THE TRACK OF THE ORTHODROMIC CURVE ON MERCATOR CHARTS.

by
Florian LA PORTE, Ingénieur Hydrographe en Chef, French Navy. (retired).
(Translated from the French).

INTRODUCTORY.

Although in both aerial and marine navigation, the tendency is towards greater utilization of the orthodromes (or the arcs of the great circles) for plotting the course over great distances, the compass still remains the instrument in common use which permits the successive courses to be steered correctly. These courses are the loxodromes into which the orthodrome in question is subdivided in practice.

It is important therefore that in aerial navigation, as in maritime navigation, use should be made of charts on which the loxodromes are represented by straight lines, that is, Mercator charts, on condition that the arcs of the great circles may be plotted easily and rapidly regardless of the chart scale.

We shall first say a few words about the principal solutions which have been proposed for the problem of orthodromic navigation.

I

THE KAHN CHARTS.

One of the most modern and at first sight most fascinating, is that of the French naval engineer Kahn. The solution consists in taking the great circle course desired as the equator of a chart constructed on the Mercator system. We know in fact that in the equatorial regions the orthodrome coincides very closely with the loxodrome and in practice differs from the latter by a negligible quantity only. M. Кahn claims that in the zone comprised between $\pm 15^{\circ}$ of the equator this error becomes practically nil.

But the parallels and the meridians being represented by curves, and no longer by straight lines as on the Mercator charts, the carrying forward of the lines of position resulting from the astronomical observations becomes rather impracticable.

Another objection results from the utilization of radiogoniometric bearings. As long as one remains in the pseudo-equatorial zone, these bearings may well be represented by straight lines. But we must anticipate that in the future more and more use will be made of bearings of this kind taken on stations lying outside of this zone, in which case one can no longer consider the corresponding spherical arcs as straight lines.

HILLERET CHARTS.

Another and simpler solution was furnished some time ago by the charts of Lieutenant de Vaisseau Hilleret, which have been much neglected or forgotten in these days.

These charts, which comprise part of the regular service issue of the French Hydrographic Service, are constructed on a system of projection (gnomonic projection on the plane tangent at the equator) where all the arcs of the great circles of the sphere are represented by straight lines. Since they also represent the parallels and geographic meridians as curves and as straight lines respectively, it suffices to plot the straight line between two points given by their geographic positions to obtain the true orthodrome joining these two points on the terrestrial sphere.

The latitudes of the points where the straight line thus obtained intersects the successive meridians, are measured on the chart. These are then transferred to the Mercator chart and by fairing a smooth curve through these successive points one obtains the track of the orthodrome sought.

The accuracy thus obtained appears adequate for the purposes of aerial navigation at least.

It is only necessary that the Hilleret charts, which have been constructed solely for purposes of maritime navigation and on which the seaports only are charted, should be completed by indications for the airports and the principal cities in the interior comprising the aeronautical centres - a task which could easily be carried out. (I)

THE FAVÉ TRACINGS.

This is a solution analogous to that of the Hilleret charts and is furnished by the tracings invented and prepared by Ingénieur hydrographe en chef Fave, of the French Hydrographic Service. The solution is based on the principle that the orthodrome is defined by the angle at which it intersects the equator and the corresponding longitude.

The tracings, constructed for the Mercator system to scales corresponding to those of the planispheres or General Charts of the Hydrographic Service, are placed over the chart of the same scale so that the equator of the tracing being maintained on that of the chart one of the orthodromes of the tracing passes through the two points defining the orthodrome sought.

Thereupon one measures the latitudes of the points where the orthodromic curve of the tracing intersects the successive meridians of the chart on which the curve is to be plotted. The points are then joined by a smooth curve which represents the orthodrome sought.

Briefly, in this process as in that of Hilleret, the Fave tracings constitute a simple calculating device.

[^0]
II

FORMULAE FOR THE DIRECT CONSTRUCTION OF ORTHODROMES ON MERCATOR CHARTS.

It may be asked whether it might not be simpler, more rapid and accurate to have tables calculated in advance giving the intersections with the parallels or the meridians of the orthodromes which cut the equator at given angles.

For this it would doubtless be necessary to calculate the angle under which the orthodrome passing through the two given points intersects the Equator and the longitude of the corresponding point.

We give here the very simple formulae which permit the two quantities to be found with the requisite accuracy.

Let A and B represent the two points which are to be joined by the orthodrome.
L_{1} and L_{2} are their latitudes, considered as positive in the northern hemisphere and negative in the southern hemisphere.
G is their difference in longitude reckoned positively from W. to E.
ω is the angle made by the orthodrome sought with the plane of the Equator.
γ the longitude of the point C where that orthodrome intersects the Equator. The longitude is reckoned positively in the sense given above. (See Fig. 1).

Let us consider the meridians of the points A and B; they intersect the Equator at the points A^{\prime} and B^{\prime}.

The rectangular spherical triangles $C A A^{\prime}$ and $C B B^{\prime}$, give respectively:

$$
\begin{align*}
& \tan \dot{L_{1}}=\sin \gamma \tan \omega \\
& \tan L_{2}=\sin (\gamma+G) \tan \omega \tag{I}
\end{align*}
$$

from which we readily deduce :

$$
\begin{equation*}
\cot \gamma=\frac{\tan L_{2}}{\tan L_{1} \sin G}-\cot G \tag{2}
\end{equation*}
$$

a formula which can readily be computed by means of the logarithmic tables of addition and subtraction (I); or, where there is no need for such great accuracy, by means of the tables of natural trigonometric functions.

Once γ has been determined by the formula (2) we can calculate ω easily by one of the formulae in (I), or better by both of them as a check.

Finally, knowing γ and ω, we can calculate the arcs $C A$ and $C B$ by the formulae

$$
\begin{align*}
& \sin C A=\frac{\sin L_{1}}{\sin \omega} \\
& \sin C B=\frac{\sin \frac{L_{2}}{\sin \omega}}{} \tag{3}
\end{align*}
$$

The distance $A B$ will be the difference or the sum of the two arcs; the difference if the two points A and B are located on the same side of the Equator and the sum if they are located on opposite sides of the Equator.

Fig. 2
(I) This formula can easily be made calculable by logarithms, by putting

$$
\tan \varphi=\frac{\cos G \tan L_{1}}{\tan L_{2}}
$$

We then find (2) $\quad \tan \gamma=\frac{\tan L_{1}}{\tan L_{2}} \times \frac{\sin G \cos 45^{\circ} \cos \varphi}{\sin \left(45^{\circ}-\varphi\right)}$

An example will clarify the above statements :
Let us consider the arc of the great circle which traverses the Atlantic from Dakar to Natal (the flight of Coste and Joseph Le Brix).
We have for Dakar .. $\left\{\begin{array}{l}L_{2}=+14^{\circ} 40^{\prime} \\ G_{2}=-17^{\circ} 28^{\prime}\end{array}\right\}$ (Longitude to W. of Greenwich).
Natal $\ldots \ldots \ldots \ldots\left\{\begin{array}{l}L_{1}=-5^{\circ} 40^{\prime} \\ G_{1}=-35^{\circ} 20^{\prime}\end{array}\right\}$ (Longitude to W. of Greenwich).

$$
\text { from which } G=G_{2}-G_{1}=+17^{\circ} 52^{\prime}
$$

Calculation of γ

$$
\begin{aligned}
& \cot \gamma=\frac{\tan L_{2}}{\tan L_{1} \sin G}-\cot G
\end{aligned}
$$

$$
\begin{aligned}
& \text { log. o. } 93436(-)-8.60 \\
& 2^{\text {nd }} \text { term } \cot G \ldots \ldots \ldots \ldots \ldots \ldots-\underline{3.10} \\
& \cot \gamma \ldots \\
& \gamma=\ldots \ldots \ldots \ldots \text { - } 4^{\circ} 53^{\prime}
\end{aligned}
$$

We see by the sign of γ that the point A^{\prime} is to the Westward of the point C, the point where the arc of the great circle considered cuts the Equator. The longitude of this point C is therefore:
$-35^{\circ} 20^{\prime}+4^{\circ} 53^{\prime}=30^{\circ} 27^{\prime} .0 \mathrm{~W}$. of Greenwich.
The formulae (I) then give us for $\omega\left\{\begin{array}{llll}\text { by } A A^{\prime} C & \ldots & 49^{\circ} 22^{\prime} \\ \text { by } A B^{\prime} C & \ldots & 49^{\circ} 21^{\prime}\end{array}\right.$
The formulae (3) give $\quad\left\{\begin{array}{l}\text { for the } \operatorname{arc} A C\end{array} \quad \ldots \begin{array}{c}7^{\circ} \\ ;\end{array} 0^{\prime}\right.$
from which the arc $A B 27^{\circ}$ oo'
(or 1620 nautical miles).
Note: In cases where there is no need for such great accuracy, we may determine the position of the point C on the Equator, by means of one of the Hilleret charts or the Fave tracing. The value of ω can then be deduced immediately from the two equations (I); the difference between the two solutions thus obtained gives some idea of the accuracy which can be counted on for the method.

