THE ADJUSTMENT OF A QUADRILATERAL WHEN ONE TRIANGLE HAS ALREADY BEEN ADJUSTED. by REAR-ADMIRAL J. D. NARES, PRESIDENT OF THE DIRECTING COMMITTEE. On page 220 et seq. of the *Hydrographic Review*, Vol. VIII, No 2 for November 1931 is described a method of closing and balancing a quadrilateral, one triangle of which has already been adjusted (Publication H. D. 295 of the Hydrographic Department, British Admiralty, February, 1931). This problem faced the writer when carrying out a survey in India and before the November, 1931, Review was received, and the method by which it was overcome will now be described. DSWR is a quadrilateral of which the triangle DRS is already adjusted. The other triangles DRW, DSW and RSW were first corrected according to their weighting values to make each corrected sum equal 180° and the sum of the two angles SDW and RDW equal to the whole angle SDR which is already adjusted. The figure was then closed and balanced in a similar manner to that described on page 217 of above quoted Review except that as no corrections could be applied to the already adjusted angles 3 and 6, they were divided amongst the other 6 angles. In obtaining the balancing correction e the "Diff. for 1" for the angles 1 and 8 was multiplied by two and a correction 2e applied to each of these angles and e to the remaining four. The opposite page shows the actual working out of the problem by this method, with a comparison of the result with that obtained by the method described in the above mentioned Publication H. D. 295. | | TRIANGLES | GLES | | | | | | , | | | | | | |-----|---|--|---------|---|----------------------|---|--------------------|--|--------------------------------|--|--|--|--| | | Observed.
Observés | Preliminarily corrected. Correction preliminaire | | Corrected
Angles
corrigés | Ist
Corr. | Angles
(Ist adjust.)
(Ière
compensat.) | 2nd
Corr. | Angles (2nd adjust.) (2ème compensat.) | Log. Sin. | Diff. | 3rd
Corr. | Angles
(Final). | Log. Sin. | | | | | н 8 | 46.00.31.3 | -0.7 | 46.00.30.6
46.16.28.8
35.48.20.5 | 6.0 + | 46.00.29.7 | 9.856 9945
9.858 9350 | 40.6 (×2) | | 46.00.55.1
46.16.28.8
35.48.44.1 | 9.857 0380
9.858 9350
9.767 2531 | | SRD | 64.41.39.6
46.16.28.8
69.01.51.6 | Previously
adjusted.
Déjà | 7 | 42.46.35.5 | -0.7 | 42.46.34.8 | -+ | 42.46.35.1 | 9.77 | 2 | 12.7 + | 42.46.47.8 | | | · | 180.00.00.0 | compenses | 2 4 9 0 | 58.49.55.1
28.53.09.4
69.01.51.6* | -0.7 | 58.49.54.4
28.53.08.7
69.01.51.6 | | 58.49.53.4
28.53.08.2
69.01.51.6 | 9.932
9.684
9.970 | 38.2 | 12.7 — | 58.49.40.7
28.52.55.5
69.01.51.6 | 9.932 2794
9.683 9549
9.970 2419 | | | | | | 32.23.02.3 | 0.7 | 32.23.01.0 | + 0.2 | 32.23.01.8 | 9.728 8312 | 200.4 (×2) | 25.4 | 32.22.30.4 | 9.720 7409 | | Z B | 28.53.10.4
105.06.28.3
46.00.34.2 | 28.53.09.4
105.06.19.3
46.00.31.3 | | 300.004.2 | | | | | 5 3/21
5 1044
Diff. 2677 | 6.652 | 6 6 | $\frac{2677}{209.9} = 12.7$ | 9
 | | • | | | H | 46.00.30.6 | 6'0 — | _ | 46.16.28.8* | 8.8* | Comp | Comparison of above results with those obtained by method described in H.D. 295. | bove results with those obsidescribed in H.D. 295. | h those obtain
I.D. 295. | ed by method | | ' | 190.00.12.9 | 0.00 | 73 | 58.49.54.4 | - I.0 | - 4 | 28.53.08.7 | 8.7 -0.5 | | | sultats ci-crit dans 1. | aison des résultats ci-dessus avec ceux ob
procédé décrit dans la Publication H. D. | sux obtenus
H. D. 295. | | _ E | 35 18 23 2 | 35 18 30 2 | | 104.50.25.0 | | | 75.09.37.5 | 7.5 | 1 | | | | | | | i | 32.23.02.3 | 5 | 35.48.29.5 | + 1.9 | 7 | 42.46.34.8 | 4.8 + 0.3 | | As above D'après le procédé | | By H. D. 295
Par
H. D. 295 | Diff. | | | 179.59.25.9 | 180.00.00.0 | 9 | 69.01.51.6* | | ∞ | 32.23.01.6 | 1.6 + 0.2 | | cr-aessus | _ | | | | , | | | - | 104.50.21.1 | | | 75.09.36.4 | 5.4 | н е | 46°00°55".1
46 16 28 .8 | | 00'59".7 | 4".6 + | | R | 58.49.58.3 | 58.49.55.1 | | 25.0 | | | • | 37.5 | 7.5.7 | 35 48 44
42 46 47 .8 | | 48 45 .6
46 58 .2 | I .5 +
Io .4 + | | s A | 42.46.47.5
78.23.29.4 | 42.46.35.5
78.23.29.4 | 12,1 | Diff. = 3.9
Diff. = 1.9 | | 1/2 | Diff. =
Diff. = | I.I
0.5 | 8 . | | | | 3 3 | | | 180.00.15.2 | 180.00.00.0 | * | Already adjus
Déjà compensé | adjusted.
1pensé. | | | | | 52 55
o1 51
22 36 | 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6 | 52 54 .1
01 51 .6
22 24 .6 | - 4: 1
- 8: 11 |