
A FEW TRICKS IN RECONNAISSANCE
b y

L. G. SIMMONS.
(Extract from Geodetic Letter N° 9 - Vol. 2, Washington, November, 1935)-

In profiling a line or determining the relative position and elevation of a proposed 
triangulation station or prominent object, particularly in fairly open country, there are 
some short cuts available to the reconnaissance engineer which not only reduce the time 
but also increase the accuracy in obtaining this data. Following is a description of some 
methods used in the field to this end. Instruments required are a hand azimuth-compass, 
transit w ith vertical circle (reading to one minute is sufficient), a tape at least 100 feet in 
length, and a slide rule. The last mentioned is not necessary, but is of great convenience.

Many times each day, during the course of triangulation reconnaissance, the knowledge 
of the distance and relative elevation of a water tank, hill, tree, house or some other 
object, becomes highly desirable, either in determining the position and elevation of the 
object itself, or the reverse; i. e., the determining of the position and elevation of the 
observation point from a known object.

The distance and relative elevation of an object not more than 12 miles or so away 
can be determined in 5 or 10 minutes with an accuracy of about 0.2 mile and 5 to 
10 feet of height. No mathematical tables are needed. A ll that must be known is that 
the earth’s curvature in feet equals 0.574 times the distance squared (in miles) and that 
an arc of one minute is substended b y 1.53 x/2 feet at the distance of one mile.
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Consider Figure 1. Required the distance (d) from the instrument position at M  
to an object at P .  (The angle in this figure is greatly exaggerated.) Select a  point N  
at a distance of s feet from M  and at about a right angle from P .  Measure angle A  ; 
then set over point N  and measure angle B . Angle P  then is equal to B  minus A .  
In other words a distance of s at the observation point subtends an angle of P  at the 
distance d of the object concerned. The distance d then becomes s/1.53 %  P I d being 
in miles, s in feet and P  in minutes. The principle involved here is, of course, very 
simple. Difficulties arise, however, in actually accomplishing this measurement in the 
field in a reasonable tim e and with an accuracy sufficient to make the result of any 
value. It w ill readily be seen that the instrument must be very accurately centered 
over M  and N , which, in windy weather would take considerable time. This difficulty 
is overcome b y  first selecting a second distant object Q anywhere from about 1/4 mile



on up —  the further, the better. And this object does not necessarily have to make a 
right angle with P  but any angle —  say from 35 degrees to 145 degrees. The nearer 
this angle is to 90 degrees, however, the more effective will be the base.

The instrument is now set up over M  and sighted toward Q (see Figure 2) and the 
point N  lined up with Q a t a distance of, say, an even 100 feet. Angle A  is now 
measured using Q and P  as sights, and, leaving the plates still reading angle A , the 
instrument is set over N  and the angle B  is “unwound” from P  to Q, and what remains 
on the plates (negative in this case) is angle P .  In case angle B  is measured first, then 
the value P  on the plates will be positive after the mechanical subtraction. If a minute 
transit is used and the distance d is very  great, angle A  should be “wound u p ” three 
times at M  and “unwound” three times at N , leaving a value of 3P  (negative) on the 
plates. The 100 foot base (M N )  is reduced to the effective base 5 b y  multiplying by 
sin A  (slide rule). If d is about 10 miles, an error in the base of one foot will affect 
the result only about 0.1 m ile; and an error of several inches in the alignment of 
point N , if Q is at a considerable distance, will have no appreciable effect in the result. 
Point M  need not be marked on the ground at all, and N  only with a rock or stick 
until the instrument can be placed over it. No plumb bob is needed. The instrument 
can be placed over N  b y  eye closely enough.

If one man is working alone, the point N  can be occupied with the instrument first 
and M  then lined up with N  and Q b y  eye, hooking the tape to the instrument over N  
and backing up, say 100 feet, and dropping a rock in line at this distance.

For distance d up to about 5 miles, an accuracy of better than 1/4 mile can be 
determined merely b y  setting up at M , measuring A , picking up the instrument and 
pacing 100 feet toward Q  and “unwinding” angle B  at N . Points P  and Q m ay be the 
top of a water tank, gable of a house, branch of a tree, rock on a hill or any object 
on which a fine pointing can be made. A  greater accuracy can be obtained b y  in
creasing the length of the base, but 100 feet is sufficient for distances up to about 
12 miles, and is convenient when a 100 foot tape is used. The relative elevation of P  
can easily be determined, of course, from the vertical angle to it, after the distance is 
known. Many times during the profiling of a  line the elevation and distance of an 
intervening possible obstruction are desired. These can be determined with sufficient 
accuracy b y  the “pacing” method mentioned above, in about two minutes of time.

In open country, relative elevation of all stations can easily be determined from 
prominent objects such as water tanks, grain elevators, hills, etc., and in sectionized 
country where all points can be plotted accurately, there is no need for the measurement 
of distances, merely of vertical angles. This reconnaissance party has been supplying 
elevations of all stations after making ties to  known sea-level elevations. A t  times it 
has been as much as 200 miles between ties, but the elevations have never failed to 
check better than 25 feet except once when the error was 40 feet.