DESCRIPTION AND USE OF TABLES.

The tables which are found further on (pp. 28-32) are for the purpose of plotting the orthodromes (or the arcs of the great circles) on the Mercator charts without logarithmic calculation, and frequently by inspection. These orthodromes are defined by the angle ω under which they intersect the Equator and by the position on the Equator of the corresponding point C, whether this point be calculated by the formulae given above or, (in cases where less accuracy is needed). it has been obtained from the Hilleret chart or determined by means of the Favé tracings.

Tables I and II give the angles as horizontal arguments and for vertical arguments the longitudes are listed, counted from the point C thus determined.

Except for the equatorial region, where it suffices to consider the orthodromes corresponding to the values of ω equal to 5° and 10°, Table I gives the angles ω for every 2°, from 10° to 40°. Table II gives them for each degree from 40° to 70°.

The interpolations for the intermediate values of ω may readily be made by inspection to within I^{\prime} to 2^{\prime}; which will generally suffice for all practical purposes.

For the values of the Longitude M, one can dispense with interpolations. It will suffice to plot on the chart the meridians corresponding to a round number of degrees to the Eastward or the Westward of the point where the orthodrome intersects the Equator.

Thus for the track of the orthodrome Dakar-Natal, which we studied above, the point where this orthodrome cuts the Equator being as we have seen in Longitude $30^{\circ} 27^{\prime}$ W. of Greenwich, we shall plot on the chart the meridians $25^{\circ} 27^{\prime}, 20^{\circ} 27^{\prime}$, I $5^{\circ} 27^{\prime}, 10^{\circ} 27^{\prime}$, and we enter Table II with the corresponding values of M; that is, $5^{\circ}, 10^{\circ}, 15^{\circ}, 20^{\circ}, 25^{\circ}$ for the Eastern branch of the orthodrome sought. The value found for ω being $49^{\circ} 22^{\prime}$, the corresponding Latitudes given by Table II will be found by inspection to be $5^{\circ} 50^{\prime} \mathrm{N}$., $11^{\circ} 30^{\prime} \mathrm{N}$., $16^{\circ} 50^{\prime} \mathrm{N}$., $21^{\circ}{ }^{\circ} 50^{\prime} \mathrm{N}$., which permits us to plot the orthodromic curve with all necessary accuracy on the chart of the North Atlantic ($\mathrm{N}^{\circ} 5588$).

At values greater than 70° the orthodromes cut the meridians at angles which are more and more acute, except in the portions of the curve in the vicinity of the Latitude equal to this same value of ω.

It is therefore advisable to give the intersections of the orthodrome no longer with the meridians, but with the parallels to which, in proportion with the approach of ω to 90°, the orthodrome tends to become more and more perpendicular over an ever increasing portion of the track.

Table III gives the Longitudes of the points where the orthodrome having a value of ω intersects the successive parallels of Latitude L－Lon－ gitudes which must be augmented or diminished with respect to the point where the given orthodrome cuts the Equator，depending upon the branch under consideration．

The Latitudes which are given as arguments in Table III are given for each 10° only up to Latitude 40° ；the corresponding parts of the orthodro－ mes being almost straight lines approach closer and closer to the initial meridian the more the angles ω approach 90° ．

Let us add that Table III stops at Latitude 70° ，which is above the limit of the Mercator charts in use in the French Hydrographic Service and which we believe will rarely be exceeded by aerial navigation．

穵 图 園

TABLE

 Latitudes des points où une orthodromie faisant l＇angle ω meridiens de longitudes $\pm M$ （longitude comptée à partir du point où cette orthodromie coupe l＇équateur）．$(\operatorname{tg} L=\sin M \operatorname{tg} \omega)$ －

