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The stereographic projection, or the conformal perspective, of a 
limited region of the sphere about the point of origin, is a perspective on 
the plane tangent to the origin (1) taken from the point of view located on 
the sphere at the second point of intersection with the normal, the same 
being also the diameter passing through the origin. It possesses some 
remarkable properties of which the following are the most im portant:—it 
is conformal; the geodetics passing through the origin, which are at the 
same time normal sections, are here, represented by concurrent straight 
lines ; all of the circles on the surface are here transformed into circles ; 
the curves of equal linear distortion (indicatrices or isometres in the sense 
of Tissot) are here rigorously circles on the plane of projection.

This projection is one of the simplest and often the most advantageous 
for use as a working projection and for the calculation of the rectangular 
co-ordinates : but the problem of the projection should be treated on the 
terrestrial ellipsoid and not on the sphere. None of the projections on the 
ellipsoid possessing all of the properties above-mentioned, it is necessary to 
make a choice which is necessarily somewhat arbitrary, and to adopt a 
projection which will retain one or several of these characteristics and 
which will approach more or less closely to the stereographic projection of 
the sphere. Several authors have therefore adopted different projections of 
the ellipsoid which they have called stereographic projections.

W e wish here to review the principal, and to compare them amongst 
themselves : we shall treat those in particular which have the important 
property of being conformal ; but none of the other characteristics can be 
exactly obtained at the same time.

I

In particular, no perspective of the ellipsoid will furnish a projection 
which is strictly conformal. T hat which approaches most closely to 
conformality for the restricted region in the vicinity of the origin would have 
its point of view on the normal to the ellipsoid at the origin, not at its 
second point of intersection with the surface, but at a  distance from the

(1) For the purpose of diminishing the linear distortion at the periphery, one may project on to a 
secant plane parallel to the tangent plane. This does not alter anything in the theory and, to avoid 
complicating the discussion, we shall not speak further of it.



origin equal to twice the radius of total curvature \ J No po at that point : the
geometric mean of the radii of curvature p0 and No of the meridian and 
of the normal section which is perpendicular to it. The sections normal 
to the origin are here represented by converging straight lines, the meridians 
and the parallels by conic sections.

II

In like manner, no conformai projection of the ellipsoid may represent 
the geodetics passing through the origin, by concurrent straight lines.

If one plots on the ellipsoid all of the geodetics passing through the 
origin and if one lays off on each of them, from the same point, an equal 
distance a, the locus of their extremities is a curve normal to the geodetics 
to which Gauss has given the name “geodetic circle” (2). By changing 
the value of <r, we obtain thus on the ellipsoid a system of geodetics and 
lines which are orthogonal to them. If it were possible to make this grid 
correspond to that which, on the plane, is formed by the concurrent straight 
lines and the concentric circles, we should have a representation which 
would have important characteristics in common with the stereographic 
projection of the sphere ; but the correspondence cannot be realized. 
This projection has been proposed (3), seemingly without its impossibility 
having been taken into consideration. The geodetics which form one of 
the families in this grid have in fact a constant geodetic curvature equal 
to zero ; but in order that this grid should be isometric, it would be 
necessary that the other family which is orthogonal to it, should also have 
a constant curvature ; but this is not the case for the geodetic circles (4). 
It has seemed interesting to us, however, to demonstrate directly this 
impossibility.

A t the point M let d<r represent the element of length of a geodetic line 
passing through the origin, and A  the element of the geodetic circle which 
is normal to it at the same point. Let us take the point of origin as the 
axis of co-ordinates, the normal to the ellipsoid at this point as the axis 
of z , the tangent to the meridian as the axis of x  and the perpendiculars to 
xz  as the axis of y. W e then express the co-ordinates of the point M 
as a function of the length a by taking first an axis of x, tangent to the 
geodetic line at the origin and the perpendicular axis yr T he following 
formulae are then readily deduced from those of E. Fichot given in his 
article :— “Sur la reduction au sphéroïde terrestre des données fournies par 
les opérations de la triangulation” : (On the reduction to the terrestrial 
spheroid of the data furnished by the triangulation operations) : Annales

(2) « Disquisitiones generales circa superficies curvas » Art. 15 and 16.
(3) « Die stereographische Abbildung des Erdellipsoïds » by O . Eggert : Zeitschrift für Vermes- 

sungswesen, March 1936, p. 164.
(4). See « Theorie générale des surfaces » by Darboux, IIIe Partie, livre VI, chapter VII.



Hydrographiques, 1907, p. 55 et seq. W e shall retain the greater part of 
the terms of the 4th order in a.
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The coefficients r0, s0, k0, ¡x0 and a0 are the partial second, third and
fourth derivatives of z with respect to x t and y 1 ; « is the azimuth of the
geodetic. W e shall call L 0 the latitude of the point of origin : e (5) the
eccentricity. W e shall also utilize the following equations :
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If 1 is a  length which, on projection, corresponds to <*, the condition of 
conformality is given by the proportion :*

dl d<T / .  . 1 a2 . 1 e1 . w T a3 \
-r- =  —  (1 +  — ----------\- — ----- , sm Lo cos Lo COS a> T71—  ,
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of which the integration furnishes the concordant relation between 1 and ® > 
but this relation will express 1 as a function of such that the transfor
mation of the geodetic circle will not be a circle and will not be normal 
to the concurrent straight lines which represent the geodetics. It is 
therefore impossible to establish a conformal projection on this basis, unless 
by neglecting the terms in 02<?3 in the preceding equation, that is, in

operating in a sphere of radius y/No p0 . It is, however, necessary to make

exception of the case in which the origin is at the pole ; all of the 
meridians, which are then also geodetics, will be represented by, straight 
lines. The term in e 2os cancels out also when the origin is on the 
equator ; but by pushing the development still further, it will be found that 
there remain in this case some terms of a  higher order containing «.

(5) e will be employed for the eccentricity of the terrestrial ellipsoid ; e to designate the number 
which serves as basis for the neaperian logarithms.
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III

W e obtain an analogous result if, in place of considering the geodetics, 
we try to make the grid containing the normal sections passing through 
the origin and their orthogonal curves correspond to the plain grid.

Let X , Y, Z  be the co-ordinates of the point M of a  straight section 
of length S referred to the same axis as above, Xx an auxiliary axis tangent 
to the geodetic coming from the origin and passing through the point M. 
This axis Xi makes an angle <*> with the axis of the X  and a  very small 
angle 8 with the normal section passing through M. The formulae of E. 
Fichot in the work cited above permit us to calculate the co-ordinates Xi, 
Yi, Z  and the angle 3 as a function of the length S. Since, however, 5 
does not differ from <*, except after the 5th degree, the expressions for X i, 
Yx, and Z  are the same as those which were given for x I? y ,,  z, by 
replacing there ® by 5. The expression of £ is :

§ =  — l’o so S2 — —  (ro ¡¿o +  2 So Xo) s 3.

