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Yesterday I gave a summary of the new position fixing developed by radio engineering 
during the war.

The relative accuracy afforded by these position fixing systems will, of course, depend 
upon the positions of the radio stations used being known exactly, as the ships’ position is 
determined in relation to these known positions. As in the case of all other relative fixing 
methods it is necessary to know the base line, i.e. its bearing and length.

We observed that in all these position fixing systems very long base lines were used in 
comparison with those used in ordinary trigonometrical fixes, in which the base line is at most 
a first-order side and always shorter than the range of vision.

It may therefore be of interest to investigate in detail the accuracy with which these 
long base lines are known, that is to say, the accuracy of the actual geodetic basis of our 
charts. We must therefore first examine what geodesy is, its development and its aims and 
means.

Geodesy is the science of determining the shape and size of the Earth. This science is 
studied by the geodetic institutes of various countries which pass on their results to other 
scientific institutions or to the practical workers, partly in the form of data (coordinates, 
levels, etc.), and partly in the form of graphical reproductions (maps, graphs, etc.).

In practice the work of the geodetic institutes may briefly be said to be that of 
“  levelling ”  and “  coordinating ”  the country in question. In this connection we must 
distinguish between different kinds of coordinates, partly plane rectangular chart coordinates, 
partly geographic coordinates, which, as we shall see, comprise many different classes.

In geodesy we work with several different globes, which we shall now briefly explain :—

I. The physical surface of the Earth is the surface of the actual Earth. It is on this 
surface that we stand, walk, navigate, set up our instruments and make our observations.

This Earth is very much “  alive ” . Houses are being built and disappear, roads and 
railroads are being established, forests grow up and are being felled, excavations and recla
mations are being made, the sea removes and deposits soil, large ice masses are deposited and 
melt, and the attraction of Sun, Moon and planets pulls at it and changes its shape.

Owing to its irregular shape it is quite unsuitable to form the basis of surveys, and it 
will therefore be necessary to introduce an imaginary (idealized) surface of so regular a shape 
as to make it possible to develop a geometry on it.

At every point of space the actual Earth gives rise to an acceleration due to gravity, 
represented by the vector function g (x, y, z ) ; the direction of gravity at any point is 
determined by the tangent to the “  gravity line ”  through that point and is indicated by the 
plumb line. Gravity lines defined in this way all meet at the centre of the Earth.

A ll surveys of the Earth are based on the actual gravity lines inasmuch as all our instru
ments are set up and adjusted by means of spirit levels, as they indicate the sole direction 
given by nature with sufficient accuracy at any point.

Surfaces which are at all points at right angles to the gravity lines are termed level or 
potential surfaces. All points on the same surface have the same potential and no potential 
work is expended in moving a mass around on the surface; the mass will at all places on the 
surface maintain its potential energy. The surface is indicated by the free surface of a quies
cent liquid.

On the other hand, the length of the actual gravity acceleration vector g will vary when 
we move around on a potential surface; this fact is due partly to the uneven distribution of 
the masses in the crust of the Earth, which must be assumed to extend to a depth of nearly



100 kilometers, partly to the fact that the gravity acceleration is composed both of the attrac
tion of all the mass particles of the Earth and of the centripetal force due to the rotation 
of the Earth. The numerical value of the gravity acceleration is in fact greater at the poles 
than its mean value at the equator.

An infinite number of levels may be laid, namely one through every point of any plumb 
line right from the centre of the Earth to a point infinitely remote. All these actual levels are 
closed surfaces which cannot touch or intersect each other, and which at no place can have 
peaks, edges or breaks, on account of the laws of nature applying to potential functions; they 
are all continuous and differentiable. The actual gravity acceleration is a function of force 
of these potential surfaces, which means that the total differential of g will be zero everywhere 
in the same potential plane.

Among the infinite number of levels it will be natural to choose that which coincides with 
the mean water level in the open sea as plane of projection. The surface thus defined is 
called

2. The mathematical Earth surface or the geoid and the aim of higher geodesy is to 
determine the shape and size of that surface.

If the water in the seas was not affected by winds, currents, tides, differences in salinity 
and temperature, etc., the surface of the sea would form part of the geoid, but as the sea does 
not fulfil these ideal requirements, the geoid and the immediate surface of the sea need not 
coincide. On the other hand, to a high degree of approximation the geoid can be considered 
as coinciding with the mean water level of the sea at places where no special one-way currents 
prevail.