¢	in	\bigcirc	in	¢	N	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{8}$ m	$\stackrel{i}{\text { in }}$	$\stackrel{\square}{8}$	in		¢	［in	0	¢		，	6	8	3 +5
	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{0}}$			$\begin{aligned} & \text {-0 } \\ & 0 \\ & \hline 0 \end{aligned}$			$\begin{aligned} & \bar{\circ} \\ & \stackrel{4}{0} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \overline{7} \\ & \underset{j}{2} \\ & \stackrel{y}{n} \end{aligned}$				$\begin{aligned} & \stackrel{\rightharpoonup}{*} \\ & \underset{\sim y}{*} \end{aligned}$	$\left\lvert\, \begin{aligned} & \overline{0} \\ & \dot{0} \\ & \dot{N} \end{aligned}\right.$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 5 \\ & \hline \mathbf{0} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{*} \\ & \dot{8} \\ & \dot{8} \end{aligned}$	\％	
m	$\begin{aligned} & \text { 㟧 } \\ & \stackrel{0}{\circ} \\ & \stackrel{y}{0} \end{aligned}$						$\begin{array}{\|l} \underset{\sim}{\lambda} \\ \underset{\sim}{*} \\ \stackrel{\rightharpoonup}{2} \end{array}$	$\left\lvert\, \begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & \dot{N} \end{aligned}\right.$	$\begin{aligned} & \overline{-} \\ & \underset{\sim}{0} \\ & \underset{\sim}{0} \end{aligned}$			$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{\circ}{8} \end{aligned}$			$\begin{aligned} & 9 \\ & 8 \\ & \hline 8 \end{aligned}$		$\begin{aligned} & \text { F} \\ & \underset{8}{8} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \stackrel{9}{9} \\ & \stackrel{9}{5} \\ & \hline \end{aligned}$	－	9
\mathbf{m}		$\stackrel{i}{7}$	$\begin{aligned} & 0.0 \\ & \stackrel{y}{4} \end{aligned}$						$\overline{2}$ 0 0 0 0				$\left\|\begin{array}{l} 4 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \dot{0} \\ & \underset{\sim}{4} \\ & \dot{\sim} \end{aligned}$			$\begin{gathered} \bar{j} \\ \dot{j} \\ \dot{j} \end{gathered}$	$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	\％	¢
※े	্ָঠু	$\underset{0}{7}$	$\begin{gathered} \text { ジ } \\ \stackrel{\circ}{\circ} \end{gathered}$	$\stackrel{\otimes}{\underset{-}{2}}$	$\stackrel{\rightharpoonup}{\underset{\sim}{i}}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{array}{r} \overline{8} \\ \frac{1}{2} \end{array}$		$\overline{0}$ 8 0 0 		$\begin{gathered} \frac{9}{4} \\ \stackrel{1}{4} \end{gathered}$	- 	$\begin{aligned} & \stackrel{\rightharpoonup}{a} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\infty} \\ & \stackrel{1}{6} \end{aligned}$			8 8 8 8	\％	ल
$\underset{r}{N}$	$\begin{aligned} & \bar{\circ} \\ & \vdots \\ & 0 \end{aligned}$		$\begin{gathered} \text { à } \\ \stackrel{\rightharpoonup}{0} \end{gathered}$	$\underset{\sim}{\circ}$	$\begin{aligned} & \underset{i}{9} \\ & \stackrel{0}{4} \\ & \hline \end{aligned}$		$\begin{aligned} & \bar{\sim} \\ & \tilde{\sim} \\ & \stackrel{\rightharpoonup}{H} \end{aligned}$	$\begin{aligned} & \dot{H} \\ & \dot{A} \\ & \dot{A} \end{aligned}$	$\begin{aligned} & \dot{\overrightarrow{0}} \\ & \dot{0} \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \overrightarrow{1} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{array}{\|l\|l} \hline \\ \mathbf{N} \\ \mathbf{N} \\ \mathbf{N} \end{array}$	$\begin{aligned} & \text { - } \\ & \stackrel{0}{0} \\ & \dot{8} \end{aligned}$			$\begin{aligned} & \stackrel{-}{\circ} \\ & \stackrel{1}{\circ} \\ & \stackrel{\circ}{8} \end{aligned}$	$\stackrel{8}{8}$	$\stackrel{\circ}{\text { O }}$
K	$\begin{gathered} \bar{\circ} \\ \text { í } \end{gathered}$	$\underset{0}{5}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$	ت̈	$\begin{aligned} & \text { ín } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \hline \\ & \hline \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & - \\ & \frac{0}{0} \\ & \vdots \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{2} \\ & \underset{0}{0} \\ & \text { B } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{9} \\ & \stackrel{\rightharpoonup}{\aleph} \end{aligned}$	N	$$		$\begin{array}{\|l\|} \hline \mathbf{N} \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \text { ei } \\ & 0 \\ & \text { it } \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\alpha}{\otimes} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	\％	\％
$\stackrel{\circ}{\infty}$	$\begin{aligned} & \stackrel{-}{8} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\underset{8}{8}$	$\begin{aligned} & \stackrel{\rightharpoonup}{00} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline-9 \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	7 7 －		$\begin{aligned} & \text { \# } \\ & \stackrel{0}{0} \\ & \text { H } \end{aligned}$	$\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & -0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\sim}{\circ} \\ & \stackrel{N}{0} \end{aligned}$	$\overline{-}$ $\underset{\sim}{0}$ $\underset{\sim}{0}$	$\stackrel{\rightharpoonup}{\mathbf{o}}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \dot{H} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \text { di } \\ & \stackrel{y}{0} \end{aligned}$		Mix	\circ 0 0 	$\stackrel{\circ}{\infty}$	¢
$\begin{aligned} & 0 \\ & 0 \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \stackrel{0}{0} \end{aligned}$	$$	$\begin{gathered} \text { が } \\ \stackrel{y}{8} \end{gathered}$	$\begin{gathered} 00 \\ \stackrel{0}{\circ} \\ \stackrel{\circ}{\circ} \end{gathered}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$		$\begin{gathered} \bar{y} \\ \underset{y}{0} \\ \stackrel{y}{-1} \end{gathered}$	$\begin{aligned} & \ddot{\infty} \\ & \stackrel{9}{9} \\ & \stackrel{1}{2} \end{aligned}$				$\begin{aligned} & \substack{9 \\ \hline \\ \hline \\ \hline \\ \hline} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\overleftarrow{N}}}{\stackrel{\rightharpoonup}{N}}$	H $\stackrel{\rightharpoonup}{\circ}$ N N	-7 8 8 8 		$\begin{aligned} & \text { N} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$		$\stackrel{8}{8}$	$\begin{aligned} & i 0 \\ & \mathbf{N} \end{aligned}$
$\stackrel{\stackrel{0}{+}}{\stackrel{1}{4}}$	$\stackrel{\stackrel{\rightharpoonup}{4}}{\stackrel{\sim}{\sim}}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{\circ} \end{aligned}$	東	$\begin{aligned} & \text { ion } \\ & \stackrel{0}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \hline \dot{\circ} \\ & \stackrel{0}{0} \\ & \stackrel{1}{-1} \end{aligned}$		$\begin{aligned} & \bar{\circ} \\ & \stackrel{1}{\circ} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{9} \\ & 0 \\ & \underset{A}{1} \end{aligned}$	$\begin{array}{\|l\|c} \infty \\ 0 \\ 0 \\ 0 \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \overline{9} \\ & 0 \\ & \vdots \\ & \dot{1} \end{aligned}$	$\left\lvert\, \begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & \end{aligned}\right.$		$\begin{aligned} & \bar{M} \\ & \hline \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	\|l	$\begin{aligned} & \bar{\phi} \\ & 0 \\ & \vdots \\ & \dot{N} \end{aligned}$		No	$\begin{aligned} & 0 \\ & \stackrel{1}{1} \\ & \stackrel{y}{3} \end{aligned}$	兂	¢
$\begin{aligned} & \stackrel{\circ}{\sim} \\ & \sim \end{aligned}$	7	$\begin{aligned} & -1 \\ & \hline 0 \\ & \dot{4} \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\infty}{0} \\ \stackrel{0}{0} \end{gathered}$	$\begin{aligned} & \stackrel{i}{7} \\ & \stackrel{8}{8} \\ & i \end{aligned}$	$\begin{gathered} i \\ \stackrel{y}{4} \\ \stackrel{0}{0} \end{gathered}$			$\begin{aligned} & \overline{8} \\ & \dot{8} \\ & \underset{\sim}{e} \end{aligned}$		$\begin{aligned} & \stackrel{0}{E} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \overline{-} \\ & \underset{\sim}{c} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{9} \\ & \underset{\sim}{\infty} \\ & \underset{A}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & \bar{a} \\ & \stackrel{1}{2} \\ & \underset{\sim}{2} \end{aligned}\right.$	－			$\begin{gathered} \text { Nu } \\ \stackrel{N}{N} \end{gathered}$	～～	N N