The condition of perpendicularity of the normal section and its ortho
gonal curve will be :—

/8X 8X \  8X , /8Y , , m .  _ \ a Y /S Z 8 Z \  SZ  _
f c d“ +  s s dS) s s  +  f c d“ +  8s,dS) r s  +  f c d" + r s dS) r s - 0’ 

or, by passing to the axes Xi, Y* :—

z\4_y U i  v E 4 . L S - 0  
+  - x ' r s  + s « > - 0

The square A 2 of the element of the orthogonal curve will have a 
value, taking into consideration the condition of perpendicularity, o f :

A, _  /8 X , . 8 X ._ \ 8 X , v  /8 X \2 . 2 . v  8 X 8 X .
A = s (s-^d"  +  r j dS) s ~ d“ = 2 ( s ~ ) dM + s ? ~ r s d s d “ ’

or, passing to the axes X i, Y t f:

^ = V + V + X ^ ) V . ( x . | i - Y . | i )

/  8Yx 8XA y  8X« 2L  (x  ! I i  __ Y 
\  1 8S  1 8 S /  o to 8 S  \  8 S ! , 6 S /

The terms of the second line are at least of the 7th degree and those 
of the third of the 6th degree. Therefore, by stopping at the terms of the 
5th order, we shall have the same value for A 2 as for the geodetics :

4, 4 S* 2 e’ . w T &  \  A *
A =  ( s  -  —  -  —  — s m U  cos u  cos “

Unless the term in 5 s is neglected, it will not be possible to obtain a 
conformal projection where the normal sections passing through the point 
of origin will be represented by concurrent straight lines. Since O. 
Eggert has proposed to use this projection as a  conformal stereographic 
projection, it has appeared necessary to demonstrate this. : (see note 3).



The same remarks hold true as in the preceding section, when the 
origin is at the pole or the equator.

IV
It is also impossible to obtain a conformal projection of the ellipsoid 

in which the isometres shall consist of rigorous concentric circles at the 
origin.

The geodetic curvatures T and y of the concurrent straight lines and 
the curves of which they are the transformations are actually joined by the 
relation (6).

r  =  - i - ( T +  m’„)

m being the linear modulus and m ’n its derivative normal to the radius, 
vector.

If the isometres are circles, m ’n is zero ; but the same holds for F 
and it is therefore necessary that y should be zero, that is, that the curves 
represented by the concurrent straight lines should be geodetics, which, as 
we have seen, is impossible.

V
W e know that if one has established a conformal projection of a surface 

on a plane, every continuous function of the complex co-ordinate of this 
projection may be taken as the complex co-ordinate of a new projection 
which, automatically, will be strictly conformal. One well-known con
formal projection of the ellipsoid is the Mercator projection. In the case 
of a spherical surface we shall establish the function which will permit us 
to pass from the Mercator projection to the stereographic projection of the 
sphere.

A  function of the same form, applied to the complex co-ordinate of 
the Mercator projection of the ellipsoid, will define the complex co-ordinates 
of a projection which will be strictly conformal and which we might 
conveniently call stereographic. There is here a general method for passing 
from a conformal projection of the sphere to a conformal projection of the 
ellipsoid, without having to write for the latter projection the equations of 
conformality.

W e shall take as a  unit the equatorial radius of the ellipsoid, and we 
shall express the arcs of longitude, latitude and meridional parts in radians, 
in order to avoid the necessity in the equations of multiplying them by 
sin 1” or sin 1.

(6) See: «Traité des Projections de Cartes Géographiques» by L. Driencourt and J. Laborde, 
Part. 4, pp. 35-36.



On a sphere of unit radius, let O be the point of origin chosen (See : 
Fig. 1) with latitude Lo and let M be a point in latitude L and with longitude 
G, reckoned from the meridian of origin. Let D and be the length and 
azimuth of the great circle O M ; 1 and lo the meridional parts for the points 
M and O on the sphere.

Between the latitudes and the meridional parts we have the following 
relations :

, 2 ei° .  2 e 1
cos Lo == ■ , cos L

e2' o - f - l ’ ^ —  e»i 4 - 1 ’

. _ e21° — 1 . ¥ e21 — 1
s m  L o  —  e21o +  s in  L  _  g21 +  r

If the axis of the x  of the stereographic projection is tangent to the 
meridian O P at O and points towards the north, the complex stereographic 
co-ordinate will have a value :

z =  2 e*w tg.

The triangle OPM gives us :
c o s  L  s i n G  s in  L  c o s  L o —  s i n L o  c o s  L  c o s G  ,  D  s in  I )

s in  M = =  ------- r-T T ----- , COS w —  ---------------------------r — =r------------------------ , t.g - = =  -— -----------
s in  D  s in  D  °  2  I -! c o s  I)

1 +  c o s  D  =  1 +  s in  L  s in  Lo - f  c o s  L  c o s  L o  c o s  G  ;

from whence we obtain :
. T » T „  , . c o s  L  s in  G

s m  L  —  tg  Lo c o s  L  c o s  G  4 - l  ----------- :-------
o r ' c o s  Loz — 2 cos Lo i.. .....* i 11 •

1 +  sinL  sin Lo +  cos L cos Lo cos G

By substituting for the latitudes the above expressions for the meri
dional parts and using the formulae •

. _ eiG — e ~ 1G _ eiG 4 - e ~ iG
s m G =  , c o s G  = -------- Lr ---------;~ 1 %

we obtain an expression for z which contains in the numerator and in the
denominator the common factor ;

1 +  e l +  — 1 G

which can be made to cancel out. Calling C the complex co-ordinate of 
the Mercator projection of the sphere :

e =  i  —  io  +  i g ,

we have finally the relation sought which defines the stereographic pro
jection of the sphere :

z =  2 e1» —  ,
e2l0e£ ~f-;l

and which is a simple function of e? (7).
—  2

(7) If the origin were at the pole, this expression for z becomes : z =  —T + T g '

A  similar argument to that which we have given for the general case would show that if the origin 
is at the pole, a cannot but be equal to unity, and that one would have to adopt for z the expression:

— 2 No

( t e 1 * 16

(See: Hydrographic Review, V ol. VI, N ° 1, page 84; there is also given a table for rays of the 
parallels between 30° and 90° with the accuracy of 0.5 m).



