
77 

   INTERNATIONAL HYDROGRAPHIC REVIEW   MAY 2021  

ESTIMATING OBSERVER AND DATA REPUTATION 
IN MARINER VOLUNTEERED BATHYMETRY  

By Brian R. Calder 1 

1 - Center for Coastal and Ocean Mapping & NOAA-UNH Joint Hydrographic Center 
     University of New Hampshire, Durham, NH 03824, USA 

Abstract 

Résumé 

Volunteered Bathymetric Information (more commonly called Crowd-sourced 
Bathymetry, CSB) has the potential to assist authoritative charting but a lack of 
formal assessment methods has limited uptake of this idea.  This paper proposes a 
reputation system for observers (and data) to estimate the observer’s ability to 
match authoritative depths; a time-sequence estimate of vertical bias is also 
computed.  This reputation can form the basis for decisions on how many observa-
tions are required from a VBI source before charting actions could be considered. 
Using data from the IHO DCDB and NOAA surveys from the Puget Sound area 
(U.S. west coast), bias estimate and reputation assessment are demonstrated for 
archetypal observers. 

Keywords: Observer Reputation, Crowdsourced Bathymetry, Volunteered Geo-

graphic Information, Volunteered Bathymetric Information, Mobile Crowd Sensing, 

Ranking System 

Les informations bathymétriques fournies par des bénévoles (plus communément 
désignées par l'expression « bathymétrie participative » ou « CSB ») peuvent contri-
buer à la réalisation de cartes officielles, mais le manque de méthodes d'évaluation 
formelles a freiné l'adoption de cette idée. Cet article propose un système de réputa-
tion pour les observateurs (et les données) afin d'estimer la capacité de l'observa-
teur à respecter les profondeurs qui font autorité ; une estimation de la séquence 
temporelle du biais vertical est également calculée. Cette réputation peut constituer 
la base des décisions sur le nombre d'observations requises d'une source VBI avant 
que des actions de cartographie puissent être envisagées. Grâce à l'utilisation de 
données provenant des levés du DCDB de l'OHI et de la NOAA dans la région de 
Puget Sound (côte ouest des Etats-Unis), l'estimation du biais et l'évaluation de la 
réputation sont démontrées pour des observateurs archétypaux. 

Mots-clés : Réputation de l'observateur, bathymétrie participative, informations géo-
graphiques bénévoles, informations bathymétriques bénévoles, capteurs mobiles, 
système de classification. 
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Resumen 

La Información Batimétrica Voluntaria (más comúnmente llamada Batimetría Partici-
pativa, CSB : su acrónimo  en Inglés) tiene el potencial de ayudar a la cartografía 
autorizada, pero la falta de métodos de evaluación oficial ha limitado la adopción de 
esta idea. Este artículo propone un sistema de reputación de los Observadores (y 
de los datos) para estimar la capacidad del observador de coincidir con las profun-
didades autorizadas; también se calcula una estimación de la secuencia temporal 
del desfase vertical.  Esta reputación puede constituir la base de decisiones sobre 
la cantidad de observaciones que se requieren de una fuente VBI antes de que se 
consideren  acciones en materia de cartografía. Al utilizar datos del DCDB de la 
OHI y de los levantamientos de la NOAA de la zona de Puget Sound (costa oeste 
de EE.UU.), se demuestra la estimación del desfase y la evaluación de la 
reputación para observadores arquetípicos. 

Palabras clave: Reputación de los Observadores, Batimetría Participativa, Informa-