The geoid, like the Earth, will be a “  living ”  globe. It wil! not only be subject to 
periodical changes due to the attraction of Sun, Moon and planets, but also to other changes 
due to great earthquakes, melting of the ice masses at the poles, etc. It is therefore very 
loosely defined by the words : “  coinciding with the mean water level in the open sea ” , which 
it is very difficult to determine and which must presumably be a function of time.

The heterogeneous distribution of masses in the crust of the Earth will —  as is known 
from physics —  give rise to irregularities in the shape of the geoid. An increase in the 
density of the Earth around a point will attract the gravity lines and thereby raise the geoid 
in the vicinity of the point, and conversely a decrease in density around a point will cause a 
lowering of the geoid in the vicinity of the point.

Thus, not only visible irregularities in the distribution of masses (such as mountains, 
valleys, etc.), but also invisible (subterranean) irregularities will cause undulations in the shape 
of the geoid.

Fig. 1

We must in other words visualize the geoid as a large globe endowed with many “ bumps”  
or irregularities, and it will “ breathe ”  very faintly. These “  bumps ”  are partly of very large 
(continental) extent, partly of small (local) extent. The building of houses would, of course, 
theoretically cause an attraction of the lines of force and thus a raising of the geoid, but it 
will, be so infinitesimal as to be without practical geodetic importance.

It is impossible without exaggeration to illustrate a cross-section through the geoid, as 
the “  bumps ”  even on a large scale drawing will be quite small, as the concavity of the geoid 
must at all times turn inwards; for the gravity vector is to be the normal vector of the geoid, 
and it is directed inwards at all points of the Earth. Thus, the geoid will at no place show 
mountains and valleys like the physical earth, but only an increase or decrease of the ever- 
concave curvature towards the centre of the Earth. The greater the curvature, the smaller 
the length of the actual gravity acceleration vector (the mean radius of curvature).



A  drawing must therefore always be grossly exaggerated and misleading, which is only 
natural as angles of a few seconds of arc are so small that they cannot be shown.

It must further be realized that meridians and parallels of latitude on the physical or 
mathematical earth must not be visualized as an intersection between these globes and^meridian 
planes and latitude planes respectively, there are thus only “  geometrical locations ” .

We may, for example, define the equator on the physical Earth surface as the locus of 
the points the plumb lines of which are at right angles to the axis of the Earth and define 
the parallel of latitude at latitude ® as the locus of the points the plumb lines of which form

an angle of —  <p with the axis of the Earth.
2

Correspondingly, the meridian through Greenwich on the physical Earth surface may 
be defined as the locus of the points the plumb lines of which are parallel to a plane through 
the axis of the Earth parallel to the plumb line through Greenwich and define the meridian 
of longitude ^ as the locus of the points the plumb lines of which are parallel to a plane 
through the axis of the Earth and forming the angle \  with another plane through the axis 
of the Earth and parallel to the plumb line through Greenwich. (In this connection the axis 
of the Earth is understood to mean the fixed axis through the Earth connecting the geodetical 
poles (mean poles) of the Earth).

On account of its irregularities the geoid is not a suitable basis for a survey; no geometry 
can be developed on this globe and it cannot be depicted simply by a couple of parameters on 
a plan (chart). It will therefore be necessary further to idealize the Earth in order to obtain 
a globe suitable as a basis for surveying.

We might accomplish this idealization by letting the Earth be alone in space, by letting 
it maintain its rate of rotation and then letting all solids change into fluids while maintaining 
their densities.

The idealized Earth thus defined is called :—

3. The Spheroid.—  From the theory of elementary potentials we know that if this 
idealized globe were stationary so as to be subject only to the mutual attraction of the mass 
particles, it would assume the shape of a sphere.

It has further been shown by Professor Helmert :—
i° That the rotating globe, thus idealized and subject only to the mutual attraction of 

the mass particles and the centrifugal force, will be a body of rotation.
20 That if the rotating globe thus idealized is homogeneous, it will assume the shape of 

an ovaloid of revolution, the meridian section of which will be given by the equation 
r =  a (1 —  a  cos <p) in polar coordinates, a being the radius at the equator and a  the flattening. 
Such ovaloid of rotation will, if it has the constants applying to the Earth (velocity of 
rotation, mean density, etc.) deviate only slightly from an ellipsoid of rotation.