W e shall agree to call the following expression the stereographic 
projection of the ellipsoid :

Z =  2 p ea!= — 1
q e*S -f- 1 ’

in which p, q and are the constants to be determined and C the complex 
co-ordinate of the Mercator projection of the ellipsoid :

n =  1 —  Id +  i G =  v +  i G,

by calling now 1 and lo the meridional parts on the ellipsoid and not on the 
sphere, v their difference, 1-1 o-

This projection will be conformal no matter what values are adopted 
for p, q and a.

As a  primary condition we shall specify that the scale (linear modulus) 
m at the origin, shall be unity and a minimum.

To calculate m  let us give G an increase of d G.
d z  _. _v q +  i
d G (q e«C +  l)2'

Multiplying by the conjugate expression we have :

\ /  d X2 +  d Y1 ay  ___________g _ ± i ___________
d G  2 p a e q2 e,av +  2q eaY cos a g -j- i  '

On the ellipsoid the increase is equal to :—
N cos L d G.

W e have therefore :

2 p « . . .  q +  1m  ---- > aOtV ' ■ i in.. ............ .....
N cos L q2 e i(XV +  2q eaV cos « G +  1

In order that m may be equal to unity at the origin, it is necessary 
that : ■

2 p a  =  (q +  l)!N o cos Lo.

The derivative of m with respect to L will be zero at the origin if we 
annul the quantity :

a (q — 1} NoCOsLo ■—  +  (q +  l )  ( “[-£  cos Lo —  No sin  Lo 

W e know that :

N =  (i — e1 sin* L) t' > ST =  N ^  1 ^  “ o^L- P =  0  -  O  (1 -  «■ sto* L ) ~ 4 ,

M__1 +  sin  L / I —  e s in  L\ e  d 1 _______ p
e l  —  sin  L \ i  4 -  e sin  h )  * d L N cos L '

T he quantity to be annulled becomes :
a ( q  -  l)  =  ( q 4 1 )  sin  Lo.

These two conditions permit us to obtain p and q as functions of a
No cos Lo ____ a 4 -  sin  Lo _ , —  2 s in  Lo _ . . 2 a



The expression for the complex co-ordinate of the stereographic projec
tion of the ellipsoid then becomes :

(1) Z =  2 No cos L ea? —  1
(a +  sin Lo) ea£ - f  a — sin Lo'

in which there remains a  single arbitrary constant a .

The expressions for the co-ordinates are (8) :

X — 2 No cos Lo (a +  sin L0) e2gv — 2 sin Lo eav cos a G — (a — sin Lo)
(a - f  sin Lo)2 e2av +  2 (a* — sin2 Lo) eav cos a G +  (a - -  yin Lo)y’

Y _  ___________________ 4 a No cos Lo eav sin a G___________________
(a +  sin Lo)2 e2av +  2 (a2 — sin2 L0) eav cos a G +  (a — sin Lo)2

Multiplying on the other hand the expression (1) by the conjugate 
expression we obtain, retaining the coefficients p and q :

e 2<*V__2 cos a G 4- i
X2 +  Y2 =  4 p2 — ----------— ----------------1 -----;

q2 e2av +  2q eav cos a G -j- 1

from which we deduce :

2 eav cos a G =  -  <? (X- +  Y*)] e2«v +  4 p2 -  (X2 +  Y2)
4 p 2 +  q (X2 +  Y2)

By means of these formulae we obtain then, depending upon whether 
we eliminate v and ®G, or only e*vcosaG the two following expressions 
for m :

No cos Lo m =  —-------—
N cos L

or :

/  X  X 2 +  Y 2 /  r ' " , '  „ X 2 4 -  Y 2
V * +  p + T T T "  V ' - i  p +  1' T p T '

m _  No cos Lo 1 + q  e „v L  , X‘ +  Y»,/  X2 +  Y*\
N cos L i +  q e2av " V1 +  q 4 p2 ) '

t i  r  ̂ No cos Lo , No cos Lo (1 4- q) eav
The factors L and N cos L 4 +  q e>«v are ecJual to unity

at the origin and may be developed according to the powers of v. W e th$n 
have :
No cos Lo v2 v3 v4

fl- cog L =  1 +  v sin Lo 4- -  (1 4- ij) 4- —  sin Lo (4 — 3 r| — 4 r) e’s cos8 Lo) - f

[(t +  Tj) (l — 3 7) — 4 7) e’* cos2 Lo) 4- 12 t] sin8 Lo (1 4- 3 e’a cos8 Lo -{- 2 7] <?’*)] 

by putting :
e2

e’2 =  gI, t) =  <?’2 cos4 Lo.

(8) These formulae are easier to calculate provided we use a table of hyperbolic functions:-

X — 2 No cos l 0 ____________ a sinh av +  sin Lo (cosh av — cos « G)______________
— 0 0 (a2 4- sin2 Lo) cosh av 4- 2 a sin Lo sinh av 4- («* — sin2 Lo) cos a G’

Y  , g cos L  ̂ sm a G
0 0 (a8 4- sin2 Lo) cosh av 4* 2 a sin Lo sinh av +  (a* — sin* Lo) cos a G’



»T-i f No cos Lo 1 - f  q) eav
1 he factor N cos L { +   ̂e2av has for development :

i +  " Y  (* +  *1 -  a*) “  -J -  sin L° [1 +  7) -  a 2 +  2 n (1 +  e’* cos8 Lo)] - f  ... .

It does not differ from unity but by terms having each the factor e2, 
if a2 does not itself differ from unity but by a factor of e2. It is actually 
equal to unity no matter what the value of L if the eccentricity is zero 
and if a2 is equal to unity.

The last development shows that the value of m  may be reduced 
considerably by adopting for a2 the value 1 + ij. If, further, the principal 

Xvalue of v is ------ -- we shall then have for m  the value :
No cos Lo

(̂ ) m = (1+SrB (X2 4-Y*\ /  e’2 . OT X3
71S-----) ( 1 “  T  sin 2 Lo — ------4 No po/ \  3 No po

The indicatrix is therefore a circle with terms of the third order 
nearly, and all of the terms higher than the second order are then multi
plied by the square of the eccentricity.

If one adopts for a2 the value 1, we have an indicatrix of the circle 
somewhat different :

X* -f- Y2\  /  , , e’2 cos2 Lom

VI

A  very general procedure and useful in practice in obtaining a  confor- 
mal projection of the terrestrial ellipsoid on a  plane, consists in establishing 
first a conformal projection of the ellipsoid on a  sphere, then employing 
whatever plane of projection one desires of this sphere: in the present case 
the stereographic projection. It may be agreed to call the result a  stereo- 
graphic projection of the ellipsoid and this procedure is generally called 
the “double projection”.