ción Geográfica Voluntaria, Información Batimétrica Voluntaria, Detección Móvil 

Participativa, Sistema de Clasificación 



79 

   INTERNATIONAL HYDROGRAPHIC REVIEW   MAY 2021  

1. Introduction

Most hydrographic offices (HOs) now agree that data volunteered by mariners, called variously 
Crowdsourced Bathymetry or (particularly in land-based applications) Volunteered Geographic 
Information, has potential for authoritative charting.  They often disagree, however, on the extent 
to which it can be used, and for which purposes.  NOAA, for example, has a permissive policy on 
“best available” data use for the chart (Office of Coast Survey, 2020), and supports the IHO 
Crowd-sourced Bathymetry Working Group1, hosting the IHO Data Center for Digital Bathymetry 
(DCDB)2 and making the data available through Amazon Web Services3. The Canadian Hydro-
graphic Service has also used the DCDB data4 to address dangers to navigation in the Inside 
Passage from Seattle, WA to Juneau, AK.  Other HOs have been more circumspect, often be-
cause of the difficulties posed by “uncontrolled” VBI (i.e., from any available observer), which can 
have unknown biases, unreliable observers, outliers, and so on.  While these issues can be ad-
dressed, the cost of doing so is often considered prohibitive, and there is some question of wheth-
er a true authoritative “crowd” in the original sense (Howe, 2008) exists for bathymetry in most 
places (Hoy and Calder, 2019), making the term “crowd-sourced” unhelpful for discussion in this 
context.  The term “Volunteered Bathymetric Information” is offered here as a more truthful de-
scription of the intended data source and purpose. 

The difficulty is primarily that there is little pre-capture quality assurance with VBI, and a general 
lack of metadata.  While some implementations have attempted to address installation parame-
ters (Thornton, 2011; Van Norden and Hersey, 2012), and corrections for sound speed and other 
factors through oceanographic modelling has been attempted (Church, 2018), the majority of pub-
licly available VBI does not have these refinements.  Although potentially much simpler to inte-
grate into authoritative use, more sophisticated “trusted” systems (Calder et al., 2020; Rondeau 
and Dion, 2020) that survey on the ellipsoid have yet to translate into scalable systems for wide-
spread use (Desrochers et al., 2020). 

Tools to assist in the assessment of VBI data are therefore required, and in particular to associate 
with each observer an estimate of the potential reliability, credibility, or reputation of the contribut-
ed data.  Under the assumption that there is a transitive trust relationship (Severinsen et al., 
2019) between the observer and the data, such a reputation metric would allow the weight of 
evidence associated with an observation to be assessed, allowing the HO to determine how to 
treat the observation for authoritative purposes.  Observers with high reputation, for example, 
might cause a charting modification with a single observation that disagreed with the authoritative 
data, while less credible sources might need five, or ten, consistent observations to overturn the 
chart database (e.g., indicating movement of shoals).  Note that this model is inclusive: authorita-
tive observers, such as HO survey field parties, could also be assessed on the same scale, 
allowing their data to be tagged with “authoritative” reputation at point of creation, and then 
archived.  This establishes a spectrum of reputation from uncontrolled VBI on one end to fully 
authoritative surveys on the other (Figure 1). 

Reputation is not a static concept.  A transitive trust relationship allows the reputation of the 
observer to be assessed from the observations (e.g., compared to authoritative data), but observ-
ers may change over time, initially providing poor data and improving, or forgetting to accommo-
date a modified configuration of the boat, and suddenly (or gradually) generating poorer data. 
Similarly, although data might inherit the observer’s reputation at creation time, as it ages the 
reputation would slowly (or rapidly, depending on the area) decay unless reinforced by new 

—————————————— 
1 

- https://iho.int/en/csbwg 
2 

- https://www.ngdc.noaa.gov/iho/ 
3 

- https://odp-noaa-nesdis-ncei-csb-docs.s3-us-west-2.amazonaws.com/readme.htm 
4
 - https://www.nauticalcharts.noaa.gov/updates/noaa-announces-launch-of-crowdsourced-bathymetry-database/ 
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observations, until it is either contradicted by new observations, or ages out of the database.  This 
provides a principled method for database age management. 

The paper focuses on the first stage of this problem: evaluating dynamic observer reputation from 
archive observations, using the IHO DCDB dataset for the area of Puget Sound, WA around 
Seattle.  Starting from the raw observations in the DCDB dataset, comparison against NOAA 
hydrographic datasets provides for evaluation of reputation, and estimation of vertical biases 
afflicting the dataset.  The paper demonstrates that it is possible to evaluate a dynamic reputation 
estimate from observer data as outlined above. 

2. Background

There are a number of “closed garden” Volunteered Bathymetric Information (VBI) implementa-
tions: typically organized by a sonar equipment manufacturer, the users of the system contribute 
their observations in return for updated bathymetric products comprising the data from all users. 
These systems have generally focused on auxiliary bathymetric overlays, for example for fisher-
men or recreational boaters, which are formally adjuncts to the official charting information in the 
area and are often heavily interpolated, making them unsuitable for charting.  The data are also 
usually not available outside of the system either due to data sharing limitations or the selected 
business model. 