$\begin{aligned} & 0 \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \overline{0}_{i} \\ & 0 \\ & \dot{-1} \end{aligned}$	$\begin{aligned} & \stackrel{-}{0} \\ & \stackrel{y}{8} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{8} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{+} \\ & \stackrel{\circ}{\infty} \end{aligned}$			$\begin{aligned} & \overline{\mathrm{E}} \\ & \dot{\mathrm{~A}} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \vdots \\ & 0 \\ & -1 \\ & -1 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 8 \\ & 0 \\ & 0 \end{aligned}$		$\left\lvert\, \begin{aligned} & \bar{n} \\ & \vdots \\ & \vdots \\ & \end{aligned}\right.$	$\begin{gathered} 8 \\ \hline 0 \\ \stackrel{\circ}{-1} \end{gathered}$	$\begin{aligned} & 8.8 \\ & 0 \\ & \hline \mathbf{9} \\ & \mathbf{9} \end{aligned}$	$\begin{aligned} & \overline{7} \\ & \stackrel{7}{7} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$	8	$\stackrel{\circ}{8}$
$\stackrel{\bigcirc}{\underline{@}}$	$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{4} \\ -1 \end{gathered}$	$\stackrel{\rightharpoonup}{\dot{i}}$	$\underset{\dot{i}}{\dot{i}} \underset{\dot{d}}{ }$	$\begin{gathered} -7 \\ 8 \\ 8 \end{gathered}$	$\begin{aligned} & 9 \\ & \stackrel{8}{4} \end{aligned}$			$\begin{aligned} & \text { ثे } \\ & \stackrel{y}{\circ} \end{aligned}$	$\begin{aligned} & \dot{9} \\ & 0 \\ & \dot{7} \\ & \dot{7} \end{aligned}$	$\left\lvert\, \begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & \underset{\sim}{0} \end{aligned}\right.$	$\begin{array}{\|c} \overline{8} \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$			$\begin{aligned} & \overline{7} \\ & \stackrel{9}{9} \\ & \underset{7}{2} \end{aligned}$	$\left\lvert\, \begin{gathered} \bar{a} \\ 0 \\ 0 \\ \underset{1}{2} \end{gathered}\right.$	$\begin{aligned} & \ddot{\sim} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \overline{7} \\ & \stackrel{1}{5} \\ & \dot{-} \end{aligned}$	$\underset{\sim}{\infty}$	$\stackrel{\circ}{0}$
$\stackrel{\circ}{\varrho}$	$\begin{gathered} \stackrel{\rightharpoonup}{8} \\ \stackrel{\circ}{\sim} \end{gathered}$	$\begin{aligned} & \underset{\sim}{2} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{9} \\ & \dot{9} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{aligned} & \ddot{0} \\ & \stackrel{0}{8} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \stackrel{1}{0} \\ & \infty \end{aligned}$		$\begin{gathered} 00 \\ \dot{\circ} \\ \hline 0 \end{gathered}$		$\begin{aligned} & \stackrel{\rightharpoonup}{a} \\ & \stackrel{\rightharpoonup}{w} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	$\begin{array}{\|c} \bar{\sim} \\ \underset{\sim}{0} \\ \underset{\sim}{*} \end{array}$		$\begin{aligned} & \overline{7} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \dot{0} \\ & \text { - } \end{aligned}$	$\begin{aligned} & \dot{H} \\ & \underset{~}{j} \\ & \underset{H}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{0} \\ & \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \end{aligned}$	$\stackrel{8}{-1}$	\bigcirc
－	$\begin{gathered} \underset{n}{9} \\ \underset{\sim}{n} \end{gathered}$		$\begin{aligned} & 7 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$		$\ddot{8}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 8 \end{aligned}$		$$	$\begin{aligned} & \circ \\ & \hline 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{O} \\ & \hline 0 \\ & \hline-1 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			$\begin{aligned} & \overline{\sim 7} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \text { \# } \\ & \text { H } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \overrightarrow{7} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$		$\begin{aligned} & \text { à } \\ & \text { ! } \\ & \text { ! } \end{aligned}$	Ḣ	$\stackrel{\circ}{+}$
$\stackrel{\circ}{\mathrm{o}}$	$\begin{aligned} & 0_{0}^{0} \\ & \vdots \\ & -1 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline \circ \\ & \vdots \\ & \hline \end{aligned}$	\|o	$\begin{aligned} & \bar{\sigma} \\ & \hline 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{\phi} \\ & i \end{aligned}$	$\begin{aligned} & \text { 8t } \\ & 8 \end{aligned}$		$\begin{aligned} & 5 \\ & 8 \\ & 8 \end{aligned}$	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{5} \\ 0 \\ \dot{心} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \overline{0} \\ 0 \\ \infty \\ \infty \end{gathered}\right.$	$\begin{aligned} & \bar{n} \\ & \stackrel{y}{2} \\ & \stackrel{1}{2} \end{aligned}$	$\left\lvert\, \begin{gathered} 9 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	$\stackrel{\substack{08 \\ \hline 8 \\ \hline 8 \\ \hline}}{2}$	$\begin{aligned} & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{5} \\ & \stackrel{0}{0} \\ & \dot{-} \end{aligned}$	$\begin{aligned} & \mathbf{9} \\ & \stackrel{8}{7} \\ & \hline \end{aligned}$		$\begin{aligned} & \dot{0} \\ & 0 \\ & \underset{7}{2} \end{aligned}$	年	$\stackrel{\circ}{\text { ® }}$
$\stackrel{\circ}{\mathrm{O}}$	$\begin{aligned} & \pi \\ & \overbrace{0}^{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 5 \\ & \vdots \\ & 5 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{\circ} \end{aligned}$	$\begin{array}{\|c\|c} \underset{\sim}{N} \\ \stackrel{8}{\infty} \end{array}$	$\begin{gathered} \stackrel{0}{0} \\ \stackrel{4}{8} \end{gathered}$	$\begin{aligned} & \text { 으 } \\ & \text { in } \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \infty \\ \hline \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & i \\ & i \\ & i \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{0}{\infty} \end{aligned}$		$\begin{aligned} & \overline{7} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 5 \\ & \stackrel{5}{8} \\ & \vdots \end{aligned}$	$\begin{aligned} & \vec{*} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \end{aligned}$			$\stackrel{\circ}{9}$	\bigcirc
in	$\begin{gathered} 0 \\ \stackrel{8}{8} \\ \dot{\circ} \end{gathered}$	$\begin{aligned} & \text { ৷̈ } \\ & \stackrel{0}{\circ} \end{aligned}$	$\stackrel{\underset{\sim}{\mathbf{a}}}{\stackrel{\rightharpoonup}{9}}$	$\begin{aligned} & \bar{g} \\ & \dot{A} \end{aligned}$	$\stackrel{\text { ® }}{\circ}$	"̈		$\begin{gathered} \text { in } \\ \substack{8 \\ \dot{\sim}} \end{gathered}$	$\begin{aligned} & \mathbf{9} \\ & \underset{8}{8} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \dot{8} \end{aligned}$	吕	$\begin{aligned} & 0 \\ & \hline 0 \\ & \vdots \\ & \hline \end{aligned}$		$\begin{gathered} 0 \\ \hat{N}_{1} \\ \dot{+} \end{gathered}$	$\begin{aligned} & \text { 쓰 } \\ & \text { O} \\ & \text { +4 } \end{aligned}$	$\begin{gathered} \text { y } \\ y_{1} \\ \sigma_{1} \end{gathered}$		$\begin{aligned} & \bar{\circ} \\ & \stackrel{0}{0} \end{aligned}$	i	in
$\begin{array}{r} \sum 1+ \\ 3 \\ \hline \end{array}$	\bigcirc	$\stackrel{\circ}{\mathrm{O}}$	in	$\begin{aligned} & \hline \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{\stackrel{i}{n}}{\mathrm{~N}}$	18	$\begin{aligned} & 6 \\ & \hline \end{aligned}$	$\stackrel{i}{\mathrm{i}}$	$\begin{array}{\|c\|} \hline \stackrel{\circ}{0} \\ + \\ \hline \end{array}$	$\begin{array}{\|c} 0 \\ i n \\ 8 \\ \hline \end{array}$	$\begin{aligned} & \hline 8 \\ & 8 \\ & \hline \end{aligned}$	5		$\begin{array}{\|c\|} \hline 0 \\ 0 \end{array}$	in 0 0	$\stackrel{\circ}{\circ}$		8	8	$\frac{1}{3} \Sigma$

