
GRAVITY REDUCTIONS AND THE FIGURE OF THE EARTH.

by 

B. L . G U L A T E E , D e h ra  D un . 

(Reprintedfrom « Gerlands Beiträge zur Geophysik », vol. 53, p. 323-336, Leipzig, 1938.)

Summary ; The accuracy of the various formulae for deducing the rise of the natural 
geoid with respect to its reference spheroid from the gravity anomalies is considered. The 
merits and demerits of the various reductions for reducing observed gravity from ground level 
to geoidal level for the above purpose are discussed.

IN T R O D U C T IO N .

In recent years, gravity observations have been carried out apace, and a considerable 
amount of literature has been published about the interpretation of the gravity anomalies, and 
the deduction of the figure of the earth from them. The  question of the reduction of the 
observed gravity from ground level to sea-level started as early as the time of Stokes (1849), 
but is still a subject of discussion, and Dr. Vening Meinesz (1) in his Lisbon report to the 
International Union of Geodesy and Geophysics has stressed the need for future research in 
this matter. In the present communication, the question of the proper reduction for the deter
mination o f the undulations of the natural geoid w ill be considered.

1. Our ultimate object is to find the form o f the natural geoid of the Earth, or in other 
words, its deviations from a reference spheroid. This may be done in two ways:—

a) By a suitable hypothesis, all the masses external to the geoid may be removed. The 
level surface of the new mass system may be called the corrected geoid. The distance Between 
the natural and corrected geoids is easily calculable from the known mass-transfers. Our 
problem then reduces to finding the form of a level surface having no attracting masses external 
to it.

b) This method consists in leaving the actual topography as it is, and finding the undu
lations N  of the natural geoid from A g ’s the gravity anomalies, on it.

W e  w ill consider each of these in turn.
2. There are several ways of idealizing the Earth, but for the sake of definiteness, we 

shall suppose that the values o f gravity on the earth have been reduced to the level o f the 
geoid on the hypothesis of H ay ford’ s Isostatic compensation. The level surface of the new 
masses is now the Compensated geoid, and we want to determine its form. A  solution of this 
problem is embodied in the two famous equations of Stokes, which have been proved in a 
multiplicity of ways. Taking the geoid as

( j )  r =  a (1 +  v  u j

and the reference surface as

(2 ) r =  a (1 —  £ sin1 0)

Stokes proved that

(3 )  A g =  G v ,  (n —  1) un N =  a %  un.

H e  connected the two quantities N &  A G by a quadrature formula

(4 )  N = _ ± _ / J A g F ( « d , „

the integration being cm a unit sphere.
H e  took the reference surface as a spheroid with small meridional ellipticity, and assumed 

that the level surface whose form was to be determined differed from this spheroid, and from



a sphere of equal volume by quantities of the order as-.  It must be noted, that Stokes’ s 
reference surface r =  a (I — £ sin2 0 )  is not an exact spheroid, but differs from it by

3
—— a s2 sin2 0  cos* 0 ,  which can amount to 300 ft. in latitude 45°. There is no objection

to taking 2) as a reference surface. Stokes’ s method of deducing his equations (3) and (4) is 
however open to two objections. One is, that he uses an expression for potential

Yn
V = v

in terms of spherical harmonics, the convergence of which has been doubted in the region 
near the boundary of the geoid. The  second is, that g is taken =  —  8 V/ or, where 
r is the radius vector at the point considered. Actually — § V/ or =  g  cos X , where x 
is the angle between the normal and the radius vector at the point considered. W e  can 
easily see the approximation involved in this for the case of a spheroid. The  error is 
g x 2/2 —  0 (g  e! ) =  0 (10 mgals.), which is considerable. Later work has shown that 
under certain conditions, equations (3) and (4) hold not only when the reference surface is 
an exact spheroid, but also for the more general case, when the reference surface is given by

r =  [1 —  * P* +  Sj, y j .

Thus, if

(5 ) >' =  a M —  3 > P s +  I ,  (y„ t-

is the equation to the geoid, and if

(6 )  rs =  a [1 -  - 3 e P 2 +  v 2 yn)

be taken as its reference surface, then provided the reference surface is such that the potential 
on it has the same value as that on the geoid, w e have

(7 ) A g =  6  v  (n -  1) zn , N =  a v  Z(i.

It is important to assess the order of accuracy of these equations. For this purpose, it is more 
convenient to employ the method outlined by Pizetti (2), which leads to the quadrature for
mula (4) without the help of the intermediary equation (3).