There are fewer systems that routinely make data available to national or international databases, 
and hydrographic offices (HOs) have been reluctant to use them for chart updates despite the po-
tential and the recognition that HOs have always taken mariner reports to update the chart

5
, 

Figure 1: Notional observer reputation spectrum.  The diagram shows nominal occurrence of observers 
against credibility for a variety of different source data types (solid lines) along with typical observers (arrows) within 
each color-coded population. 

—————————————- 
5 

- For example, NOAA’s reporting service, at https://www.nauticalcharts.noaa.gov/customer-service/assist/. 
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which is similar in scope.  The distinction, presumably, is that previous reports were mainly from 

professional mariners (who knew how to report), rather than from the masses, and therefore were 

more limited in extent and (presumably) more likely to be plausible. 

The difficulty is unreliable observers: in many cases, especially if the goal is to scale up observa-

tion, there is very limited metadata and therefore the potential for unresolved biases, and outright 

blunders, that would be detrimental to authoritative use.  Resolving these issues is expensive: 

either better metadata are required, or the analyst has to attempt to evaluate each observer’s po-

tential for providing a useful observation.  The problem, then, is “assessing the credibility” of VBI 

(P. Wills, pers. comm.), in an automated fashion. 

The subject of credibility, or more generally reputation or trustworthiness, has been the subject of 

much research in the general crowdsource context (Chatzopoulos et al., 2016; Whiting et al., 

2017) and in the Volunteer Geographic Information, or Mobile Crowd Sensing, world (Gusmini et 

al., 2017; Pouryazdan et al., 2017; Severinsen et al., 2019; Truong et al., 2019), including 

bathymetry (Montella et al., 2019).  Although the proposed solutions vary widely, they agree on 

some general principles.  For example, that variable levels of trust or evidence are required for 

different applications or requestors (Severinsen et al., 2019).  Or, that local observers are more 

valuable since they know the location and are more invested in making things better (Goodchild, 

2009).  And, that feedback from more reliable users is more valuable (Gusmini et al., 2017; 

Whiting et al., 2017) since they are more likely to be able to judge reputation of observers more 

accurately.  The definition of reputation (or equivalent) also varies, with some researchers 

considering a composite of different metrics (Gusmini et al., 2017; Severinsen et al., 2019) to 

assess an overall “trustworthiness” for observers; Truong et al. (2019) consider, for example, a 

triplet model of reputation (pairwise experience between observers and data users), experience 

(global assessment of previous sensing), and knowledge (training, background). 

There is similar general agreement on the problems to be solved for a successful system, 

although approaches vary in detail.  Most systems assume a transitive trust model, where the 

data users trust the observations because they trust the observers (Severinsen et al., 2019), and 

allow that the reputation will vary dynamically with time so that old mistakes (or successes) do not 

last (Whiting et al., 2017).  Many systems also focus on detection of malicious users 

(Chatzopolous et al., 2016; Puryazdan et al., 2017; Truong et al., 2019), which is a considerable 

problem in remunerated systems (i.e., where the observers are paid for their efforts), as bad 

actors could potentially improve their ratings to start, then feed in malicious data but still receive 

payments from the system.  A related problem is observers who inadvertently provide bad data 

into the system, a more common problem with VBI systems. 

The implementation of reputation assessment systems is similarly varied.  All systems have some 

trustworthiness metric, possibly composited, although the compositing method is often ad hoc.  A 

system must also assess the metric, either through peer review (Gusmini et al., 2017; Whiting et 

al., 2017) which is most commonly seen in online product reviews, or through a blended analysis 

with some statistical measures derived from the data (Pouryazdan et al., 2017; Truong et al., 

2019).  Finally, there must be a “cold start” solution (i.e., how to assign a ranking to new obser-

vers).  This might be simply assigning new users a generic ranking and then letting it improve 

through observation cycles, or to blend a prior model with observation data (Gusmini et al., 2017). 
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Another method is to consider paired comparisons, where there is no distinct metric to be 

matched, simply whether one thing is better or worse than the other.  Such systems (Bradley and 

Terry, 1952) are often used in competitions including chess (Elo, 2008; Glickman, 1995) where 

player rank (essentially reputation) is computed by comparing players during a series of matches. 

Importantly, a more strongly ranked player essentially “donates” rank to a weaker player who de-

feats them, providing a mechanism for ranking to change dynamically as more comparisons are 

made. 