TABLE II

$\begin{gathered} 3 \\ \Sigma+4 \end{gathered}$	in	$\underline{9}$	유웅	¢	$\stackrel{i}{\sim}$	$\stackrel{\circ}{8}$	$\begin{aligned} & i \\ & \stackrel{n}{n} \end{aligned}$	－	（1）	＋	8	$\begin{aligned} & i \\ & i n \\ & 0 \end{aligned}$	8	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	¢	$\begin{aligned} & \circ \\ & 0 \\ & \hline \end{aligned}$	8	45
in 0	$\begin{aligned} & \hline 0 \\ & \circ \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	- $\stackrel{0}{\circ}$ $\stackrel{\alpha}{\alpha}$	-9 0 0 0 0	$\begin{aligned} & -\overline{2} \\ & \mathbf{b} \\ & -1 \end{aligned}$	$\begin{array}{\|c\|} \hline \mathbf{N} \\ 8 \\ 8 \\ \text { B } \end{array}$	$\begin{gathered} -\overrightarrow{9} \\ \mathbf{9} \\ \dot{8} \end{gathered}$	$\begin{aligned} & \overline{0} \\ & \stackrel{0}{8} \\ & \ddot{\sim} \end{aligned}$		$\begin{aligned} & \overline{7} \\ & \hline \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { F̈ } \\ & \stackrel{y}{\circ} \\ & \stackrel{y}{*} \end{aligned}$	$\bar{\circ}$ $\dot{8}$ $\dot{子}$	$\begin{aligned} & \bar{y} \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{\rightharpoonup}{8} \end{aligned}$	$\begin{gathered} \mathbf{a} \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \dot{9} \\ & \underset{0}{2} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & \stackrel{8}{\mathbf{Z}} \end{aligned}$	－8	in
0 ＋ 0	$\begin{aligned} & \stackrel{5}{7} \\ & \stackrel{8}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{\sim} \\ & \stackrel{\rightharpoonup}{*} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} - \\ \hline \\ 0 \\ 0 \\ -1 \end{gathered}$	$\begin{aligned} & \underset{+}{7} \\ & \stackrel{1}{4} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & -\overrightarrow{7} \\ & \dot{8} \\ & \dot{8} \end{aligned}$		$\begin{aligned} & \bar{E} \\ & \stackrel{1}{1} \\ & \dot{N} \end{aligned}$				$\begin{aligned} & \ddot{8} \\ & \stackrel{y}{8} \\ & \dot{4} \end{aligned}$	-0 0 0 0	$\begin{aligned} & \dot{8} \\ & 8 \\ & 8 \\ & 8 \end{aligned}$		$\begin{array}{\|c} \hline \mathbf{0} \\ \mathbf{0} \\ \mathbf{~} \\ \mathbf{0} \end{array}$	$\begin{aligned} & \text { - } \\ & \text { - } \\ & \text { \& } \\ & \text { 8 } \end{aligned}$	$\overline{8}$ 8 \circ \＃	＋
$\stackrel{0}{0}$	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline- \\ & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$	$\begin{array}{\|c} \bar{\Gamma} \\ \stackrel{\circ}{\otimes} \\ \dot{A} \end{array}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & \stackrel{y}{*} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{a}} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{array}{\|c\|} \hline \dot{H} \\ \dot{8} \\ \dot{8} \end{array}$	$\stackrel{\underset{ }{i}}{\underset{i}{2}}$			$$	$\begin{aligned} & \ddot{\infty} \\ & \stackrel{0}{0} \\ & \stackrel{4}{4} \end{aligned}$			$\begin{array}{\|l\|} \hline 0 \\ 0 \\ \hline \\ \hline 8 \end{array}$	$\begin{aligned} & \underset{i}{2} \\ & \underset{-1}{2} \\ & \underset{-1}{2} \end{aligned}$	$\begin{aligned} & \text { 广̈ } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\text { ¢ }}{6} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{0}{0}$
N \sim \sim	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { Ò } \end{aligned}$		$\left\lvert\, \begin{aligned} & \underset{\sim}{o} \\ & \underset{\sim}{\circ} \\ & \underset{-1}{ } \end{aligned}\right.$	$\begin{aligned} & \underset{\mathbf{a}}{\mathbf{o}} \\ & \stackrel{\rightharpoonup}{\mathbf{o}} \end{aligned}$			$\begin{aligned} & \bar{E} \\ & \underset{\sim}{8} \\ & \stackrel{\circ}{2} \end{aligned}$			$\begin{aligned} & \text { oi } \\ & \hline \\ & \dot{甘} \end{aligned}$		$\left\lvert\, \begin{gathered} \bar{i} \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}\right.$	$\begin{aligned} & \bar{i} \\ & \vdots \\ & \stackrel{\rightharpoonup}{1} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \overline{9} \\ & \stackrel{7}{2} \\ & \dot{9} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & \text { E. } \\ & \stackrel{y}{2} \\ & \stackrel{-1}{6} \end{aligned}$	－	O \sim \sim
$\frac{0}{10}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	\circ $\stackrel{\circ}{\sim}$ $\stackrel{1}{2}$	$\begin{array}{\|c} \dot{y} \\ \dot{0} \\ \dot{i} \\ i \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{\circ} \\ & \stackrel{\sim}{\mathbf{o}} \end{aligned}$	$\bar{\circ}$ $\stackrel{y}{\circ}$ $\stackrel{y}{c}$		$\begin{array}{\|l} \hline \\ \hline \\ \hline \\ 0 \\ 0 \\ \hline \end{array}$	- N o ∞ ∞ ∞		$\begin{aligned} & \mathbf{8} \\ & \stackrel{8}{4} \\ & \underset{4}{2} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{H}} \\ & \mathrm{~N} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l} \hline- \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 5 \\ 68 \\ 0 \\ 0 \\ \hline \end{array}$		$\begin{aligned} & \overline{5} \\ & \stackrel{7}{8} \\ & \dot{8} \end{aligned}$	$\begin{aligned} & \text { 힝 } \\ & \stackrel{0}{\circ} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{y}{6} \\ & \frac{1}{6} \end{aligned}$	$\frac{0}{6}$
$\begin{aligned} & \circ \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \dot{H} \\ & \dot{+} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \underset{-}{-1} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \hline 8 \\ & \hline 8 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{0} \\ \stackrel{0}{0} \\ \dot{B} \end{array}$	$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{8} \\ & \dot{6} \end{aligned}$			$$		$\begin{aligned} & -\infty \\ & \stackrel{\infty}{\circ} \\ & \underset{\ddagger}{+} \end{aligned}$	$\begin{aligned} & \overline{4} \\ & \stackrel{y}{0} \\ & \vdots \\ & 9 \end{aligned}$	$\begin{gathered} \overline{7} \\ \stackrel{4}{0} \\ \cline { 1 - 3 } \end{gathered}$	$\left\lvert\, \begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}\right.$		－	\bigcirc
$\xrightarrow[+]{\circ}$	$\begin{aligned} & 7 \\ & \text { B } \\ & \text { io } \end{aligned}$	$\stackrel{-}{\underset{\sim}{-}}$	$\begin{aligned} & \stackrel{5}{5} \\ & 8 \\ & \mathbf{8} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \dot{0} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & \stackrel{8}{\mathbf{N}} \end{aligned}$	$\begin{aligned} & \stackrel{-}{\circ} \\ & \stackrel{0}{\circ} \\ & \stackrel{8}{心} \end{aligned}$			- 0 0 0 0	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{8}{8} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \underset{\sim}{\circ} \\ & \underset{y}{\prime} \end{aligned}$			$\begin{aligned} & \overline{1} \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|c} \stackrel{\rightharpoonup}{9} \\ \stackrel{1}{1} \\ \stackrel{1}{4} \end{array}$		$\begin{aligned} & \overline{8} \\ & \stackrel{0}{\circ} \\ & \stackrel{+}{4} \end{aligned}$	$\stackrel{\circ}{\circ}$
0 + +		$\begin{aligned} & \overline{-} \\ & \stackrel{0}{\circ} \\ & \stackrel{\rightharpoonup}{8} \end{aligned}$	$\left\lvert\, \begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & \dot{g} \\ & \dot{0} \\ & \dot{\mathbf{a}} \end{aligned}$	$\begin{aligned} & \hline \\ & \hline 8 \\ & 8 \\ & \underset{\sim}{8} \end{aligned}$		$\begin{gathered} \overline{0} \\ 0 \\ 0 \\ 0 \\ 8 \end{gathered}$			$\begin{aligned} & \bar{\circ} \\ & \hline 0 \\ & 0 \\ & \hline 0 \\ & \hline 0 \end{aligned}$		商	$\begin{aligned} & \overline{8} \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & - \\ & \hline-1 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline- \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 揖 } \\ & \stackrel{0}{\circ} \\ & \stackrel{\circ}{6} \end{aligned}$	 8 8 8	$\stackrel{\circ}{\circ}$