Let the geoid be

(8 ) rg = ,  a [1 -  s v  yn _  6l v  zn] 

and its reference surface

(9 ) rs —  a (1 —  e 2  y j

(10) N =  -  a st 2 v
So far as our present experience goes, it has been found that the geoid, and its reference 
surface can differ by 200 or 300 feet, and not very much more. Hence, by (10), a e, can at 
the most amount to 300 feet, or s, “  1/6 X  I0 l —  0 (e2). The geoidal meridional ellipticity 
therefore differs only by quantities of the second order from the ellipticity of the reference 
surface. If the reference surface is an exact spheroid, then

Let the potential on the reference surface be U  =  W 0,and on the geoid W  =  U  +  T  = W 0. 
T  is the potential due to the coating between the two surfaces

, — _  ( 8 W \ _  _  ( 8 u . A_l\
 ̂ \ 8 n’ /geoid \ 8 n’ o n ’ /geoid

__  / 8 U \ __  __ / 8 U \ __  ^  /83 U \ __o 4- N (  ̂  ̂)
\ 8 n /geoid V 8 n /spheroid \ 8 n2 /spheroid  ̂ \ 8 n /o

Taking the elements of normal of the geoid and spheroid to be the same, w e get 

, j i\ v / 5 y \  8 T  2 N  y 8 T  2 T 8 T
 ̂  ̂ ^ ~  ( 8  n ) o  8 n r o n r 8 n ‘

If w e assume T  =  v  an +  1 yn /rn +  1 , we see that A g =  E (n-1) yn /a and N =  S  yn /G 
which are identical with equations (3). T h e  following approximations are involved in the 
proof of equation (11) :



,;x 8 W 8 W
W  8 ~  8 n ’ ~  ~  8 n ’

where dn’ , dn denote elements of normal of the geoid and spheroid respectively. If x is 
the angle between these normals, the error is

g (1 —  cos x) =  g  x*/2.

N ow  it can be shown that the angle between the radius vector and the normal at a point 
o f surface (8) is given by

(1 2 ) \ / sin' 8 [ s ( ±  S  y „ ) +  S  z „ ) ] '  +  [ ,  ( A  S  yn)  +  2  z „ ) ]\

sin» U +  < 2 y „ +  «, Si ,]

Hence X  =  {i —  p-o, where ¡¿o is obtained from p. by putting ei =  0 . On simplifying, we find 

that x is of the order H £2 and therefore the error is of 0  (g  £i2 £22 ) =  0 (g  ei6)

( « )  ( '  8 n )spheroid ( o r  )sphere

Error is of

o ( 4 f )  «*•=«>(*■• i f ) =»«*- )■
/••■V 8 T 2 N T

n !t = n !t + 0(N5’ !t ) 
, = _ l f N + o f _S f i )  + o (N„ |_i)

-  2g N + o ( ^ ) + o ( a , l X )

_  2 g
a +  0 (g 
a

(iv ) Finally, in deducing this equation, the rotation term has been omitted. For a 
rotating earth,

N  P -  — —  -  —  2 co* N 
d r  a

N w* =  200« X  (7 X  10-5 ) sec-2  =  3 X  10 -#  cm/sec*.

This is of the same order o f magnitude as G e3 
It can easily be seen that each of the terms of the equation (11) 

is of 0  (G r ) ,  for on the geoid, gravity is

g =  G [1 -}- A  P 2 +  B P 4 +  (n —  1) 2  u j ,

and on the spheroid

Yo =  G [1 f  A  P2 +  B P 4 -  e* P 2 +  s’  P 4j-

Hence
g —  yo =  0  (G e») =  0 (10 mgals).

Hence, in equation (11), only terms of the 0 (G s3) have been neglected. T h e  quadrature 
formula (4) can be deduced directly from (11), and from what has been said above, the 
formula is well adaptable for the calculation of local geoidal rise.

N  and A  S can also he connected together by means of an integral equation.
3 r  r n d  s r f A g d s(13) N~4lTaJJ — = J J  -gT-

W ith  the help of Green’ s functions, a solution of this is

N =  ifG / / ‘ « ' M ' "
which is the same as equation (4). It must be borne in mind, that the above equation cannot 
be applied to the natural geoid of the earth on account of the protruding attracting masses above



the geoid, and also due to the fact, that the values of gravity are not observed on the geoid.
3. Next, let us consider method (b). In this, the mass-distribution of the earth is not 

interfered with, and the problem is to get a value of the potential at a point inside the 
attracting masses. This case has been considered by Malikin (3), who deduces the following 
integral formula for N ,

where Ue is potential of external masses A  on the geoid, and R  is the radius of curvature of 
the geoid at the point considered.