This approach meets many of the requirements for a reputation ranking system, and there is a 

clear analogy to VBI observer reputation.  Both involve comparisons between entities of different 

skill levels and result in a numerical estimate of skill that can be dynamically adjusted as new 

observations are made.  This paper therefore proposes an adaptation of a pairwise ranking 

system originating in chess to the problem of assessing observer reputation for VBI.  Observers 

are individually assessed using an authoritative observer (representing hydrographic archive 

data) as the comparison point, based on their ability to match the reference depths. 

3. Methods and Data Sources

3.1.  Reputation Assessment by Paired Comparison 

Paired comparison systems (Bradley and Terry, 1952) are used to assess statistical significance 

for tests where only relative rankings of treatments are available.  A common example is in taste 

tests where the testers rank two food preparations by preference rather than numerical scale. 

This process also lends itself to comparisons between game players where win/loss statistics are 

counted (potentially in addition to numerical scores), for example in the Elo ranking system for 

chess players (Elo, 2008) where the relative rank of players is computed based on win/loss 

records of their games against other ranked players.  An extended version of this algorithm 

(Glickman, 1995) which includes a ranking uncertainty that can adjust for time gaps between 

ranking events is used here. 

Consider the k th depth from the i th VBI observer, di(k) = (zi(k), i(k)) (for mean depth zi(k) with

uncertatinty expressed as a standard deviation) which can be compared against the authori-

tative depths in the area.  Each observation is equivalent to a single “game” where a “win” is 

declared if the depth observation matches the authoritative answer within the declared uncertain-

ties of the observations, and a “loss” is declared otherwise.  Following Glickman (1995), each 

observer is given a mean reputation  [0, 3000], and an uncertainty  [30, 350]6 which reflects 

their ability with respect to their peers; let ri = (iibe the reputation for a single observer. 

Reputations are reassessed for the VBI observers after each batch of observations.  The depth 

agreement  between observations from observers (i, j) at comparison k is  

(1) 

———————————————————- 

6 - The ranges here are as used in chess rankings, and are essentially arbitrary but should be considered relatively 
     (i.e., a reputation of (2860, 35) is considerably better than one of (1200, 350) for example). 
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which is converted to a win (1)/loss (0) score 

for comparison against the theoretical outcome7.  For a probability model8 of 

(Bradley and Terry, 1952), Glickman (1995) shows that a Bayesian update scheme is to approxi-
mate the posterior distribution as a Normal distribution with a parameter updating scheme of 

for m sources of authoritative data in the batch, each of nj comparisons (note that the dependence 
on the target observer, i, is suppressed for simplicity), where 

The standard expected score,    , reflects the idea that a better observer (positive 

difference in reputation) should be more likely to agree with the reference data, but a poorer 

observer will likely disagree.  For bathymetric comparisons, however, there is no expectation that 

an observer that is not authoritative will disagree with the reference and doing so will penalize 

potentially good VBI observers.  A modified model (Figure 2) is therefore used to express the idea 

that a non-authoritative observer will match the authoritative reference on average half the time, 

allowing potentially good new observers to gain reputation over time. 

(2) 

(3) 

———————————————————- 

7
 - Since ij (k) is a normalized z-score, this is equivalent of considering three standard deviations of the depth 

     agreement to be significant. 

8
 - The constant 400 here is an estimate of the reputation between players likely to cause a significant change in 

     scores. 

(4) 

(5) 
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3.2.  Assessment Against Authoritative Data 

Each observer is initialized with a reputation of r = (1500, 350), reflecting an uninformative prior. 
The reputation is then updated as data are contributed, breaking the sequence of observations 
into 60-second batches (an observation rate of 1Hz is typical) and applying equations (4)-(5) for 
each batch.  The second “observer” is authoritative data (processed and matched as described in 
Section 3.3.2), which is assumed to have a reputation equivalent to a professional surveyor (i.e., 
the data inherits the reputation of the observer at time of observation).  In this context, rd = (2860, 
30) is used (equivalent to an exceptional chess International Grandmaster), with the smaller
uncertainty indicating that the reputation is well constrained. 

Following Glickman (1995), the uncertainty of the reputation is adjusted for gaps in the observa-
tion sequence (e.g., between appearances of the observer in the database) to reflect the idea that 
a reputation is only certain if current.  The uncertainty therefore grows with time duration between 
observation batches, 

where  
(7) 

and Tf is the target time for the uncertainty to reset from minimum to maximum.  In the current 
implementation Tf = 180 days (c = 8.752×10-6 s-1/2).