－	$\left.\begin{gathered} \dot{0} \\ 0 \\ 0 \\ 0 \end{gathered} \right\rvert\,$	$\begin{aligned} & \overline{0} \\ & \stackrel{0}{\circ} \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & \hline \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \stackrel{\sim}{\sim} \\ \stackrel{\rightharpoonup}{\bullet} \\ \underset{\sim}{\mathbf{D}} \end{gathered}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{0}{0} \\ & \stackrel{-1}{0} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{\circ} \\ & \text { cे } \end{aligned}$	$\begin{aligned} & \overrightarrow{-} \\ & \stackrel{1}{0} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		$\begin{aligned} & - \\ & \stackrel{0}{7} \\ & \underset{4}{2} \end{aligned}$		\square	$\begin{aligned} & 9 \\ & \stackrel{6}{4} \\ & 9 \end{aligned}$	$\begin{aligned} & \text { jo } \\ & 8 \\ & 08 \\ & \hline 8 \end{aligned}$	8 8 	$\stackrel{8}{8}$
$\begin{aligned} & 0 \\ & \underset{9}{\mathbf{o}} \end{aligned}$	$\begin{gathered} -0 \\ - \\ \vdots \\ \infty \end{gathered}$	$\begin{aligned} & \underset{9}{9} \\ & \dot{8} \end{aligned}$	$\begin{aligned} & -\dot{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 9 \\ & 9 \end{aligned}$		$-\underset{N}{N}$ $\stackrel{N}{N}$ $\stackrel{\rightharpoonup}{N}$	$\begin{aligned} & \bar{Y} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \text { ì } \end{aligned}$		$\begin{aligned} & \overline{0} \\ & \dot{8} \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { 第 } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \stackrel{-}{8} \\ & \stackrel{+}{-1} \end{aligned}$	$\begin{aligned} & 7 \\ & -7 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{9} \\ & \stackrel{+}{4} \\ & \underset{4}{4} \end{aligned}$		8 8 8 4	－9
in	$\begin{aligned} & - \\ & \hline 0 \\ & 0 \\ & 8 \end{aligned}$	$\stackrel{-7}{\stackrel{-}{\circ}}$	$\begin{gathered} \stackrel{\rightharpoonup}{e} \\ \stackrel{0}{0} \\ \underset{\sim}{4} \end{gathered}$	$\begin{aligned} & \stackrel{-}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \bar{\sim} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\sim}{\alpha} \end{aligned}$				$\begin{aligned} & \stackrel{-}{5} \\ & \stackrel{1}{0} \\ & \stackrel{\sim}{0} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & 0 \\ & 0 \\ & \text { 嶻 } \end{aligned}$	$\begin{aligned} & \bar{\Sigma} \\ & \stackrel{0}{0} \\ & \stackrel{0}{\circ} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \stackrel{0}{\circ} \\ & \stackrel{4}{4} \end{aligned}$	$\begin{aligned} & \underset{H}{I} \\ & \underset{y}{*} \\ & \text { in } \end{aligned}$	$\begin{aligned} & 7 \\ & 7 \\ & 9 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { जै } \\ & \text { é } \\ & \text { fi } \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 8 \\ & 9 \end{aligned}$	$\stackrel{i}{4}$
＋		$\begin{aligned} & \stackrel{-⿸ 厂 犬}{1} \\ & \stackrel{\circ}{\infty} \end{aligned}$	$\begin{aligned} & \bar{N} \\ & 0 \\ & \stackrel{\rightharpoonup}{-1} \end{aligned}$		$\begin{gathered} \underset{\sim}{\dddot{N}} \\ \stackrel{y}{\mathbf{N}} \end{gathered}$	- 0 0 0 			$\begin{aligned} & \overline{8} \\ & \dot{0} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \dot{N} \\ & \underset{N}{2} \end{aligned}$	- 0 0 0	$\begin{aligned} & \underset{N}{N} \\ & \stackrel{\rightharpoonup}{\mathbf{N}} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \bar{y} \\ & \stackrel{y}{8} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{array}{\|c\|} \hline-1 \\ -1 \\ -8 \\ 7 \\ \hline \end{array}$		$\begin{aligned} & \overline{7} \\ & \hline 8 \\ & \hline 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{8} \\ & \dot{子} \\ & \dot{4} \end{aligned}$	－
－	$\begin{aligned} & \text {-/ } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{0}{\circ} \end{aligned}$		$\begin{aligned} & \text { ٓ. } \\ & \stackrel{\oplus}{\circ} \end{aligned}$		$\begin{aligned} & \overline{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{array}{\|l} \dot{0} \\ 0 \\ 0 \\ \text { a } \end{array}$	- 8 \＆		\circ $\stackrel{0}{\circ}$ $\stackrel{0}{\circ}$		N 0 0 0 0	$\begin{aligned} & \mathbf{N} \\ & \stackrel{0}{2} \\ & \stackrel{0}{6} \end{aligned}$		$\begin{aligned} & \bar{H} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \dot{广} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{9} \\ & \stackrel{7}{7} \end{aligned}$		$\begin{aligned} & \hline 0 \\ & 8 \\ & 0 \\ & \hline 0 \end{aligned}$	
¢	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{*} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{\delta} \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\overline{8}$ 0 8 8		$\stackrel{-}{\infty}$		$\begin{aligned} & \overline{8} \\ & \hline 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \bar{\circ} \\ \stackrel{y}{0} \\ \dot{d} \\ \underset{\sim}{0} \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \overline{9} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & \stackrel{0}{2} \\ & \stackrel{2}{0} \end{aligned}$	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{n} \\ & \stackrel{1}{6} \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \stackrel{y}{0} \\ & \text { O} \end{aligned}$	$\begin{aligned} & \stackrel{-1}{0} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \underset{\sim}{\circ} \end{aligned}$	$\stackrel{-}{8}$ 	¢
$\stackrel{0}{5}$	$\begin{aligned} & \overline{0} \\ & \stackrel{0}{6} \end{aligned}$	$\begin{array}{\|c} \stackrel{\rightharpoonup}{8} \\ \stackrel{\circ}{\infty} \end{array}$	$\begin{aligned} & \underset{7}{7} \\ & \dot{0} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & i \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & -7 \\ & \stackrel{-}{4} \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \text { ه্} \\ & \hline \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{-1} \\ & -1 \\ & \underset{\sim}{2} \end{aligned}\right.$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{y}{c} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \bar{q} \\ & \dot{8} \\ & \dot{8} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{N}} \\ & \mathbf{N} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{0}{0} \\ & \stackrel{0}{\circ} \end{aligned}$	$\begin{aligned} & \bar{\sim} \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{e}{e} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{\rightharpoonup}{\mathbf{a}} \end{aligned}$		$\begin{aligned} & \bar{\circ} \\ & \hline \\ & \hline \end{aligned}$	$\frac{0}{5}$
$\stackrel{\circ}{\circ}$	$\underset{\underset{0}{7}}{\stackrel{7}{8}}$	$\left\lvert\, \begin{aligned} & \overline{2} \\ & \stackrel{\rightharpoonup}{\mathbf{0}} \\ & \mathbf{\infty} \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	I O	$\begin{aligned} & \overline{9} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\left\lvert\,\right.$	$\begin{array}{\|} \hline- \\ \dot{W} \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \text { E } \\ & \text { H } \\ & \text { d } \\ & \text { M } \end{aligned}$	0 0 0 0 0	$\begin{aligned} & \overline{0} \\ & 8 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \overline{9} \\ & \stackrel{9}{6} \\ & \stackrel{0}{5} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { +゙ } \\ & \stackrel{0}{8} \\ & \stackrel{\circ}{6} \end{aligned}$	\％ 8 8	$\stackrel{\circ}{\bigcirc}$
$\sum \frac{1}{3}$	in	0	in	$\begin{aligned} & 8 \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & 9 \\ & 8 \end{aligned}$	$\begin{array}{l\|l} \hline 0 \\ \hline 0 \\ \hline \end{array}$		$\begin{aligned} & \text { in } \\ & \hline \end{aligned}$	\％	in +	8	in	0	$\begin{aligned} & i 0 \\ & 0 \\ & \hline \end{aligned}$	38	8	\％	$\begin{aligned} & 4 \Sigma \\ & 3 \\ & \hline \end{aligned}$