3° That the rotating globe thus idealized may very well assume the shape of an ellipsoid 
of rotation if the density of the Earth is increasing inwards towards the centre, and from the 
results of geo-physics there is reason to assume that it does so increase.

4° That the mass of the air envelope is so insignificant in proportion to the mass of the 
Earth that in view of the accuracy of observation attained up to the present it may be entirely 
disregarded.

Such an idealized globe (the Spheroid, i.e. a figure like a sphere) will only be very faintly 
“  alive ” ; only if the Earth receives masses from space or gives off masses to space or changes 
its velocity of rotation will it change its size and shape.

The spheroid will also be a suitable basis for surveying. By the idealization ”  by letting 
the Earth melt ” , the “  bumps ”  of the geoid (the mathematical Earth surface) will disappear, 
so that the curvature will vary so regularly and according to law from point to point as to 
make it possible to develop a geometry on the surface and depict it simply on a plane. The 
actual plumb lines will “  straighten up ”  and the equator, meridians and parallels of latitude 
will be “  straightened out ”  so as to constitute not only “  geometrical loci ” , but also inter
sections between the equator plane, meridian planes, latitude planes and the spheroid, respect
ively. Latitude and longitude will be so-called curved spheroidal coordinates on the surface.

It may be popularly expressed as a paradox if we say “  that on the actual Earth the 
plumb line is not vertical and the water level not horizontal ” , as by vertical and horizontal



we understand the direction of the gravity line and a plane at right angles thereto on the 
idealized globe.

The spheroid is not only a surface of an idealized globe, but at the same time a potential 
plane (one of an infinite number) in the idealized gravity system (vector field y  (x, y, z), which 
it creates in space. Each of the idealized gravity lines will (in contradistinction "ofi the actual 
ones) have its course entirely within the same meridian plane and will there have only a very 
slight curvature, which will have its maximum at latitude (p =  450 (about o” .oi6 per 100 m.) 
and its minimum at latitude <p =  °° and 9  =  90°.

The horizontal component of the vector difference between the actual gravity acceleration 
vector g (x, y, z) and the idealized gravity acceleration vector y  (x, y, z) (the angle between 
the actual and the idealized zenith) at any point (x, y, z) in space may be called the absolute 
plumb line deflection at that point and it may be given by its value 0 in seconds of arc and 
its azimuth e, or by its components in direction N-S and E-W   ̂ and -fj > respectively.

The determining elements or dimensions of this idealized globe are not known, nor is 
it known whether it assumes the shape of an ellipsoid of rotation or some other body of 
rotation, nor how the gravity varies on its surface; one of the aims of geodesy is to determine 
these facts.

In order to make a survey at all it is necessary to have a basis, we must establish the 
shape and dimensions (determining elements) of a :—

4. Reference ellipsoid or computation globe.— Such a computation globe, defined by 
figures, is completely “ dead ” .

To recapitulate, geodesy is operating with the following four different globes :—

1. The physical Earth surface (the actual Earth). j Common gravity system g (x, y, z).

2. Geoid or mathematical Earth (potential surface to ) „  . , N
the actual Earth). i Comn,on ‘?nmly system * (lt' y ’ z)'

3. Spheroid (idealized Earth, at the same time idea
lized potential surface).

4. Reference ellipsoid (computation globe, now also
computation potential surface).

and they are more or less “  alive ”  in the order given.

On the basis of the reference ellipsoid we define the chart projections, partly in order 
to provide a plane graphical reproduction, partly in order to have a chart plan in which to 
compute, plane geometry being considerably simpler than the geometry of an ellipsoid of 
rotation, which requires development in series with more or less terms depending upon the 
distance and the accuracy desired.

Common gravity system y (x, y, z).

Development of Geodesy.

In order to obtain information as to the shape and size of the spheroid several countries 
have previously undertaken degree cieasurements, i.e. they have by a combination of terrestrial 
(trigonometrical) and astronomical observations determined the ellipsoid of rotation which on 
the basis of the observations made was in the best conformity with the curvature of the geoid 
within the country or territory in question. Thus, each country determined its own reference 
ellipsoid or computation globe on which it bases its maps and charts.

Thus, each country used its own globe and orientated it to make it fit best to the geoid 
within their territory; this means that the reference ellipsoid was not orientated exactly with 
its axis and equator plane coinciding with those of the actual Earth, but only parallel with 
them, and it was therefore impossible to obtain conformity between the geographical (curved 
ellipsoid) coordinates or geographical grid of the different countries.