I f  A  g  p is known, the formula (14) is remarkably accurate. In deriving this 
formula, Malikin has used terms of 0  (s  N ) == 1 ft. W e  thus see that theoretically 
we are equipped with very precise formulae for the determination of N .

4. W e  are now in a position to answer the question, as to which is the best reduction 
for reducing gravity from ground level to geoidal level from the point of view  of determining 
the undulations of the natural geoid. Stokes, although he established equation (4), did not 
make any practical use o f it, as the masses outside the natural geoid defeated him. There is 
no doubt however that he thought that free air anomalies would give a good idea of the 
geoidal rise. Jeffreys (4) has shown in an elegant way, that although there are masses 
outside the geoid, still equation (4) is valid to the first order in height of the earth above the 
geoid, if we use values of gravity reduced to the natural geoid by free-air. H e  concludes, 
that these are the only anomalies, which should be used for determining the form of the geoid, 
and “ any attempt to allow for the mass of the upper layers or Isostasy merely introduces 
irrelevant considerations and inaccuracy.”  This is a result of fundamental importance and 
needs amplifying. Jeffreys’ treatment does not answer the question, “ W h y  is free-air 
reduction suitable for Stokes’ s formula ?”  Not by chance surely. T he  reason is as follows :

Imagine all the topography above the natural geoid to be condensed on the geoid, and 
let the level surface o f the new mass distribution be called the condensed geoid. It can easily 
be shown that for all practical purposes, so far as N  is concerned, the natural and condensed 
geoids may be considered as identical. By Lambert’s tables, the geoidal rise due to a cap
3 km. thick, of 100 km. radius, and density =  2.8 is 34.8 metres. If the mass of this cap be 
condensed as a coating, the rise due to it is

=  J L .  Î Ü U  A ------—  4 - _ Î L _ \  =  34* 2  metres. 
2 --------------------------------------------------- a om V c 2 c V

This shows how closely identical, the effects of the actual and condensed topography are, 
even for the unfavourable case that has been considered. This is due to the fact that N  
depends more on the actual amount o f the attracting mass rather than its configuration. If then 
w e can get A  g ’s on the condensed geoid, these can be used in equation (4) for getting the rise 
of the natural geoid, since there are no masses external to the condensed geoid.

Let E  be a point on the earth, and A  the corresponding point on the geoid. Let the 
masses inside the geoid be designated by M  , and the masses between the geoid and the 
earth’s surface by m.

Before condensation,
g E =  attraction of masses M  at E  +attraction of masses m at E.
A fte r  condensation,
g A  =  attraction of masses M  at A  +  attraction of condensed masses m at A .
The condensation reduction is

g  a  —  g  E =  — 4 “ (attraction of condensed masses m at A — attractioncl
of masses m at E )

where a denotes the skin density, and the volume integral extends througout the mass m.
The term in brackets on the right hand side of equation (15) can be evaluated rigorously 

with the help of Hayford’ s reduction tables, but for our purpose, w e may neglect the curvature 
o f the earth. If the masses m between E  and A  be regarded as an infinite plateau, this 
term vanishes, and we have gA  —  gE  4- 2 gh/a which is nothing more than Jeffrey’s result, 
that A  g f ’s need only be used. In mountainous areas however, we mav regard the topography



above A  as an infinite plateau plus undulations. A fter condensation, the effect of the infinite 
plateau cancels out and we are left with the so-called “ Gelande-Reduction”  A  g  R •

Hence a more correct expression for g  a  is

(16) g  a  =  g  e  +  2 g  h/a +  A g  R

A  g R is always positive. Its values for some of the typical mountain stations in India are 
as follow s:—

Station Altitude Feel (in gals)

Domel ...................................................  2239 +.015
Hayan ...................................................  6084 +.028
Sonamarg ......................................... .. 9050 +.021
Churawan .............................................  8151 +.024
Minmarg ...............................................  9351 +.023
W ozul Hadur .....................................  13921 +.019

O f course, there are some mountain stations for which it is less, but + .020  gals seems 
a fair average value to take for uneven topography. If then we neglect A  gR > and 
obtain N  from A  g  f ’ s we are making a systematic error of about 20 mgals in all the mountainous 
regions. A  casual error o f this amount in say every degree square w ill not have much effect 
on the resulting value of N , but it is not desirable to,have such a large systematic error for 
all the mountainous regions of the globe. These remarks only hold for determining N . If  the 
objective is to determine the ellipticity of the level surface, free-air gravity anomalies can be 
used without objection.