It is much simpler in this case to choose two poles on the auxiliary 
sphere and to make the meridians and parallels of the sphere correspond to 
the meridians and parallels of the ellipsoid. These in turn will be 
represented by circles on the plane of projection.

Let R be the radius of curvature of the auxiliary sphere and «Po 

the latitude on this sphere at the point of origin of latitude L« on the 
ellipsoid. W e shall adopt a  correspondence of meridians such that the 
longitude of a  point on the sphere, reckoned from the point of origin, shall 
be equal to a  corresponding point on the ellipsoid mutiplied by a constant 
factor a.

In order that the scale may be the same at the origin on the two 
surfaces, it is necessary that:

a  R COS <po =  No COS Lo J

and in order that the projection may be conformal, it is necessary that :
p cos y 

dL NcosL'



we should obtain the latitude of any point whatever on the sphere by 
integrating this equation ; but it should be noted that if we make a Mercator 
projection on the auxiliary sphere, we must obtain for two corresponding 
points the same co-ordinates with respect to the origin as we should if we 
established the Mercator projection directly from the ellipsoid.

If therefore  ̂ and )-o are the meridional parts for the latitudes 9 and 
<?o on the sphere, 1 and 1q the meridional parts of the latitudes L  and 

Lo, on the ellipsoid, the two values of x to be equated are :
 ̂ X0 n  1 l lo y

—------- R COS Oo and —r-----  No COS Lo.2 X ‘ 2 7:
W e have therefore :

. , No cos Lo , .X — lo —  —------------ 1 — lo —  a 1 —  lo .
R cos <p0 v

The ratio of scales (or linear modulus) calculated on the parallel 
will be :

R cos cp 
K —  a —-------

N cos L

In order that it shall be a minimum at the origin, it is necessary th a t :—
__sin Lo.

sin 90

from which :
R ♦ 1

8 ?0 =  "n7  g

A  preliminary solution of the problem has been obtained by Gauss by 
taking a equal to unity, from which :

90 Lo, R —  No.

The auxiliary sphere has a radius No and is tangent to the ellipsoid 
all along the parallel of origin.

The preceding equations become :
1 — Xo 1 — lo  V

and
_  N° cos ?

K ~~ N cos L’

an expression which near the origin will have the form :

1 4 - e ’2 cos4 Lo -|-----------

The linear distortion will be reduced to an order lower than this 
if the second derivative of K is zero at the origin. W e shall then have :

No .  ,
a* cos® 90 ---------  COS Lo,

P°

and

R =  y /N o  po.

T he auxiliary sphere will osculate the ellipsoid all along the 
parallel of origin. This is the second solution of Gauss.



?o will be given by :

?<> =  y / - £  tg Lo,

and a by :

=  n / 1 +  ( ~  — d)  cos2 L° = \ / i  + e’* COS4 Lo y / i  +  7).
sin Lo 

a —  - .
sin f 0

The development of K in the vicinity of the origin will be

U A V -» N o  - I , T ,K — l _  — - e 2 —  sin 2 Lo cos3 Lo 4 ----------
3 p0

(The following terms of the development will all have e '2 as factor ; 
this was, besides, the case in the first solution).

This procedure by double projection terminates in exactly the same 
results as that which we have employed in V. In fact, the co-ordinate Z 
of the stereographic projection of the auxiliary sphere will be :

____ i

Z =  2 R  c o s  ® o--------------------------- s------------------------  •
(1 -f- sin fo) eai> -f- 1 — sin 90 ’

from which, by substituting for R and 90 their values, we have exactly 
the same expression which we have already found in V :

eaC — 1
(1 ) Z =  2 No COS Lo --------------------r-----------------------------
w  (a 4 - sin Lo) ea? 4 - a — sin Lo'

The scale (linear modulus) on the plane will be :
„ / .  , X2 4- Y2\

m (  4 R2 ) ’

a value which will become, when we adopt for R the value y/N° &> •'

by neglecting, in the second factor, the terms of a higher order than e 2 X 3.
For this stereographic projection, what is, on the ellipsoid, the family 

of orthogonal curves which corresponds to the family of the plane surface 
formed by the concurrent straight lines at the origin and the concentric 
circles? W e have seen in II and III that it cannot contain either the 
geodetics or the normal sections concurrent at the origin.

The geodetic (9) passing through the origin and the point M, situated 
at a distance D from the origin in the bearing w on the plane, makes at 
the origin with the direction to an angle c which is given by the form ula:

c = i r =D + 4 - r °” D>-
r 3 is the curvature at the first third of the radius OM, and is given by 

the formula :

(9) See: «Traité des Projections des Cartes Géographiques» by L. Driencourt and J. Laborde, 
Part. 4, pp. 69-72.



W e have found that m  is equal to the product :

4 ^ }
W e have therefore : 

from which :
/  X 2 4 - Y2\  /  \

m ’x sin w — m ’y c o s «  =  1̂ -------(&' sinw  — R’y coswJ

K  /  \
+ y f  (x sin w — y cos w)-

but the last term is zero, the point M lying on the bearing <*>.
W e have therefore :

_K ’x sin w —  K’y cos wr  =
K

The development of the expression for K may be written
r/ . 1 V2 Oo /  No po\ V3 , ,  po2 . _ .
K =  1 +  T  To i 1 ~  ~ W ~ ) -  T e h sm 2 Lo;

on the other hand, by neglecting the 4th order :
/  0 ■ X3 . X (X2 -  Y2) . .
I V “  No2 cos2 Lo +  No3 cos3 Lo sm  ’

/ V3______E _
( No3 COS3 Lo’

Therefore :
X2 po

2 No2 cos2 Lo No
( t No Po \ , X (X2 —  Y2) po . T / ,  No po\ 
(  R2 /  2 No3 cos3 Lo No Sm (  R2 )

X 3
e’2 sin 2 Lo ;

3 No3 cos3 Lo No2

X po ( ,  No po\ , 3 X 2 —  Y2 po . . / ,  No po\
1 "  No2 cos2 L„ No I  R2 )  +  2 No3 COS3 Lo No Sin V  R2 /

X 2 p02
No3 cos3 Lo No2 

X Y p o  . . No p o

e’2 sin 2 Lo ;

rr> X Y po , / ,  No po\
K y ~  ~  No3 cos3 Lo No Sm V  “  R2 ) '

By substituting for X  the term D cos and for Y the term D sin <*>, 
we have, by neglecting the third order :

„  D po sin w r / .  No po\ /  . D . T 6 cos2 w —  1\
r  =  N oW  1.7 U‘ ~  I T )  (C°S “ +  —  ^  5----- )

— e’2 sin Lo cos2 w] .

