. Muntenescu (2016). This helps to prevent the 
exclusion of potential user groups using less powerful devices. Once the water line has been 
extracted, its image coordinates, the master image and the metadata are send to the data-server 
tier for further processing. The app can be closed and the user will receive a notification when the 
water level was determined. 

The data-server tier establishes the communication between the client and the application-server 
instance. Once it receives data from a client, it checks if all requirements are fulfilled, i.e. availabi-
lity of 3D reference data and plausibility of IOP/EOP approximations, and forwards the input data 
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to the application server. If the data has been processed, the data server receives and stores the 
result and notifies the user.

All computing and memory-heavy processes are outsourced to a remote workstation owned by 
the application-server tier, i.e. image synthesis from, on-the-job calibration and water level deter-
mination (see Chapter 3.2).

In order to reduce intellectual barriers, the app uses the look and feel of a standard camera app 
as it is based on the open source framework Open Camera (Harman, 2022). Furthermore, the 
app aims to be auto-plausible, guides the user systematically through the entire data acquisition 
process and reduces textual communication as much as possible using icons instead of texts. 
The user interface can be seen in Figure 2. 

To reduce logistical barriers, the app implements a map on which the user can find locations 
where the water-gauging app can be applied. At these locations, 3D reference data has been col-
lected and linked to OWLs database. A notification function, which needs to be implemented, 
would enable experts to send messages to local user groups when current water level information 
is needed at the specific locations.

More details on software design and requirements are given in Elias (2021) and Elias et al. 
(2019).

Implementation status
All components of OWL, i.e. smartphone app, data server with communication interface and 
application server, are available in Beta version. The app was tested on several smartphones 
from different manufacturers with Android operating system versions 7.1 to 9.0. Data and applica-
tion servers are currently set up on a dedicated computer. Before a final release, unit tests must 
inevitably be carried out to test the individual components, using or simulating various devices, as 
well as integration tests to verify the interaction of all components. Furthermore, the system has 
to be scaled up using, for example, professional cloud computing services and data management 
systems.  

5. EVALUATION OF THE METHODS AND ACCURACY ASSESSMENT

OWL has been evaluated by comparing single value measurements of a conventional water 
gauging station serving as ground truth to water level measurements made by OWL. The valida-
tion tests were carried out at the river Weißeritz in Dresden-Plauen, Germany, observing the 
riverbank from a bridge at a distance of 20 metres (e.g. Figure 3). 3D reference data were availa-
ble in the form of a 3D point cloud generated from SfM and georeferenced with GNSS. The point 
cloud has a resolution of about 25.000 pts/m² with a single point accuracy of approximately 1 cm. 

The accuracy assessment is shown in detail in Elias et al. (2019). To sum up, 20 observations 
were carried out at different days and times and an overall standard deviation of 1.9 cm to 
conventional measurements has been achieved evaluating 17 of 20 measurements. In three 
cases, no water level could be measured. This was due to the generation of the synthetic image 
using poor EOP estimates from smartphone sensors, impeding the alignment to the camera 
image by interest operator point features as both images showed highly different perspectives. 

In this paper, an updated assessment of accuracy and reliability is presented reprocessing the 
original observations using the new version of OWL that implements learning-based feature 
matching via D2Net. Again, the overall standard deviation amounts to 1.9 cm, but including 19 of 
20 matches. In one case, camera and synthetic image do not show any matching image content. 
In summary, the reliability of OWL could be increased using learned features while maintaining 
high accuracy.
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Factors on accuracy and reliability 

Three main factors on accuracy and reliability can be identified: the quality of the 3D reference 
data, the used smartphone camera and sensor technology as well as the image setting.

OWL requires high-resolution 3D reference data, which should well represent the prevailing map-
ping situation. The data needs to be precisely georeferenced to enable an automatic assignment 
with the georeferenced image data from the smartphone and to measure water levels in a com-
mon super-ordinate coordinate system. In case of major structural changes near the water body 
after measuring the 3D reference data, it is recommended to update the 3D reference data to 
have sufficient homologous image content available for on-the-job calibration.

Another factor is the quality of the smartphone camera images. The higher the resolution of the 
image, the higher the resolution of the 2D water line. Furthermore, high-resolution and low-noise 
images benefit feature detection and matching when calibrating the camera. In addition to the 
camera, the sensors used to approximate the EOP play a decisive role, as erroneous measure-
ments strongly affect the reliability of the application. A remedy is the implementation of a map 
that enables the user to review and, if necessary, interactively correct the sensor-measured EOP. 

Finally, a decisive factor is the selection of the image setting, i.e. image perspective and camera-
to-object distance. This and the camera quality have significant impact on the 2D water line de-
tection as well as feature density in the implemented on-the-job calibration. It is important to 
choose a small distance to the water line, but still ensure that sufficient background information 
needed for camera-to-synthetic image matching is available. A corresponding recommendation 
should be provided to the user via the app. 

6. CONCLUSION AND FUTURE WORK

This paper presents a novel photogrammetric smartphone-implemented water-gauging tool, usa-
ble by non-experts and applicable for crowdsourcing. This tool achieves accuracies similar to con-
ventional gauging stations and demonstrates its potential for complementary use in hydrometric 
measurement networks. 

The required user interaction is low and is essentially limited to image acquisition and the delimi-
tation of the AOI for 2D water line detection, which works well in most conditions. Sometimes, 
problems can occur when the image is over- or underexposed in the bank area. Recently, howev-
er, novel routines have been published to recognise and segment water surfaces in images via 
deep learning (see Figure 5 by Akiyama et al., 2020). Assuming a model being trained on various 
images showing running water surfaces, this approach might, on the one hand, solve the expo-
sure problem and, on the other hand, further reduce the effort for water line detection using a sin-
gle image of the riverbank instead of an image sequence. The image processing could be done 
completely online, posing even less demands on the used smartphone and the user.

Figure 5: Successful river surface detection in over-/ underexposed images (from Akiyama et al., 2020).

In order to translate the water line into the object space, geo-referenced 3D reference data with 
colour information are required. These can be easily generated using, for example, images from 
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UAVs equipped with high-precision GNSS receivers allowing the generation of DSMs with cm-
level accuracies using SfM tools, e.g. Forlani et al. (2018). The calibration of the measuring sys-
tem takes place automatically at the time of the measurement requiring approximate position and 
rotation information of the device from built-in sensors. Problems are mainly to be expected when 
this information is measured incorrectly. 

However, the development of smartphone technology and image processing is progressing at an 
incredible pace. With regard to the problem of erroneous position determination using built-in 
GNSS, the increasing integration of innovative dual-band receivers and the possibility of access-
ing and processing raw GNSS data promise great improvements in the near future. Although high
-precision measurements using smartphone GNSS with accuracies of a few centimetres is an on-
going research topic, e.g. Wanninger and Heßelbarth (2020), it is already possible to get position 
values with accuracies of a few decimetres, e.g. Zangenehnejad and Gao (2021), Aggrey et al. 
(2020), especially when fusing with new 5G location services, e.g. Dwivedi et al. (2020). This 
would already significantly improve the registration of camera and synthetic image and thus on-
the-job calibration. 

If the pending developments described briefly in chapter 4 and in detail in Elias (2021) are carried 
out for a final release, OWL should be advertised for crowdsourcing and used for a large-scale 
test before including in existing hydrometric networks. Furthermore, it could complement similarly 
designed applications, such as the Europe-wide successful CrowdWater project (Strobel et al., 
2019, Etter and Strobel, 2018).
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