Y e t another way of seeing the propriety of free-air reduction in Stokes’s formula is as 
fo llow s:

T h e  integral equation between N  and A  g  when there are some masses external to the 
geoid is obtained by Lambert 5) in the following form :

(17) N 2 Ue - A / / A g p d w
+ i f f  Ti>"

=  - i f G (»« +  4 r ) + 4 i: / / ( , A ep +  3L'e) F W dt,,

If the topographywhere Ue is the potential due to masses between the geoid and the earth, 
be condensed as a coating of surface density on a the geoid, then

where A  Ue is the change in potential due to condensation reduction. 
(17) may therefore be written as

(18) N — 2 A IL - r

- h f f
A  g  F +

+  I f
JL f f tH
rc a J J  r

g N

a

d to.

If we neglect A  Ue . we can easily get the usual quadrature formula from the above 
equation. Hence free-air anomalies can be used in equation (4).



The above is tantamount to saying that for determination of N  for practical purposes, 
it is simplest to use condensation reduction. Instead of condensation reduction, we may use 
H ayford ’ s Isostatic reduction, and deduce the rise of the compensated geoid from the Hayford 
anomalies A g H ’ 8 . T o  get N  of the natural geoid, one extra step is involved. The mass- 
transfer implied in Isostatic reduction causes a considerable deformation u of the natural 
geoid. This has to be computed and added to the rise deduced from formula (4). u can be 
obtained conveniently from the tables published in special Publication N °  199 o f U .S .C . & G .S .

The  question now arises “ W hich  is a better method for determining N , the Conden
sation or Isostatic?”  From the nature of formula (4) we see that A  g’ s over the whole 
globe are needed for computing N  at each station. For practical computations, the earth is 
divided into a number of elementary areas and a mean value of ^  g is estimated for 
each area by interpolation and extrapolation from A  g’ 5 at observed stations. Hence for 
practical purposes that reduction is the best, which enables an average value for each elementary 
area to be obtained more correctly. In other words, that reduction is preferable which gives 
anomalies which are tractable to interpolation.

N ow  A  gc  =  A g F  in flat terrain, and = A g F  +  A  g R in mountainous country. A  g f ’s 
and A g H ’ * for some squares of 2° * 2 °  extent in latitude and longitude in India are exhibited 
in the following table. The squares are taken at random amongst the plains.

Square Station A g F A g H

(10° —  1 2 °$ ) 297 - 2 2 - 4 3
(76 —  78 X') 298 +43 - 5 1

299 +26 — 72
300 +  14 — 68
303 — 37 — 67
304 — 34 - 6 5
305 - 3 1 - 6 7
306 — 14 - 6 3
307 — 35 - 6 7
301 +  1