Multiplication by 1/K. will give terms in D3 which we do not take 
into consideration. This expression represents therefore T at the distance 
D. To” is equal to double the coefficient of D2.

Therefore î

r °” =  wXcl" L. [(* “  T ? )  *  Lo (6 C0SÎ “  “  11 _  15? e'2 Sin Lo C0SÎ “3-



W e have then :
D2 p0 sin co r /  No po\ /  D 6 cos2 w — 1 \

6 No3 c o s 2 Lo L i 1 R 2  ) ( c o s  “  ■ ¡Vo tg  Lo 4 )

— 2° e'2 Ŝ n COs2 W]  •

The angle c will be of the second order in D if R =  N0. Its principal 
value will be, replacing the unity by the equatorial radius a  and expressing 
the angle in seconds :

2 ,£2. D2 sin 2 <o 
6 No 12 a2 sin 1” ’

a value which, like the distance which we shall calculate in the following, 
is almost independent of the latitude ; it is of the order of three-hundredths 
of a second for D = 100 kilometres, and of seven-tenths of a second for 
D = 500 kilometres, with « =  ±  45 or ±  135°.

The angle c will be of the third order in D if R = y/No po . Its 
principal value will then be :

<?2 -£2 D3 sin Lo sin w cos2
No 6  a2 No cos2 Lo sin 1 ”

The distance of this geodetic to the radius vector, to the point where 
it departs the most, is equal, when R = No, and by neglecting the terms 
in D4, to :

e 2  I F P s i n  2

a quantity which is of the order of 5 millimetres if D is equal to 100 
kilometres and to equal to 45°; and which would be even less than 1.4 m. 
if D were equal to 640 kilometres.

If R =  y/No po this distance will be :
,  p0 D 5 sin Lo . „

— e ~Z~ --------r i— sin w cos w-No 32 a2 No cos2 Lo

It will not reach 7 centimetres if D is equal to 640 kilometres, w and 
Lo being 45°.

W e may state therefore that in these stereographic projections, the 
projection of the geodetic passing through the origin differs very little from 
a  straight line, and that the grid formed by the geodetics proceeding from 
the origin and their orthogonal curves may be considered without appre
ciable error as represented on the projection by the straight lines concurrent 
at the origin and the concentric circles.

W e know that the normal section makes with the geodetic an angle 
for which the expression, by neglecting the terms in e4 and D3 may be 
written :

.  „  D 2 j  sin 2  to 
8 =  e2 —— cos2 Lo

12 a2 sin { ”

The angle of its projection with the radius vector will be then, if R is 
equal to No :



The transformation of the normal section is therefore comprised 
between the transformation of the geodetic and the radius vector, if we 
adopt for R the value N0 and make it approach closer to the latter than 
the geodetic.

But if we take for R the value y/N° p0 , the geodetic is much closer 
to the radius vector than to the normal section.

/ '

VIII

The expressions found for Z, and consequently for X  and Y, in the 
two preceding chapters require quite long computations, even if we use 
the intermediary of the auxiliary sphere. But the expression found for Z  
may easily be developed according to ascending powers of K; and, no 
matter at which term the progression is stopped, the projection thus defined 
will always be rigorously conformal. It will therefore be useful, in order 
to diminish the distortions and to render the calculation easier, if the 
indicatrix, limited in any case to the second order, can, further, be 
circular.

If we employ the complete series in the development of Z , the modulus 

m does not differ from 1 +  but by the terms of a higher degree
than the second, all having e2 as the factor (10). If we now stop the 
development of Z  at the terms of the nth degree inclusive, the calculation of 
dX  and dY should not be pushed beyond the n - 1thdegree; nothing will 
be changed in the development of m up to the n — 1th degree inclusive, 
but the following terms will no longer have e2 as a factor. If we now 
develop Z  up to the terms of degree 3 inclusive, the indicatrix, limited to 
the second order, will still be a true circle ; but the term of the third order, 
not having as a factor, will have a  value which cannot be neglected. 
If we develop Z  to the 4th order inclusive, the term of the indicatrix of 
the 3rd order will contain ft2 as factor; that of the 4th order, not containing 
it, will be comparable in value to the preceding. It would be too compli
cated to consider the 1st term which does not contain as a factor. It is 
therefore necessary to push the development of Z  more or less, depending 
upon the degree of accuracy desired for m, or, rather, depending upon 
whether one wishes to employ the projection at a greater or lesser distance 
from the origin ; but this distance may be as great as desired on the 
condition that we employ a sufficient number of terms in the development 
of Z. W e shall give below the calculation on the development of Z  up to 
the term of the 4th order inclusive : (11)

(3) Ñ^lrü=? - - F si"L« + 7Í-A

(10) Taking, naturally, a2 equal to the increased unit of any factor of e 2.

(11) The following term will be:—■ i a < ------ ~  a2 s i1*2 Lo H-----Sin4 Loj.



with :

A =  3 sin2 Lo — a 2, B =  2 a 2 -  3 sin2 Lo,

d Y 4- i d X . t 2 r3
i No cos Lo d G —  1  ̂ sin Lo +  —  A +  —  B sin Lo,

=  ) -  v sin U  +  A y2 ~  G‘ +  B v - ~ ^ 3 G- sin Lo -  i G sin L.

■i— , _ B 2 J 2 - Ga_  ________________ L*\
2 sin Lo " 6 / ’

=  P — i G sin Lo Q.

m u ltip ly in g  b y  the conjugate exp ression  w e  h ave :

d X2 -f d Y2 „ /  o 2\
No2 cos2 Lo d G2 “  P ( d +  G2 sin2 Lo " p i )  5

from  w h ich , b y n eg lectin g  th e 4th order :

m - sLV d  X2 -|-d Y2 _No cos Lo _  No cos Lo / „  , . o 2\ 
No cos Lo d G  »  cos I, — N cos I. (,P +  G sm2 L" 2 ~ p /

By substituting for P  and Q as well as for A  and B, their values, we
find for the term in parenthesis the value :

f  J — v sin Lo +  - J -  (3 sin3 Lo -  a>) +  i2L (*> _  sin> Lo) +  - j -  (2 -  3 s it f  L.) sin Lo

v G2
H------ g “  (sin2 Lo —  a2) sin Lo.