Once the relative elevations and distances between stations of the reconnaissance are 
known, there is a very  rapid method (in open or fairly open country) in determining the 
height of signal that will be certain to clear the line. The field work consists only of 
taking the maximum vertical angle to anything on line from each end of the lin e ; i. e., 
set up at one station, point the telescope to the other b y  means of a compass, and tilt 
the telescope upward until the center horizontal hair just clears everything on line, 
allowing, of course, for small errors in horizontal pointing, and read the vertical angle. 
This process is repeated at the other end of the line. The point where these two 
verticals meet represents the worst possible obstruction in the line, and if signals are 
computed and erected to clear this point, an obstructed line cannot result. However, if 
the objects to which these vertical pointings were made from each station are a consider
able distance along the line, the computed signal height will be too great. The nearer 
these two objects are, the more closely the computed signal heights w ill represent those 
necessary to just clear the line. It very  often happens that the two verticals are taken 
to  the same intervening ridge, line of trees, buildings or other obstacles; or, if not the 
same, to obstacles fairly close together. W hen this is true, no better determination of 
the necessary signal height can be made. I t  also happens very often th at the signal 
heights computed in this w ay are equal to or lower than those needed over other lines, 
and further investigation of the line in question is autom atically eliminated.



The solution of this problem is indicated below. Consider Figure 3 :
E  and F  are the stations at each end of the line in question. 
d is the length of the line in miles.
V t and V 2 are the maximum verticals in minutes taken from E  and F  respectively. 
S x and S2 are the actual slopes of the lines E F  and F E  computed at E  and F  

respectively, taking into consideration the difference of elevation between E  and F  and 
the curvature over the line E F .  It  will be seen that these slopes (expressed in minutes 
in this problem) are different, as the curvature will have a negative effect in one case 
and positive in the other.

P  is the point at which the two maximum verticals meet.
H  is the vertical distance between P  and the line E F ,  in feet, and is the signal 

height necessary at both E  and F  to clear P .

m is the distance, in miles, from E  to the point P . 

n is the distance, in miles, from F  to the Point P .

A  is equal to minus S j and B  is equal to  V 2 minus S2. Both A  and B  are in 
minutes.

The curvature over the line E F  is .574 d2.

Assuming h to be the difference in elevation between E  and F ,  (F  the higher station) 
expressed in feet, then

_  » -  0 .5 7 1 *; and Sa =
x-53 Yz d I -53 Vz d

A  and B  then can be readily computed from the above formulae.

Now, as A  and B  are relatively very  small angles, we have

_ii_ =  , and m  -f- n =  d.
B  m

A
m  and n  can quickly be solved on the slide rule, b y  setting up the ratio and

running the glass along the rule until two quantities are found which add up to d.

H  then equals 1.53 %  m A  or, for a check, also equals 1.53 Y2 nB .

The height of signal needed to clear P  then is H  feet at both E  and F .  In case 
equal signals are not desired (a higher signal m ay be needed at one station for some 
other line, thus making it  possible to reduce the signal at the other station) then, for

w
example, if the signal at E  is raised 26 feet, the signal at F  m ay be reduced — ■ x  26

with safety.



The above solution m ay appear a b it too formidable for field use, but a very small 
amount of practice has proven that it  can be done easily in three minutes of time. 
This method of computing signal heights makes it  unnecessary to  get on the interme
diate point for instrument work, and as the maximum verticals taken are to the top of 
the obstruction, no separate measurement or guessing of tree heights or building heights 
need be made.

Of course, there are types of country where these methods will be of little use, but 
it  will very  rarely occur where at least a modified form of one or all of these methods 
cannot be employed to advantage.

DETERMINATION OF OFFSHORE POSITION BY SEXTANT ALTITUDE 
OF MOUNTAIN PEAK.

(From an article b y  S a n f o r d  L. C LU E TT, 
published in the United States N aval Institute Proceedings, Annapolis, N ov. 1935, p. 1665)

The formula for determining the distance of a mountain peak th at lies beyond the 
horizon is sim ple; but its solution is too tedious to make it of practical navigational 
value.

In the March, 1933, issue (page 397) of the U. S. N aval Institute Proceedings, Lieu- 
tenant-Commander A. F . F r a n c e , U. S. N avy, gives a practical solution of the problem 
which is taken up to-day Mr. Sanford L. C l u e t t .

Let D  =  distance in nautical miles from observer to top of mountain, 
h =  height of eye above sea, in feet,

m =  observed angle in minutes of arc between horizon and distant peak,
H  =  height of mountain, in feet,
R  —  mean radius of the earth (taken at 20,890,590 ft.), 
c =  coefficient of terrestrial refraction (taken at 0.07269).

But light has a curved trajectory which, within the limits of this problem, may be
R

considered the arc of a circle whose radius we will call R . . Furthemore ------=  2c.
Rr

It m ay easily be established that the general relationship which interconnects the 
above quantities is the following :

O =  D 2 -j- D  (m 2.339 —  2.30 \Jh) —  1.3225 H  +  1.3225 h.

This is the general equation from which graphs m ay be easily constructed for any 
height of eye and for any height of mountain.

While the accompanying graph is computed for height of eye of 9 feet, it m ay be 
used with sufficient accuracy for any height of eye between 6 feet and 16 feet without 
entailing graph reading errors greater than 1 mile.

When height of eye is 9 feet, under normal atmospheric conditions the graph is 
correct to within 0.2 miles.