Range 8Q

— 35

37

(12° —  1 4 °$ ) 177 — 22 — 45
(78 —  80X ) 199 — 57 — 73

178 — 24 — 42
42 +  64 +  9

198 +  2 

Range 121

- 2 8

82

(22° —  24 «<!>) 61 +  1 +  7
(80 —  82 X) 62 +27 +2 9

63 +21 +  8
68 +  28 +3 0

(26° -  28o$ ) 213 +  19 - +25
(74 —  76 X) 214 — 18 — 16

215 +  71 +6 2
224 +  49 +4 4

(20° —  22 o $ ) 65 —  2 —  3
(80 —  82 X) 66 —  4 —  3

238 —  1 —  8
(26° —  2 8 °$ ) 103 — 19 —  5
(76 _  78 X) 104 -  1 +  17

105 —  4 +  15
106 -  9 +  11
107 — 28 —  8

(26° —  2 8 °$ ) 119 - 3 5 — 13
(78 —  80 X) 120 - 5 2 - 2 9

122 — 73 — 39
263 — 58 — 26



Square Station A  g F AgH
(24° — 26°*') 114 + 43 +47
(72 — 74 X) 115 +  114 +29

117 +  16 +23
118 +  10 +20
364 + 14 +24
365 + 49 +  49

(24° — 26°<fr) 98 +  26 +  19
(76 — 78 X) 99 + 50 +39

102 +38 +29
223 —30 —21

(24° — 26o»f) 95 — 5 — 2
(78 — 80 X) 96 + 26 + 26

100 + 7 + 14
(22° — 240(I>’) 111 — 15 — 8
(72 — 74 X) 112 +31 +36

349 +  9 +  12
(22° — 24°<I>) 47 — 2 — 11
(74 — 76 X) 48 + 9 - 1 5

49 —28 — 19
217 + 27 +  13
348 +  18 +  11
347 -  5 +  5

Hirvonen (6 ) has estimated, that if A g is known to ±  20 mgals for every 
1° square, w e should be able to get N  accurately enough to about 8 feet. The above figures 
show, that while A g h ’ s are on the whole more regular, A g F ’ s in plain areas are 
not loo bad, and may be interpolated to ±  20 mgals. The situation is rather different for 
mountainous areas. Tab le II shows the results for some Himalayan stations in India.

Station

T A B L E  II.

Height A g F A g H
Feet cm ./sec2 cm ./sec2

Murree ........................ 6885 +  .032 — .025
Domel ........................ 2239 — .167 — .048
Shadipur .................... 5193 — .116 — .030
Gandarbal ................... 5200 — .094 + .010

6084 — .105 + .017
Sonamarg .................... 9050 — .013 + .043
Churawan ................... 8151 — .056 + .032
Minmarg ...................... 9351 — .033 + .035
Deosai I ................... 13311 + .146 +  .090
Deosai II ................. 12805 + .094 + .062

12391 + .111 + .095
Lalpur ........................ 5633 — .045 + .017
Srinagar ....................... 5198 — .070 + .021

Pingalan ............... 5227 — .073 + .012
Yus Maidan .............. 7867 +  .024 + .008
Korag ......................... 10952 +  .149 + .034
Tosh Maidan .......... 10315 +  .135 + .050

Range 316 143
The A g F 5 s are ragged, and A  g h’ s are much smaller and smoother. If there 

were no compensation then one can see in a common-sense way, that this would be the case, 
and that A  g F would be very unrepresentative. Thus, at a point D  on the top o f a 
hill about 1 mile high, gravity would be about 0.17 gals too high on account of the extra 
mass under it. It would not be possible to obtain the value at C  by interpolating it from A  
and B, if one only uses free-air reduction. I f  on the top of this, gelande-reduction A  g R is



added to the value at D , the error of interpolation from A  and B w ill be still more enhanced. 
This argument is however too simple, and in actual practice, A  g F ’ s at mountainous 
stations are by no means positive, as Tab le II shows, indicating compensation of some sort.

Y e t another instance about the interpolation of A g ’ s in mountainous areas is afforded 
by considering the 9 Indian gravity stations along the meridian of 88°30’ .

The raggedness of A  g p ’ s is apparent.

D

T o  get mean free-air anomaly over a 1° square to an accuracy of

Station Height A g F A g H 
Feet

Chatra ........................  64 —  14 +  5

Kisnapur ....................  113 + 1 2  +39

Ramchandpur ............  132 —  19 +21

Kesarbari ....................  204 —  60 + 3

Siliguri ........................  387 - 1 4 9  — 39

Kurseong .......... ......... 4913 0 +10

Darjeeling ..................  6966 +  55 +  32

Sandakphu..................  11766 +189 +48

Range 338 87

about ± 2 0  mgals in mountainous areas, one requires a station every 10 miles or so, which 
amounts to a density of about 50 per degree square. This density would give the desired 
result, if one deliberately spaces these stations equally or else observes truly at random. 
It would not do to put the stations all in valleys or in accessible places. This in an imprac
ticable programme in mountainous areas.

The conclusion therefore is, that for determining N  of natural geoid, free-alr anomalies 
should be used for plane areas. For mountainous areas A g H s should first be computed 
for the stations of observation. From these, mean A g f ’ 8 for the middle points of the 
elementary areas should be obtained by interpolation and extrapolation. A t  such places, effect 
o f topography and compensation should be computed and added on the mean A  f’ H to get the 
mean A  g f  .

The above argument assumes a close mesh of gravity stations on the globe, which is 
a desideratum at the present moment. If one however wants to arrive at the order of magni
tude of N  with the meagre gravity data now available, one has to resort to highly precarious 
interpolations and extrapolations and Isostatic anomalies are much to be preferred to the 
free-air ones.