TABLE II（contd．）
$\tan L=\sin M \tan \dot{\omega}$

$\underline{\Sigma}+$	in	O	$\stackrel{\sim}{\sim}$	N	$\stackrel{1}{\sim}$	O	¢	\％	¢ $\begin{aligned} & \text { u } \\ & \text { v }\end{aligned}$	0	is	O	0	0	人	∞	0	$+\Sigma$
¢	$\begin{gathered} \stackrel{a}{\ddot{a}} \\ \end{gathered}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \stackrel{a}{a} \end{aligned}$	$\begin{aligned} & 0.0 \\ & \stackrel{0}{0} \\ & \stackrel{\theta}{0} \end{aligned}$	$\left\lvert\, \begin{gathered} 9 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	$\begin{gathered} 0 \\ \stackrel{0}{\circ} \\ \stackrel{\circ}{4} \end{gathered}$	$\begin{aligned} & \overline{0} \\ & \stackrel{8}{8} \end{aligned}$	$\begin{aligned} & 0 \\ & 0.0 \\ & \hat{0} \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \\ \vdots \\ 0 \\ 0 \end{gathered}\right.$		$\begin{aligned} & \overline{0} \\ & .0 \\ & \hline 6 \end{aligned}$	8	$\stackrel{7}{5}$			$\begin{aligned} & \dot{0} \\ & \stackrel{0}{0} \end{aligned}$	$\left\lvert\, \begin{gathered} 9 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	$\begin{aligned} & \circ \\ & \hline \stackrel{\circ}{\circ} \end{aligned}$	O
	$\underset{\sim}{\stackrel{\rightharpoonup}{0}}$	${\underset{\sim}{\alpha}}_{\substack{N}}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{c} 9 \\ \vdots \\ 7 \end{array}\right\|$	$\begin{aligned} & 5 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} a \\ \stackrel{a}{a} \\ \text { Her } \end{gathered}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$0 \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \hline 0 \\ \vdots \\ \hline \end{gathered}$	$\begin{aligned} & 0.0 \\ & \stackrel{\circ}{\circ} \\ & \stackrel{8}{\circ} \end{aligned}$	$\stackrel{\rightharpoonup}{0}$	\because		B	$\begin{array}{\|c} \hline 0 \\ 0 \\ \hline 0 \end{array}$	$\left\|\begin{array}{c} \bar{q} \\ \underset{\sim}{c} \\ \stackrel{\rightharpoonup}{0} \end{array}\right\|$	ஃ	$\stackrel{\circ}{8}$
oo	$\stackrel{\underset{\sim}{\mathbf{a}}}{\mathbf{Z}}$	$\begin{gathered} 0 \\ 0 \\ \stackrel{0}{*} \end{gathered}$	$\begin{aligned} & \overline{0} \\ & \dot{\omega} \\ & \dot{\omega} \end{aligned}$	$\begin{aligned} & \stackrel{9}{9} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{array}{\|c} \left.\begin{array}{c} 1 \\ 8 \\ 8 \end{array} \right\rvert\, \end{array}$	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & -1 \\ & \vdots \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \stackrel{y}{0} \end{aligned}$	$\begin{gathered} \overrightarrow{7} \\ \underset{\circ}{0} \end{gathered}$	$\begin{array}{l\|l} \hline & 0 \\ \hline & 0 \\ 0 \end{array}$	$\stackrel{\ddot{8}}{ }$	\&	$\stackrel{0}{6}$	$\begin{gathered} 7 \\ 0 \\ 8 \end{gathered}$	$\left\lvert\, \begin{aligned} & \overrightarrow{7} \\ & \stackrel{1}{i} \\ & \dot{B} \end{aligned}\right.$	$\stackrel{\oplus}{\Phi}$	0
$\hat{6}$	$\begin{aligned} & \stackrel{0}{0} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{A}} \\ & \stackrel{\sim}{0} \end{aligned}$			$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 7 \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \\ & \dot{9} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	$\begin{gathered} 8 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \dot{0} \end{aligned}$	5	$\ddot{\circ}$	8			$\begin{array}{r} 5 \\ 8 \\ 8 \end{array}$	$\begin{aligned} & 7 \\ & 9 \\ & 0 \\ & 8 \end{aligned}$	\vdots	\wedge 0
\bigoplus	$\begin{aligned} & \ddot{\ddot{~}} \\ & \text { - } \end{aligned}$	$\begin{gathered} \bar{m} \\ \stackrel{\rightharpoonup}{N} \end{gathered}$	$\begin{aligned} & \dot{9} \\ & \stackrel{1}{8} \\ & \hline 8 \end{aligned}$	$0 \begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ i \end{gathered}$	$\begin{aligned} & 0.8 \\ & 08 \\ & \% \end{aligned}$	$\underset{\underset{\sim}{\square}}{\stackrel{\rightharpoonup}{*}}$	$\begin{aligned} & \underset{\ddot{E}}{\underset{\sim}{2}} \end{aligned}$	0	$\begin{aligned} & \infty \\ & \dot{0} \\ & \stackrel{\infty}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\infty}{\circ} \\ \underset{6}{2} \end{gathered}$	$\mathscr{\circ}$		若	$\begin{gathered} 8 \\ \hline 0 \\ \hline 0 \\ \hline \end{gathered}$	$\left\lvert\, \begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 8 \\ & 8 \end{aligned}\right.$!	\bigcirc
0	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\mu}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \end{aligned}$	ö	0	$\begin{aligned} & \underset{\sim}{7} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & -7 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \overline{0} \\ & 0 \\ & \text { Of } \end{aligned}$	$\begin{aligned} & \circ \\ & 0 . \\ & 0 . \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{array}{r} \text { H. } \\ 0 \\ 0 \\ 0 \end{array}$	$\dot{\oplus}$		\&	$\begin{aligned} & 5 \\ & 0 \\ & 8 \\ & 8 \end{aligned}$	$\begin{gathered} \dot{9} \\ 0 \\ 0 \\ 0 \end{gathered}$		${ }_{0}^{8}$
6	$\stackrel{\circ}{\circ}$	$\stackrel{\stackrel{y}{0}}{\stackrel{\sim}{4}}$	$\begin{aligned} & \dot{0} \\ & \dot{0} \\ & \dot{\omega} \end{aligned}$	$\left.\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\begin{aligned} & 0 \\ & 8 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \dot{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{9} \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \ddot{0} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 6 \\ & 0 \\ & \stackrel{0}{6} \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{*} \\ \stackrel{\rightharpoonup}{0} \end{gathered}$	\therefore		$\stackrel{y}{0}_{\substack{1 \\ \hline}}$	$\begin{gathered} \dot{9} \\ \stackrel{\circ}{6} \end{gathered}$	$\left\lvert\, \begin{aligned} & \dot{a} \\ & \mathbf{a} \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & \circ \\ & \text { \% } \end{aligned}$	¢
0	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \stackrel{8}{i+} \\ & \underset{-1}{ } \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$0 \begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \underset{\circ}{8} \\ & \stackrel{\circ}{8} \end{aligned}$			$\begin{aligned} & \circ \\ & \stackrel{8}{6} \\ & \vdots \end{aligned}$	$\begin{aligned} & \vec{~} \\ & \dot{B} \\ & \mathbf{0} \end{aligned}$	$\stackrel{\circ}{\infty}$	若	$\ddot{\oplus}$:	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{0}$	$\bar{\circ}$	¢
0	$\stackrel{\rightharpoonup}{\circ}$				$\begin{gathered} \stackrel{0}{0} \\ \stackrel{\otimes}{\infty} \end{gathered}$	$\begin{aligned} & 5 \\ & 6 \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & \overline{7} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{array}{\|c} \stackrel{0}{0} \\ \vdots \\ \vdots \\ \hline \end{array}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		$\stackrel{0}{\infty}$		$\stackrel{\substack{\circ \\ \hline \\ \hline}}{\circ}$	$\begin{aligned} & \dot{8} \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} \overrightarrow{0} \\ \dot{8} \\ \dot{0} \end{array}\right\|$	$\dot{0}$	へ00
$\overline{6}$	$\stackrel{\circ}{\circ}$	$\begin{gathered} \stackrel{8}{\circ} \\ \stackrel{\rightharpoonup}{-1} \end{gathered}$	$\begin{array}{ll} 0 \\ \hline \end{array}$	$\left\|\begin{array}{l} \bar{o} \\ \dot{0} \\ \stackrel{\rightharpoonup}{n} \end{array}\right\|$	$\begin{array}{\|c} \stackrel{0}{0} \\ \stackrel{\rightharpoonup}{n} \end{array}$	$\begin{aligned} & \text { ī̀ } \\ & \stackrel{\text { Now }}{ } \end{aligned}$	$\begin{aligned} & \ddot{0} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & \hline 0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$		$\dot{6}$			$\begin{gathered} \mathbf{a} \\ \stackrel{0}{e} \\ \stackrel{e}{2} \end{gathered}$	$\left\lvert\, \begin{aligned} & \dot{0} \\ & 0 \\ & \dot{8} \\ & \dot{8} \end{aligned}\right.$	$\stackrel{6}{6}$	$\stackrel{\circ}{0}$
$\begin{aligned} & \circ \\ & 0 \end{aligned}$	$\stackrel{\circ}{\infty}$	$\begin{aligned} & \ddot{i} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{array}{c\|c} \substack{4 \\ \hline \\ \hline} \\ \hline \end{array}$	$\begin{aligned} & \text { 山̈ } \\ & \stackrel{\circ}{0} \end{aligned}$	$\begin{array}{\|c\|c\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{gathered} \text { io } \\ \stackrel{\circ}{\circ} \end{gathered}$	$\begin{aligned} & 9 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{array}{\|c} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \text { 吕 } \\ & 0 . \end{aligned}$	$\begin{aligned} & \stackrel{0}{8} \\ & \stackrel{8}{8} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} \vec{D} \\ \dot{D} \\ \dot{0} \end{array}\right\|$!	\bigcirc
4	$\begin{array}{\|c} \stackrel{-1}{0} \\ \hline \end{array}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\bullet} \\ & - \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} c \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \text { id } \\ \stackrel{0}{0} \end{gathered}$	2 0 0	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{-}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\rightharpoonup}{0}$		$\begin{aligned} & \text { - } \\ & 0 \end{aligned}$		¿ٌ	$\begin{array}{l\|l\|} \stackrel{\rightharpoonup}{\otimes} \\ \stackrel{\rightharpoonup}{n} \end{array}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\stackrel{\circ}{\circ}$	¢
0	$\begin{aligned} & \hat{\circ} \\ & \stackrel{n}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & \stackrel{\circ}{4} \end{aligned}$		\dot{c}	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$		$\begin{aligned} & \overline{0} \\ & \stackrel{0}{\overleftarrow{~}} \end{aligned}$	$\left\lvert\, \begin{gathered} \infty \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$	$\stackrel{0}{8}$		$\stackrel{\underset{\sim}{7}}{\substack{0}}$			$\begin{gathered} \stackrel{8}{\circ} \\ \stackrel{\circ}{\circ} \\ \hline \end{gathered}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & \stackrel{0}{0} \end{aligned}\right.$	$\stackrel{\circ}{\circ}$	\cdots
is	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{2}{2} \end{aligned}$	$\begin{gathered} \ddot{0} \\ 0 \\ \underset{\sim}{0} \end{gathered}$	$\begin{array}{lll} 0 \\ \hline \end{array}$	4	$\begin{aligned} & 08 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { io } \\ & \stackrel{\circ}{0} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{\prime} \end{aligned}$		$\begin{aligned} & \circ \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$		$\begin{gathered} 3 \\ 3 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 8 \end{aligned}$	8 8 8		$\left.\begin{array}{\|c} \bar{\circ} \\ \stackrel{\rightharpoonup}{0} \end{array} \right\rvert\,$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$! !	へ̊
	$\begin{gathered} \text { No } \\ \end{gathered}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\infty} \\ & \underset{H}{\prime} \\ & \hline \end{aligned}$	$\begin{array}{ll} 0 \\ 0 & 0 \\ \hline \\ \hline \end{array}$	$6 \begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \text { di } \\ & \stackrel{\text { un }}{ } \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0 . \\ & 0 . \end{aligned}$			$\begin{array}{\|c} \stackrel{\rightharpoonup}{8} \\ 0 \\ 8 \\ 8 \end{array}$	$\stackrel{\circ}{\ddagger}$	$\left\lvert\, \begin{gathered} \text { N} \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	$\begin{gathered} \circ \\ 0 \\ 0 \end{gathered}$			$\begin{aligned} & \overline{0} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$!o	n^{n}
in	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\sim}{n} \end{aligned}$	$\begin{array}{l\|l\|l\|} \hline \\ \hline \end{array}$	$\begin{aligned} & \text { O} \\ & 0 \\ & \text { ¿ } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{e} \end{aligned}$	$\begin{aligned} & \text { ¢్ } \\ & \stackrel{\circ}{8} \end{aligned}$	$\begin{aligned} & \bar{a} \\ & \dot{\rightharpoonup} \\ & \dot{\sigma} \end{aligned}$	気	$\begin{aligned} & 0 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\stackrel{\oplus}{\stackrel{\circ}{\circ}}$	$\begin{gathered} \infty \\ \stackrel{\infty}{\circ} \\ \underset{子}{2} \end{gathered}$	$\begin{gathered} 0 \\ \hline 0 \\ \hline \end{gathered}$		$\begin{aligned} & \text { ef } \\ & \hline \end{aligned}$	$\begin{gathered} 9 \\ \stackrel{9}{8} \\ 8 \end{gathered}$	$\left\|\begin{array}{l} \overline{0} \\ \stackrel{0}{0} \\ \dot{0} \end{array}\right\|$	$\stackrel{\circ}{8}$	in n
\sum_{3}^{1}	in	\bigcirc	in	－	$\stackrel{i n}{\sim}$	$\begin{aligned} & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { in } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & i n \\ & \text { in } \end{aligned}$	$\begin{array}{r} 3 \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$	$\begin{aligned} 8 \\ 0 \\ n \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		in	81	$\left\|\begin{array}{l} 1 \\ 0 \\ \infty \end{array}\right\|$	$\begin{aligned} & \circ \\ & 0 \\ & 0 \end{aligned}$	3