Figure 2: Expected score model. The standard model overly penalizes observers that are not authoritative 
(negative reputation difference) since they are expected to disagree with the authoritative reference; the adjusted 
model allows for more ambivalence. 

(6) 
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Few, if any, VBI observers have corrections applied to their data or, if they do, document what 
was done.  Comparisons against authoritative data are therefore likely to always fail without bias 
assessment. Vertical correctors for water level can generally be evaluated from a nearby tide 
gauge or harmonic constituents, and in some instances sound speed correctors can be derived 
from forecast models (Church, 2018; Beaudoin et al., 2013; Lanerolle et al., 2009), or oceano-
graphic atlases (Beaudoin et al., 2006).  In smaller, or less frequented regions, however, sound 
speed corrections may be more difficult to obtain, and the vertical correction from the echosoun-
der to the waterline is almost always missing.  Consequently, an estimate of bias must be 
generated from the data (Section 3.3.3); this also allows the reputation assessment to distinguish 
between a bias of the observer and a change in the seafloor depth. 

3.3.  Data Sources 

3.3.1.  Volunteered Bathymetric Information 

Data were selected from the DCDB, using only data from their “Crowd-sourced” database, which 
consists almost exclusively of single-beam echosounder observations from recreational mariners 
submitted using Rose Point Coastal Explorer through a NOAA-led pilot project.  These data 
consist of any and all observations made by the volunteers, and have no outlier rejection, quality 
control, or other modifications from the raw observations.  Although the metadata associated with 
DCDB records would allow the observers to record the instrumentation being used, in practice 
such information is rarely available, and entirely absent in the current dataset.  It is assumed 
where necessary, therefore, that they are using conventional recreational navigational 
echosounders with beamwidths on order 20-30 degrees and frequencies in the range 25-200kHz, 
with integrated GNSS systems, potentially with differential or other WBAS augmentation. 

VBI from Puget Sound in the vicinity of King County, WA (Figure 3) was selected after an exami-
nation of the data holdings because of the data density and supporting authoritative data (Section 
3.3.3).  A target region of (47° 27’, 47° 50’) N × (122° 09’, 122° 41’) W was selected, yielding a 
total of 5,599,609 possible observations.  After geographic windowing to the region of interest and 
matching to the authoritative data (Section 3.2), a total of 1,170,261 observations remained 
unevenly distributed among 19 observers (Figure 4).  Data were subsequently filtered to a time 
range of 2016-01-01 to 2019-08-10, and a depth limit of less than 11 km in order to remove 
clearly erroneous data; data from the same observer with duplicated timestamps were also 
removed.  Water level corrections were then applied using the NOAA tide constituents from 
gauge 9447130 (Seattle, WA)9, evaluated using the PyTide10 module and applied to the data 
using the data’s declared time stamps as part of the pre-processing. 

3.3.2.  Authoritative Reference Data 

NOAA-generated gridded bathymetric products, produced with multibeam echosounders (MBES) 
through the national hydrographic survey program, were extracted from the NOAA National 
Centers for Environmental Information in Bathymetric Attributed Grid (BAG) format (Calder et al., 
2005), converted to ESRI ArcGrid format using a standard BAG utility, and then converted into 
binary MATLAB format for subsequent processing.  This resulted in 22 surveys, consisting of 123 
grids.  NOAA hydrographic survey data sets generally consist of one or more grids of one or more 
resolutions, along with a low-resolution composite grid.  When matching with VBI, the highest 
resolution grid with a valid depth at the target location was used.  NOAA survey H12024  was 
observed to have a significant bias with respect to other observations within its lowest resolution 
representation (at 8m), which was removed from consideration; the report of survey (Haines, 

——————————————————— 
9 

- https://tidesandcurrents.noaa.gov/stationhome.html?id=9447130 
10 

- https://pypi.org/project/pytides/ 
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2009) indicated difficulties with sound speed in the deepest part of Puget Sound.  Only MBES 
data was used for this comparison in order to avoid mixing interpolation effects into the assess-
ment (as would be inevitable with single-beam survey data). Since only a limited amount of 
authoritative data is required to assess each observer, a requirement for MBES authoritative data 
at some location the observer inhabits is not expected to be too extreme a constraint on other 
implementations. 