W e have given above (V) the development of -  ■cos Lo
N cos L

By taking the product we have :

v2 4 - G2 v2
m — 1 +  -----1—  (*® — sin2 Lo) -f  —  (1 +  ») — as)

4- v3 sin Lo <x2 j  ̂ —  3 cos3 Lo —  H  7j —  8 r; e ’2 cos2 Lo , ^ M  ,  sin2 Lo —  a2
12 T  V b sin L0 ^ .

For the rest, from equation (3) we deduce :

/ - A - .  ^  V -  sin  Lo 4 - V (v2 -  3 G2) * * * ,£  -  *2

+  (V4 -  6 v2 G2 4- G4) 2 aL ~Z± SiS iLo sin U)
(4) ' 24

"n 7"cosT ^ ”  G v G sin Lo +  G (3 v* -  G*)

\ i „ r* / 9 i-io\ 2 ^  3 sin 2 Lo . T \ +  v G (v2 —  G2) ------------ --------------sm  Lo.

These expressions furnish us inversely with the values of v and G 
which we shall push to the terms of the 3rd order :

/ X X2 — Y2 Y2 _  q V2
|  V ~  "No COS Lo +  2 No2 cos2 Lo sm  Lo +  X 12 No3 COS3 Lo (3 sm2 Lo +  *2)’

I Y X Y 9 y2 _ y2
G =  —  .  4- ,  t -- sin Lo 4 -  Y ------—  (3 sin2 Lo 4 -  a2).

No cos Lo No2 cos2 Lo 12No3 cos3 Lo v ‘ '



Substituting these values in the expression for m we find :

=  '  +  4 No» cos2 Lo (“J — sm’ L°* +  2 cos2 Lo (* +  1 — “2>

+  6~l j  cts^Lo (1 +  1 ~  °2 ~  * 1 ~  * 1 C'2 C0Si Lo) +  2'N ^ ^ U ^ -  1 ~  ">Sil* L°-

If a2 is equal to 1 +  "'i, the expression for the linear scale becomes, 
noting that :

No
COS2 Lo po

/t)l . , X2 + Y 2 „  X3 . nI(5) in .. 1 H----— ------- e 2 7-^-5—  sm2 Lo.
w  4 No po 3 No2 po

This is really the expression (2) which we have found in chapters
V and VI ; but the term of the 4th degree will no longer be the same 
and will not have g2 as a  factor. In order that it should be the same it 
would have been necessary to continue the development of the formulae 
(3) and (4) to the 5th degree.

If we had taken * 2 equal to unity, we should have obtained the 
following value for m  :

,  , X2 4 -  Y2 , , 0  X2cos2 Lo , X3 /  ,  No\ . OI , ,  X  Y2 .  n I
lu = 1 + T nT- + e -Ytw- + e' I1 -  4 T») sm2L'>- e2 4nT» sm2U’
and the equations (4) would have become :

I X v2 —  G2 . . , , ,  _ 3 sill2 Lo —  1
sin Lo - f  v fv2 —  3 G2)

No cos Lo 2 12

.2 _ L  A 4 'I L u .

24
, , t  /» *> i'''} I r»i\  ̂ 3 sin2 Lo . «

+  (v # —  b v2 G1 +  G4) ---------~ --------- sm  Lo,

G — v G sin Lo - f  G (3 v2 — G2) ^ S*n 1
I No cos Lo ‘ v 7 i2

„ / o ™  2 — 3 sin2 Lo . ,- f  v G (v2 — G2) ---------^--------  sin Lo.

The expressions (4) are easily calculated if we take v from reasonably 
accurate tables of meridional parts. Those of the International Hydrogra
phic Bureau (Special Publication N° 21) suffice to guarantee an accuracy 
to the centimetre on the X  co-ordinate and an even greater accuracy on 
the Y. W e note that in these formulae v and G are expressed as parts of the 
radius. They should be multiplied b y  sin 1’ or sin 1” depending upon 
whether they are minutes or seconds.

The calculation of the formulae (4) is more rapid when we put :

G2 — d2, —  =  tg 8.
v  D

W e then have ;

and the formula (3) becomes

Z =  d ei8 __ J L  e2iS sin Lo H— ¡77-  e3iô A +  4 r  e“ s B sin Lo.
No cos Lo 2 1 12 1 24



W e then deduce :

n 7 'L  l .  =  d cos 8 “  - X s i" Lo cos 2 8 +  I T  A  cos 3 8 +  I T  R sin L° “ >s 1 s >

Y , . . d2 d3 d4
No cos Lo -  S m -------F  Sm Lo sin 2 8 +  —  A sin 3 8 +  —  B sin Lo sin 4 3 ;

and, the same way, by putting

we obtain, not going beyond the 4th order :

Z2 sin Lo (s in  ^ 3 )  Z4 (sin2 L0 -f a2) sin Lo ;
No2 cos2Lo' 4 No3 cos3 Lo 8 N^4 rns-* i.„

r =  -  Z i __________ _________________  ________
No cos Lo ~r  2 No2 cos2Lo'-1- 4 No3 COS3 Lo "*■ 8 No4 cos4 Lo

and, as a result the following values of v and G which may be utilized for 
calculating the geographic coordinates of a point of which we know the 
coordinates X and Y :

, , p COS c  , sin  Lo cos 8 P3 ( s i » 2 Lo +  - ¡ f )  “ s 3  »

No COS Lo ' 2 No2 COS" Lo +  4 No3 COS3 Lo
, p4 (sin2 Lo -f- <*2) sin Lo cos 4 

+  8 No4 cos4 Lo *

a  _  P sin ft> | ¿ s i n  Lo sin 2 w  ̂ ( S*n 3 )  s*n  ̂ w
~  No COS Lo 2 No2 COS2 Lo 4 No3 COS3 Lo

, p4 (sin2 Lo - f  a2) sin L0 sin 4 m 
8 No4 cos4 Lo

VIII

The development studied in the preceding paragraph obviates the 
necessity of making a first projection upon the auxiliary sphere of radius R. 
If, however, we prefer to make this projection first, we shall then perhaps 
profit by using no longer the Mercator co-ordinates but those of Gauss 
which present a double symmetry. Let us call z the complex co-ordinate 
of the Gauss projection of a sphere of radius equal to unity (12). W e 
know that according to I. JUNG (13) the stereographic co-ordinate Z  may 
be written :

(6) Z =  2 R tg - i - .