It might be remarked, that the condensation method is only an artifice, which enables 
us to get rid of the masses external to the geoid, thus enabling us to make use of formula (4). 
If we knew the actual law o f variation of density in the earth’s crust, that hypothesis would 
be the best one to use for getting rid of these masses. In suggesting the H ayford ’ s Isostatic 
hypothesis as a via media for obtaining the rise of the natural geoid, it is by no means 
implied, that it is true to nature. It assumes point to point compensation, implying that the 
crust offers no resistance to deformation, which cannot be true. Seismological evidence provides 
a direct contradiction to this hypothesis. M ore rational hypotheses of regional compensation 
have been brought forward, but from a consideration of the gravity anomalies in the Himalayan 
stations of India, the writer has shown 7), that departures in nature from any form of 
isostasy are much greater than the differences between the various systems. In spite of what 
some people might claim for the Hayford hypothesis, one must get reconciled to the fact that 
in India, geodetic work has revealed mass anomalies from this hypothesis which are equivalent



to a thickness of 2000 to 3000 feet o f rock. Bullard’s work in E . A frica  shows also abnor
malities of the same extent. The choice of Hayford reduction from amongst the many that are 
available is mainly governed by practical convenience.

A t  this stage, it is proper to indicate, which height is to be used for the ordinary height 
correction, the geoidal or the spheroidal. So far as the deduction of the undulations of the 
natural geoid from the free-air anomalies A  g F s is concerned, it is obvious that observed 
values of gravity g on the earth need only be corrected for the geoidal height o f the stations. 
W hen the earth is idealized, and the undulations of the corrected geoid are required, g is to be 
brought on to the corrected geoid. In particular, when Hayford reduction is used, and we 
want to find the rise of the compensated geoid, observed gravity on the earth has to be 
reduced from the earth to the natural geoid, and from the natural geoid to the compensated 
geoid. The latter reduction is termed Bowie reduction. Ordinarily the anomalies A  g H ^ g H — Vo 
are used also as a measure of the subterranean mass-anomalies, although g  h  and y 0 
refer to two different surfaces. This is possible only, because we know that the deviations 
of compensated geoid from its reference spheroid are small. If however N  between 
compensated geoid and its reference spheroid can amount to 1000 m. as some people still 
affirm, then (gH  —  y0) w ill be useless for the determination of the mass-anomalies.

In conclusion we w ill consider another point o f .view  about the determination of N  
which has been put forward by Hopfner in various articles. H e  vigorously denounces all 
other reductions except Prey ’ s, and asserts that this is the only reduction, that can be used 
for determining the geoidal rise. Prey ’ s reduction at first sight has indeed much to 
commend it. It does not involve any displacement of masses, and gives true values of the 
gravity anomaly on the geoid.

Th e  correct formula to be used for getting the undulations from Prey ’ s anomalies is (14). 
W e  see that as in the case o f no external masses, a knowledge o f the distribution o f density 
inside the geoid is not required. But to get Ue and A  g P.  it is essential to 
know the precise arrangements of masses external to the geoid. Hence if there are masses 
inside and outside a level surface, its from cannot be determined from a knowledge of the 
values o f gravity on it alone. It is essential to know the external masses. T he  situation is 
therefore precisely the same as when there are no external masses.

Th e  rigid computation o f Prey’ s anomaly is by no means less troublesome or less 
inaccurate than Hayford ’ s anomaly, and there is no particular advantage in using it for the 
computation of N . It might however be put to the following two uses :

I f  S is the natural geoid, and g  p the value of gravity on it (due to actual

topography), then J J  g P d s  =  4 j: M , where M  is the sum of masses inside the geoid.

Aga in  if  V x denotes the potential due to internal masses, then

Heace, if g p is known, we can obtain the total masses inside the geoid, as 
we/1 as their potential without knowing the internal law of density. From the point o f v iew  
of the geoidal rise, this reduction has received exaggerated importance at Dr. Hopfner’s hands. 

Hopfner 8) also derives a very simple formula for the geoidal rise namely.

XT 2 a A

from which he claims one can get the geoidal rise without resorting to any ad hoc hypotheses 
like the Isostatic one. Jung 9) has shown that this formula is inadmissible, as it takes no 

count of masses surrounding the station.
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