TABLE III
For the determination of longitude of the points where the
orthodrome having the angle ω intersects the parallels of latitude.
(Longitudes reckoned from the point where the orthodrome
intersects the Equator).

$$
\sin M=\tan L \cot \omega
$$

w- ${ }^{\text {L }}$ -	70°	71°	72°	73°	74°	75°	76°	77°	78°	79°	80°	81°	82 ${ }^{\circ}$	83 ${ }^{\circ}$	84°	85°	86°	87°	88°	89°	90°	L 4
10°	30420	80291	30291	3008:	2054'	2042'	$2031 \cdot$	2020'	$8009{ }^{\text {r }}$	${ }^{1.58}$	1847 '	1*36	1*25	2014 ${ }^{1}$	1*04'	0053 '	0042 '	0032	0021	$0 \cdot 101$	$0 \cdot$	10°
20°	70371	7018'	6.481	6024'	001	80381	${ }^{6018}$	$4 \cdot 49 \cdot$	4026 '	$4 \cdot 041$	3×41 '	8018	$2 \cdot 56{ }^{1}$	$2034{ }^{\text {a }}$	2012 '	10501	$1 \cdot 28^{\prime}$	1.061	$0 \cdot 44$ '	$0 \cdot 281$	$0 \cdot$	20°
30	12008 ${ }^{\circ}$	11-28'	10049'	10010'	$9 \cdot 321$	80541	80.191	7040 P	70031	$6 \cdot 261$	50501	$5{ }^{5} 15$	$4 \cdot 39$ '	4004 '	3-28	$2 \cdot 531$	$2 \cdot 18{ }^{\prime}$	$2 \cdot 44{ }^{\prime}$	1009 '	0035 '	$0 \cdot$	30°
40°	270479	160.48'	150499	14*52'	13.55!	13000	28.04:	$\underline{12010}$	10.161	$9 \cdot 231$	$8 \cdot 31$,	${ }^{7} 38$.	6.47	${ }^{50551}$	8003,	$4 \cdot 12 \cdot$	3021'	$2031{ }^{\prime}$	$1{ }^{10401}$	0050 ${ }^{1000}$	00	40°
45°	21.201	20-08'	28.58.	17048	16040	15032'	14026:	$23 \cdot 221$	128.16'	12•12'	10009 ${ }^{1}$	90071	$8005{ }^{\text {+ }}$	$9.03 \cdot$	$6002 \cdot$	50.02	$4000 \cdot$	$3 \cdot 001$	2000	$1 \cdot 001$	$0 \cdot$	45°
50°	25-421	24*14*	82*471	$21 \cdot 22$ '	20.00	18037'	190171	150581	14041	23024 ${ }^{\prime}$	12008	10053'	9.38 '	8.251	$9 \cdot 12 \cdot$	${ }^{5059}$	4.471	3×351	2.23'	2012'	$0 \cdot$	50°
55°	31-19:	$29 \cdot 271$	$27639 \cdot$	25*53'	24.101	220301	20052 1	19015	19040 ,	160071	14035,	23-05'	[2935'	20006	8.381	$7{ }^{111}$	$5 \cdot 441$	4.191	2061'	${ }^{1086}$ '	$0 \cdot$	55°
60°	39005)	36-371	34.25	${ }^{31}{ }^{\circ} 581$	23047	27*39	25*36'	23.341	21*37	19.411	27047	15055'	14*05'	12.171	20029'	$8 \cdot 431$	6.571	$5 \cdot 121$	30281	1045 ${ }^{2}$	$0 \cdot$	60°
65°	51-190	47836°	$44 \cdot 101$	40.58.	37-57	35004'	32019	$29-41$	270071	24*38	220131	19050	19032	15.16'	13.02'	10.49'	8.37 '	$6{ }^{\circ} 8^{\prime}$	$4{ }^{171}$	20091	$0 \cdot$	65°
70°	900001	${ }^{710061}$	$63^{\circ} 13$:	570091	51-591	47024'	43.141	39•22'	85**4 ${ }^{\text {1 }}$	32.17	28.59	$25^{\circ} 48^{\prime}$	82*43'	19043'	16047	13054'	21-04'	80177	$5 \cdot 30 \cdot$	2040'	${ }^{\circ}$	70°
$\left\lvert\, \begin{array}{r} \omega_{0} 7 \\ L \\ \hline \end{array}\right.$	70°	* ${ }^{\circ}$	72°	73°	74°	75°	76°	77°	78°	79°	80°	81°	82°	83°	84°	85°	86°	870	88°	89 ${ }^{\circ}$	90°	H

[^0]: (1) For a more detailed description of the charts of Kahn and Hilleret, see the more complete articles of Ingénieur Hydrographe Général P. de Vanssay de Blavous, published in Hydrographic Review, Vol. V, N° 2, Monaco, Nov. 1928, pp. 39 and following.