Figure 3: Data selected for experiments (area of interest in red). This represents all data available in DCDB as 
of 2019-07-24 for the area around Seattle, WA in southern Puget Sound. 
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3.3.3.  Trajectory and Bias Assessment 

To facilitate analysis, each observer’s time sequence of observations was broken into transits, 
defined as a contiguous period of relative motion above a given speed over ground.  The algo-
rithm defined in Calder and Schwehr (2009) was used (Figure 5), with parameters Sp = 2.0 kts, 
Sn = 1.0 kts, T(C) = 5 min. and Tmax = 10 min. Transits of a single observation, or with position 
standard deviation smaller than three ship lengths were discarded as noise, or false positives. 

Figure 5: Transit Determination State Machine.  The algorithm starts in state “ not in a transit”  (¬TRANSIT), and 
cycles between being in a transit (TRANSIT) and checking for the end of the transit (CHECKEND) by conside-ring the 
current speed over ground (SOG), and whether it exceeds the start speed (Sp), and the stationary speed (Sn).  The 
algorithm requires the “possible end of transit” to exist for at least T(C) seconds before declaring the transit complete , 
allowing for some drifting/idle during a transit, and limits total transit time above at Tmax to manage ships that disap-
pear from the record for a considerable time. 

Figure 4: Anonymized observer population. The source soundings were contributed by 19 observers, but 
almost half (49%) were provided by observer 2, and another ~29% by a houseboat (observer 5), arguing against 
considering this a “crowd” in the conventional sense. 



88 

   INTERNATIONAL HYDROGRAPHIC REVIEW   MAY 2021  

To estimate bias in each identified transit the difference between the corrected observed depth 
and highest resolution authoritative depth was determined, and outliers were removed by 
rejecting any points more than ±(5.0 + 0.05z)m from the authoritative depth z, and also in areas of 
significant slope where differences in depth are expected due to differences in beamwidth 
between consumer and survey systems.  Slopes are approximated as the time differential of 
authoritative depth (and computed by first differences), with a fourth-order Butterworth IIR filter 

(c = 0.1) for smoothing.  Data on slopes with dz/dt > 0.15 m/s are, heuristically, removed from 
consideration for bias estimation (but are used otherwise).  Transits with fewer than 30 observa-
tions, or with full observed depth range less than 10m, are ignored.  A first order polynomial 
model is fit to remaining transits; models indicating bias increase of more than 10% of depth are 
removed. 

All remaining data are then aggregated and used to compute a first-order polynomial fit for the 
observer.  Some observers show evidence of multiple regimes (Figure 6).  In this case, a prelimi-
nary inspection was used to determine breakpoints between transit groups, and to eliminate 
dubious transits from consideration.  Separate models were then computed for each transit group. 

3.3.4.  Uncertainty Estimation 

Uncertainty for the authoritative data is provided in the BAG files and is used directly. Static 
measurement uncertainty for the VBI is computed through the standard deviation of the observa-
tions for all inter-transit periods with more than 10 observations (for estimation stability), discar-
ding any observations that disagree with the reference depth by more than 10%. 

The effective observer uncertainty is computed from each transit by selecting windows of 120s 
(taking into account any time gaps), computing a first difference to remove any long-term trends, 
and then computing the standard deviation.  Windows with fewer than 30 observations are 

Figure 6: Multiple Bias Regimes in Observers.  For this observer, there are two distinct bias regimes (red 
lines), which need to be separately estimated in order to avoid unreliable estimates. Background image: 
color-coded logarithm of bivariate histogram on reference depth and bias. 
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discarded.  This procedure provides a series of estimates of uncertainty that combine the basic 
measurement uncertainty and any residual motion effects not corrected by the observer (which is 
typically all motion effects in VBI), and therefore can be used directly to estimate real-time 
uncertainty for the system. 

Water level uncertainty is estimated to include a measurement uncertainty of 0.01m, and a spatio-
temporal uncertainty of 0.10m. 

Overall uncertainty of corrected observations is computed by propagation of uncertainty (ISO, 
1995), including effective observer uncertainty, water level uncertainty, and the estimated bias 
correction uncertainty based on the linear model of bias (Section 3.3.3). 