The Danish longitudes were thus perfectly correctly defined from the “  Round Tower ”  
in Copenhagen, inasmuch as so remote a reference station as Greenwich was not, of course, 
included in the Danish trigonometrical system.

Each country made its maps and charts on the basis of its own private globe, and it 
was impossible to obtain a total picture of the Earth with any reasonable degree of accuracy.

Later on gravity measurements began to be developed and to assume importance in the 
determination of the shape of the Earth “  as a whole ” , in other words, in the determination



of the flattening of the Earth, and still later they found practical appplication in geological 
investigations of the sub-soil.

This epoch in the development of geodesy (we may call it the degree-measurement 
epoch) has now been completed. Like almost all other forms of science, geodesy also is 
international, and at a congress of the “  Union Géodésique et Géophysique Internationale ”  
at Madrid in 1924 it was agreed in all international geodetic work to use the same reference 
ellipsoid, the so-called international ellipsoid which is defined as an ellipso'd of rotation with 
the semi-major axis (the radius at the equator) a =  6378388 metres and the flattening 
a =  i : 297,0.

This is thus at present the closest possible approximation to the spheroid, being deter
mined on the basis of a very large number of degree measurements and gravity measurements 
distributed all over the Earth.

While thus the reference ellipsoid of the Danish degree measurement made on the basis 
of the observations of the Dan’sh degree measurement affords the closest possible approxima
tion to the geoid belozv Denmark, the international ellipsoid affords the closest possible 
approximation to the spheroid. But from this follows that it should also be orientated 
differently, namely absolutely, i.e. with its axis and equator plane coinciding with the axis of 
the Earth and the equator plane of the Earth (i.e. a plane at right angles to the axis of the 
Earth through its centre).

Subsequently, the “  International Hydrographic Bureau ”  sponsored the International 
ellipsoid, and it has been adopted for scientific and practical work in almost all countries with 
but few exceptions (e.g. Germany). It m’ght be more correct to call it “  the international 
reference spheroid ”  in order to indicate the principal difference from the many different 
reference ellipsoids previously used.

The adoption of the international spheroid is of great value, inasmuch as the international 
institutions established for the purpose (the “  Union Géodés’que et Géophysique In'ernationa1e ”  
and the “  International Hydrographic Bureau ” ) have computed very accurate tables for this 
ellipsoid (tables of radii of curvature of meridian and normal sections, 0 and N, of mean 
curvature, K, equivalent leng'h on the parallel of one minute of arc, functions W  and V, 
length of meridian arc from the equator, meridional parts, etc.).

By means of these tables numerical solutions of geometrical computations on the surface 
are facilitated, and it is poss’ble to plot the geographical grid in the two projections most 
commonly used, namely the normal orthomorphic cylinder projection (the Mercator projection) 
and the transverse orthomorphic cylinder projection (transverse Mercator projec'ion or 
the merid;an strip projection) with an accuracy of a centimetre, and to transfer any given 
point on the idealized globe to the chart, and conversely, wi'h an accuracy of a centimetre.

Further, it has been possible to produce a formula for the numerical value of the 
idealized gravity acceleration vector |y | for the surface of this globe. This international 
gravity formula :—

Yo =  978,049 (1 —  .0052884 sin2 <p —  .0000059 sin2 2 9 ) gal

(in which cp means the idealized latitude) has made it possible to use the international reference 
spheroid also as poten'ial surface for computational purposes, and thus made it poss:ble to 
include gravity measurements and potential theory among the aids of geodesy, thereby providing 
Increased absolute accuracy, as will be explained in detail later.

Accuracy requirements to the coordinates.

The various inst:tutions making detailed surveys (in this counfry the district surveyors, 
the cadastral survey institution and the Hydrograph:c Office), which by means of arithmetical 
(in contrast to graphical) methods of surveying calculate in the plane of the chart or map on 
the natural scale 1: 1, desire to have the rectangular, plane coordinate defined with an accuracy 
in terms of centimetres. It must be realized that this is nothing but a relative accuracy, 
accuracy of computation or reading of the list of coordinates, for the absolute accuracy can, 
of course, never be greater than that with which the position of a s;ngle point on the globe may 
be determined, as, naturally, it must be more difficult to determine the positions of thousands of 
points than to determine that of a single point.