The value of Z  thus calculated provides exactly the same result as 
that which we have obtained in Chapter VI by means of the Mercator 
co-ordinates

W e have :
sin x „  e 2y — I

\  =n 4 R pY -------------------------- » \  2 K — .
e2y 4- 2 ey cos x -f- -1 e2y +  2 ey cos x -f- 1

(12) This projection is also called:—  conformai inverse cylindrical projection, conformai traverse 
cylindrical projection, Mercator inverse projection, or Lambert conformai cylindrical projection. V ol. VI, 
N ° 1 of Hydrographic Review contains a table giving its coordinates in minutes with two decimals, 
between latitudes 60° and 90°, enabling it to be used for the polar regions.

(13) See: Hydrographic Review, V ol. X, N ° 1, pp. 84-85.



The calculation is made easier if, in place of the co-ordinates x, y 
of Gauss, we employ the co-ordinates, X, y  of Cassini Soldner, with 
which the calculation is more rapid and which offers the advantage of 
using only right-angled triangles. W e h a v e :

x — 2 r  sin x cos y’ y =  2 r  sin f
1 +  cos x cos y” 1 - f  cos x cos y’*

But the use of the Gauss co-ordinates is found to be more interesting 
if we make use of a limited development of expression (6). This develop
ment contains only the terms of the odd degrees, such that with only two 
terms we have the same advantages for m  as with the four terms employed 
in chapter VII.

_ L _  i
\ R Z 12 ’
) X , x2 — 3 y- Y , 3 x3 — v !
' —  =  x +  x — T i ” ’ —  =  y +  y — r r -

W e find again for m the value (5) by neglecting the term of the 4th 
degree, which has not e 2 as a factor. W e might utilize this projection still 
further away from the origin, by taking the development :

Z __ ?.3 zs
R 12 +  120'

However that may be, it does not appear to us that this method of 
procedure presents any advantage over that indicated in Chapter VII. 
which provides exactly the same degree of accuracy, with transformation 
formulae which are slightly longer, but which allow us to economise in the 
rather long calculations of the projection of the ellipsoid on the sphere and 
the Gauss co-ordinates on the. sphere. The addition of the terms of the 
development of a higher degree does not mean a great increase in the work 
because these terms are rather small, and it allows one to utilize the pro
jection as far away from the origin as one desires.

IX
It might appear more interesting, instead of having recourse to the 

meridional parts, to establish a stereographic projection of the ellipsoid 
directly by means of a developm ent according to the increasing powers of 
the differences in latitude and longitude, even though we may have to use 
a more complicated expression. It is possible to do so, but the expression 
will no longer be rigorously conformal ; there will always be a slight error 
in conformality. This error, however, may become quite negligible 
provided v is calculated with sufficient accuracy.

It will suffice to express v by the development according to increasing 
powers of L — L0 = V  ; which amounts to the calculation of increasing 
meridional parts.

This is the expression for v, stopping at the 4th degree:



W e then substitute the value of v, v2, v3, and v4 in the expressions (4). 
The coefficients of these formulae are to be calculated once for all for the 
latitude of origin ; further, one need not be excessively troubled about their 
complexity ; it will, however, be much quicker to use a table of meridional 
parts and apply the formulae of Chapter VII.

A t the prime meridian the value of X , which we shall call X„, will be 
(by giving to a2 the value of 1 + •») and by neglécting the terms of a  higher 
order than V 4 and of e” V 3) :

T T ^ + l F  + 3j~ r  N 7 sin2Lo+£7 r " ^ r ( 6 +  l!’ sin3L °-3 0 .|i-sm » L o ).

It should be noted that the terms which are independent of the eccen

tricity are, as it should be, the first terms of the development of 2 tg L~~Lo.

x
The stereographic projection of M . Roussilhe :— Ingénieur hydrogra

phe en chef Roussilhe presented to the Congress of Geodesy and Geophysics 
held in Rome in 1922, a conformai stereographic projection which has 
since been adopted, under the nam e of “quasi-stereographic projection”, 
by the Polish Military Geographical Institute for the establishment of the 
maps of that country (14). This projection is based on the following 
definitions :—

The central meridian having been taken as the axis of the X , the law 
of representation for the points on this meridian will be given by the 
equation :

Xo S -}" tj -f- tg -|- tj -}- ....,

in which S represents the distance from the point of origin, measured on 
the ellipsoid along the meridian, and t the constants which characterise 
the nature of the projection adopted.

Calling u the distance of a point to the central meridian, measured 
along the parallel of this point, X the functions of s which will be deve
loped in accordance with the powers of this quantity, and taking into 
consideration the symmetry with respect to the central meridian, the 
co-ordinates of any point whatever m ay be written :

/ X =  Xo +  ^2 u2 ^4 u i "1“ ^6 u6 .......

/  Y =  \  u t +  X3 u 3 +  Xg u 5 - f  l 7 u 7 4 - .......

The equations of conformality on the ellipsoid furnish the determination 
of the coefficients X by means of the series developed according to the 
powers of s continued as far as desired to obtain the necessary accuracy 
of conformality. The number of the coefficients which m ay be as great 
as desired, will in practice not exceed seven.

(14) See: Travaux de la Section de Géodésie de l ’Union Géodésique et Géophysique Internationale, 
Rome 1922, Tome I ;  Madrid 1924, Tome IV ; Prague 1927, Tome V I; Lisbonne 1933, Tome XII.

See also: Hydrographie Review, 1930, V ol. VII, N ° 1, p. 31.



This mode of projection of the ellipsoid is very general and has the 
advantage of not requiring a double projection ; but the calculations are 
rather long if great accuracy is required.

In the case of the stereographic projection, the author uses for Xo the 
development of the function :

(7) , . / s ^  *  ■ n s ’
2 12 No po 120 No2 Po2 1 20160 No3 p03‘

by analogy with the stereographic projection of a  sphere of radius R, of 
which the representation of the prime meridian is given by :

Xo =  2 R ig

an expression in which the arc s is to be measured on the sphere.
The quasi-stereographic projection has the particular character of using, 

instead of the latitudes or the meridional parts, the length of the arc of the 
corresponding prime meridian and, in place of the longitude difference, 
the length u of the arc of the parallel. From these quantities very accurate 
tables have been computed for the international ellipsoid and for all 
latitudes.