4. Results

4.1.  Bias Estimation 

From all of the observers (Figure 4), a subset was selected based on data density (closest to 1Hz 
observation rate, indicating consistent data observations), and data volume (normalized by the 
cumulative probability density function to avoid outliers).  A first run of the bias parameter algo-
rithm was used to identify changepoints (Figure 7), after which a second run computed a final 
model for each group of transits.  In some cases, the changepoint is not particularly obvious 
(Figure 8), which is likely to lead to poor corrections for depths.  This is considered an 
extension of the estimation problem: if changes in bias are not clear, it is likely that there is signifi-
cant noise in the observations, and therefore it should be considered of lower reputation. 

Figure 7: Example of per transit bias estimation for observer 1 (Figure 4).  A clear step in linear model 
offset (lower panel, red dashed lines) as a function of transit number (i.e., time) shows two regimes of correction 
are required.  The intermediate section can be classified in either regime, since the outliers are subsequently 
ignored. 
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All of the observers modelled demonstrate a positive offset value, and negative slope, indicating 
that the observed depth is shallower than the reference depth everywhere, and increasingly so 
with depth, Figure 9.  This reflects the effects of uncorrected sound speed in the data; correcting 
in this way gives an approximation, although the ability to extend these corrections elsewhere is 
likely to be limited (Section 5). 

Figure 8: Example of per transit bias estimation for observer 2 (Figure 4).  While there is no visually 
obvious changepoint in the estimates, the somewhat chaotic estimates before transit 50 (left of red dashed line) 
were eventually separated as a separate group; this may be noisy estimates rather than a distinct regime. 

Figure 9: Pre-correction observation and reference data depth (top; note depth is positive down in this view, so 
vertical axis is increasing depth) and uncertainty (bottom) from observer 2.  The shoal depth bias in the observa-
tion data is due to the offset between waterline and echosounder.  Note 0.01 day = 1.44 min. 
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4.2.  Reputation 

Reputation assessments were generated for all transits for each observer (Section 3.2).  For 
Observer 1, the computation indicated very reliable estimation (and bias correction), Figure 10, 
with the reputation rapidly increasing from the initial value to be virtually authoritative by the end 
of the first transit, and then continuing consistently.  The reputation uncertainty also drops quickly 
to the minimal value and continues low due to the frequency of observations.  This sort of beha-
vior is indicative of an observer who could be taken seriously if even a single observation indicat-
ed a significant difference from the authoritative database, since it is likely that this really indicates 
a significant change in the current configuration of the seafloor. 

Observer 2, on the other hand, has more variable performance, Figure 11, consistent with the 
noisy bias estimates of Figure 8.  The reputation range of ~1500 is indicative of an observer that 
can occasionally generate reasonable data, but which has significant outliers on occasion.  For 
authoritative use, this would indicate that multiple observations from the same observer (or from 
different observers with equivalent reputation) would be required to trigger a change in charting. 

Figure 10: Reputation estimates for the first four transits of observer 1.  For four transits over ~28 hours, the 
observer reputation increases to almost authoritative, and then stays there; uncertainty reduces to the minimum (30) 

over the first few observation batches.  Note 0.002 day = 2.88 min.; 0.005 day = 7.2 min.; 0.01 day = 14.4 min. 
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Reputation is not forever, however.  Later in the dataset, observer 1 goes through the transition of 
bias estimates observed in Figure 7 and in the process starts to disagree significantly with the 
reference data.  The resulting reputation estimates, Figure 12, show that after agreeing with the 
reference data for approximately seven months, the observer starts to disagree (reputation 
dropping, transit 11), and then disappears from the record for approximately four months. After 
returning, the observer quickly re-establishes a good reputation as it heads into shallower water. 
The cause of this disagreement is not known, but it is tempting to interpret this as some modifica-
tions being made to the ship for an extended period of cruising, after which the modifications were 
removed.  Another potential explanation is that the bias model changepoint was not well estimat-
ed, so that the difference reflects poor bias corrections.  In either case, the reputation would 
provide clear evidence to an HO about the use of the observer’s data in the interim.  

Figure 11: Reputation estimates 
for the first two transits of observer 
2. After a good start, the observa-
tion quality starts to fall significant-
ly, and the reputation drops.  Note 
0.005 day = 7.2 min. 

Figure 12: Later reputation 
estimates for observer 1.  After 
consistently agreeing with the 
reference data for a period of 
approximately seven months, 
the observer starts to differ, 
and then disappears from the 
record for approximately four 
months (presumably on an 
extended voyage).  On return, 
the observer rapidly recovers 
after returning to shallow water 
(bottom panel). Note 0.002 day 
= 2.88 min.; 0.005 day = 7.2 
min. 
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5. Discussion

The results here demonstrate that it is potentially possible to extract bias estimates from VBI 

observers, and to assess reputation, given a sufficient amount of data in an area with a reference 

depth dataset.  Both of those caveats can be relaxed in practice: simply waiting long enough will 

provide sufficient data, and most observers are going to visit an area with reference depths at 

some point, and therefore can be calibrated for bias and reputation each time they do.  Since 

there is no real-time requirement in VBI data, neither of these pose a limitation to practical imple-

mentation.  The current corrections for sound speed are adequate since anything not corrected is 

reflected in the uncertainty but could be improved with model data if available (Beaudoin et al., 

2006; Beaudoin et al., 2013).  Motion effects in VBI, except heave, are expected to have little 

effect due to the wide-beam nature of most non-survey echosounders.  Most VBI observers are 

likely to have no recordable motion estimation hardware on board in any case (except perhaps 

their cellphone), although it would be possible to add motion processing if these data became 

available.  Like sound speed, uncorrected motion effects would appear in the estimated uncer-

tainty. 

The examples here assess the reputation continuously, but in practice this would limit the ability 

to detect changes in authoritative bathymetry (i.e., the reputation would be reduced every time an 

area with changed bathymetry was observed).  Consequently, a functional system would need to 

recompute reputation at fixed intervals, or as data become available.  The selection of 60-second 

intervals for computing reputation is arbitrary (although plausible) and could be adjusted based on 

experience in the field.  Similarly, the choice of a six-month uncertainty reset period is arbitrary 

and should be adjusted depending on the number and types of ships that appear in any given da-

taset, and the scale of processing.  For example, ships that are expected to be more stable (e.g., 

professionally crewed merchant mariners) might preserve their uncertainty for longer, as opposed 

to recreational boaters; having the processing done routinely over large areas might obviate the 

necessity for a detailed analysis, since boats would rarely be out of observation range. If 

required, Glickman (1995) provides a formal parameter estimation scheme. 

The work here has focused on assessing VBI observers, but the transitive trust relationship 

between observers and data (Severinsen, 2019) implies that these methods could also be applied 

to authoritative databases.  That is, each database point is imbued with the observer’s reputation 

at collection time, and then evolves independently as new observations are made in the same 

area.  Confirmatory observations (from any observer) would maintain the data’s reputation; 

contradictory observations (from reliable observers) would reduce the reputation until the data 

were considered too unreliable to be useful.  This method may allow for principled management 

of hydrographic databases, where the choice to replace or retire data is based on evidence, 

rather than gut feeling, or some proxy such as bathymetric uncertainty. 

Apart from the processing required (which is relatively light), the suggested system makes 

demands of the HO, particularly that there is a willingness to set thresholds for reputation and 

evidence required to trigger changes to the chart.  For example, how many observations from an 

observer with reputation (2800, 30) does it take to place a depth on the chart?  How many from 

an observer (or set of observers) with reputation (1500, 125)? Such estimates would likely 

depend on the HO’s attitude towards the risk of “outside source” data, and potentially the 

bathymetric context of the area.  Calibration from field data would likely be required. 
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A final potential benefit of the proposed scheme is in motivating the observers.  Many Mobile 

Crowd Sensing (MCS) implementations rely on a perceived benefit to the observers that rewards 

them for their participation; often, this is a monetary payment.  Such motivation is not expected for 

VBI, but some scheme to inform the users of their progress, particularly if it can also assist in 

guiding them to a better solution, is likely to be useful.  The proposed scheme provides a simple 

estimate of “observing power” that could be readily reported to observers, and might assist with 

crowd retention. 

6. Conclusions

This work has demonstrated that it is possible to estimate biases for Volunteered Bathymetric 

Information (VBI) observers, and to dynamically estimate reputation for them.  Reputation is 

estimated on an arbitrary numeric scale and represents a measure of observer reliability since the 

basis is comparison against authoritative data, where available.  Providing a reputation score is 

the first stage to a model for their use in authoritative products and methods, although such use 

would require further development and field calibrations by the sponsoring hydrographic office. 

The methods outlined apply equally to the data made by observers, and to all observers rather 

than just volunteers.  Doing so may allow the same methods to be used for assessment of survey 

adequacy and resurvey priority (through data residual reputation over time), in addition to allowing 

for principled ageing out of data from the database. 
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