If we compare this projection with that which we have indicated in 
VII we note first that the principle of the double projection leads us to 
introduce in formula (7), not the arc s of the meridian of the ellipsoid, but 
rather the arc s, of the meridian when it has been transformed by conformal

projection to a  sphere of radius y/No po . This transformation is given by

the formula :
ds, =  K ds,

K being the scale found in VI :

k = « 4 ^ je.N cos L

If in this expression we make a2 = 1 + '*), R = y/N0 p0 , and if we 
develop according to powers of s taking into consideration the relations :

d L  1 d <p a cos 9 d N f T d p  p „—:— — ■ —, ■ , ' — ' , , —-— — e 2 sin L cos L, —  =  3 — e - sin L cos L, 
ds p ’ ds N cos V  ds ds N

d_N
d N cos L . , p 3 e '2 . . .
------ -------- ---  — sin L, ■■■ , r --- --------------sin L cos L,

ds ds p

we obtain :
T7 i >-) a sin 2 Lo ,« , cos2 Lo r .  , , V1K =  1 — e 2 s3 n ■ ■ — e 2 s* —r - r ----  1 +  e'2 (I — 1 sin2 Lo .

3 No2 po 6 No3 po L 'J

Consequently we have by integrating :
, sin 2 Lo .. cos2 Lo r ,  , r ,1

s ' =  s “  e W S  -  e s ° 3 0 ' N . ~  L1 +  " (1 “  7 S'" ‘ LolJ-

By substituting this value of s in equation (7) we find an expression 
for the projection of the prime meridian which with the same degree of



approximation should not differ from that which is furnished by equation
(3) except by the use the variable s in place of v. W e obtain thus, by 
limiting ourselves to the 5th degree, the expression (8) :

(8) Xo S +  - -.g  .(_______^ ------------s., JLn.L LJL _  go ........... 99** LO
V 12 No po f 120 No* po2 12 No‘J po s 30 N03 Po

[l 4. e’2 (i _  7 sin2Lo)J;
which does not differ from expression (7) except from the terms in s4 on, 

and even by the terms having e '2 as a factor.
W e know that a conformal projection is completely defined if we give 

the representation of a prime meridian on a straight line. The two 
projections defined by (7) and (8) are thus slightly different ; but they are 
both conformal if the coefficients \  are sufficiently developed, and that 
regardless of the number of terms employed in the developments (7) and (8).

In order to push the comparison further, we shall give the expressions 
for v and G by development according to powers of s and u :

7 v-No cos Lo =  s 4- ~  4- —  J L  4_ - S i  tg Lo — L _  a.. _ 2l  J L . ,  (l5)
1 Ci 1VT I a  M i l l  I fe 1VT 3  , K W  J  >2 No 3 No2 T  4 fe lJ0 N03 ~  5 N o* '

’ l j 0  I 2 M  I q  X T P  , I 0

No +  US No2 +  US S No3 +  US N o5 ’j  G No cos Lo =  u 4- us 4- u§2 i z r T  +  us3 Ij0 " IT T  +  us* ~

by putting :
* * __ . 9  1 , N° _  4 •> t  1 3 No 2  No2
M =  tg2 Lo 4 - -5— - ,  P =  tg2 L 0 +  —  — ------------- ---------

6 po Z po O Oo

0  =  V  +  3 £  +  ( - g _  _  J L  tg iL o )  +  ( tg i  L o _

By substituting the expressions for v and G in equations (4), we have 
the expressions (16) for X  and Y in a form analogous to that which we used 
for the quasi-stereographic projection, and we find that they do not differ 
except from the terms of the 4th degree on, and by the quantities having 
e 2, as a factor. W e do not give the calculation, which is rather lengthy, 
the coefficients ). offering in both cases an equal complexity.

The developments X  and Y of the quasi-stereographic projection being 
prolonged to at least the 4th order, the scale (linear modulus) will have 
its term of the 3rd order multiplied by e ' 2.

Its expression is :
, , X * 4 - Y a „ X Y2 . „  

m = 1 +  sm2Lo-

It differs from the expression (5) found in VII because the terms of 
the development of X  and Y are different in the two cases, and its last 
term depends on X  and Y instead of depending solely on X. The terms

(15) This table enables the differences v of meridional parts to be computed quickly and with 
great accuracy by using accurate tables of the s values. It has the advantage over the direct computation 
of meridional parts, of using greatly inferior numbers when the origin is in a comparatively high latitude.

(16) These expressions enable the very accurate tables, just mentioned, of the s and u values to 
be used instead of tables of meridional parts for which tables as accurate as those, for the whole world, 
have not as yet been published. (See: Hydrographic Review, V ol. IV, N ° I, p .. 226).



in m, of a higher degree than 3, will have the factor e ’2 up to the term 
of the 6th degree inclusive if the developments of X  and Y are pushed 
to the 7th degree.

CONCLUSION.
W e have indicated three kinds of conformai stereographic projections 

of the ellipsoid, which differ slightly one from another.
The first, in V and VI described under two different forms termi

nating in identical results, is theoretically the most perfect, because its

scale does not differ from 1 + kut ky terms of a higher degree

than the 2nd, all having e '2 as a factor; this makes the corrections smaller 
and their calculation more precise.

The second, in VII and VIII, is a rigorously conformai projection ; 
no matter how many terms are employed in the development of X  and Y. 
If one stops at the terms of the' nth degree inclusive, the scale will be 
similar to the preceding up to the n — 1th degree of its development ; but 
the succeeding terms will not have e '2 as a factor and the corrections which 
result from the first of these cannot be neglected if the development of the 
co-ordinate comprises too small a number of terms, or if the projection is 
employed at too great a distance from the origin. However, on the condi
tion of making the number of terms of the development proportional to the 
distance from the origin at which the projection is to be employed, these 
projections are no less perfect than the preceding and are easier to calculate.

It should be carefully noted that, while remaining perfectly conformai, 
these projections yield results slightly different depending on whether one 
uses more or fewer terms in the development.

T he third kind, in IX and X, comprises the projections which are 
practically conformai provided the developments are pushed quite far. In 
addition, the computation of the constant coefficients is much longer : 
but this calculation is made once and for all for the entire projection ; 
and one has the advantage of using :— in IX, only the differences in 
latitude and longitude referred to the origin ; and in X only the arcs which 
are given in the tables with all the accuracy which can be desired. The 
scale shows the same properties as those of the projections in VII 
and VIII.

If we wish to utilise this type of projection the simplest would be 
perhaps to adopt for the representation of the prime meridian the 
expression :

J b — y  +  - l L + J L  +  - 2 - s * v - Z L  sin g Lo -u S l T  - £ 2 l
po +  12 h 120 +  4 No ■ 12 No*

(5 +  19 sin2 Lo) — 30 sin2 L o i
L  po J

and to determine the coefficients X  and Y by means of the equations of 
conformality. In this manner one avoids the use of any kind of table.