In actual fact, these institutions are really not users of coordinates, but producers 
thereof, as they need only the difference in coordinates to define the length and direction of 
•the base lines by means of which they produce coordinates of new points, and thus continue



building on the basis provided by the Geodetic Institute. If the differences in coordinates are 
given with an accuracy of a centimetre, then the direction of a base line of about 2 kilometres 
will be defined with only an accuracy of about 1 second of arc. In Germany they had 
therefore adopted an accuracy of computation in terms of millimetres, but the German charts 
cannot for all that be said to have a higher absolute accuracy than those of other countries.

For these institutions the chart or map (the rectangular, plane coordinate) is an aim, not 
a means, and it will therefore be necessary to investigate what requirements the actual users of 
charts and maps want to have fulfilled.

For most users the map is only a plane picture showing everything visible on the surface 
of the Earth, by means of which it is easy to observe at a glance the rela'ive positions of 
various conspicuous points, so that one may use the picture for finding one’ s way and for 
measuring distances.

Only to the scientist and the navigator the chart is something more, namely a means 
(a scientific instrument) enabling them to determine their position on the idealized globe (the 
international reference spheroid).

A  scientist desiring to deternvne his position on the globe will buy a map on the largest 
possible scale of the locality in question (in this country a survey map on a sca!e of 1:20 000), 
determine his position in the map and then by means of a pair of compasses and the meridians 
and parallels of latitude given in the map measure his latitude and longitude on the globe.

In this manner the Geodetic Institute has itself used the map for the reduction of its 
gravity measurements and for the subsequent graphical reproduction of the gravity anomaly 
in Denmark.

If we reckon that the least measurement that may be made by the compasses is 0,2 mil
limetre, an accuracy on the globe of 4 me'res will be required, or as a second of arc of a 
meridian is about 30-31 metres and of a parallel about 16-18 metres in Denmark, the second 
decimal of a second of arc may be uncertain in the geographical coordinates; but this is an 
absolute accuracy requirement.

There is thus a great disparity between the two different requirements of the surveying 
institutions and the users of the map or chart. One is a relative accuracy (accuracy of com
putation) in terms of centimetres, i.e. a “  small-sca1e ”  accuracy in the projection, the other 
is an absolute accuracy, i.e. a “  large-scale ”  accuracy on the globe.

The projection used is of quite subordinate importance to the scientist, if only it is 
provided with a geographical grid, i.e. if on!y the picture is orientated on the globe. A  map 
(picture) without a geographical grid to indicate the longitude and latitude is of no scientific 
value.

As the navigator in navigating his ship is always using the compass, he wants a spec'al 
projection (Mercator’s projection) in which lines of constant bearing are reproduced as straight 
lines. The navieator uses <he chart in the same manner as the scientist for determining his 
position on the idealized globe, but he further uses it for laying down or computing (by means 
of a table of meridional parts) the courses between different points; not because it is the 
angular direc'ion in this special projection, but because on account of the conformity of the 
projection it is at the same time the azimuth of the compass line (loxodrome) on the idealized 
globe.

A  chart differs from a map in that essentially it depicts matters not visible to the eye, 
meridians, parallels of lat’tude, magnetic meridians, isogonic lines, and banks and rocks hidden 
beneath the surface of the sea. “  A  chart, therefore, must be cons;dered not as a pictorial 
expression of natural objects, but as analogous to a sci^n'ific instrument that has been correctly 
designed and calibra'ied ” . (Admiralty Manual of Hydrographic Surveying.)

As a thermometer made by a skilled instrument maker may be able to show whether the 
relative temperature difference between d'fferent points is large or small, thus a map (plane 
picture) covering a small area and made by a careful survevor will be able to indicate the 
relative bearings between the various distinctive points and whether their relative distance is 
great or small.

But just as the thermometer would be useless as a scientific instrument if it were not 
provided with a finely gradua'ed and correctly mounted scale, thus the plane picture would 
be useless as a chart if-it were not provided with a finely graduated and correctly placed 
geographical grid.

« No chart, except possibly a plan of a very small area, can be called complete unless



it is « graduated » in order that the geographical position of any point may be readily seen. 
An orderly arrangement of meridians and parallels, correctly disposed in relation to the 
physical features represented on the chart, is a natural and essential feature of any map 
projection » (Admiralty Manual of Hydrographic Surveying).

As our largest scale chart (Svendborg Sound) is on i : 10.000 and the Danish Hydrogra
phic Office in its survey computes in the Mercator plane on the natural scale i : I, the Hydro- 
graphic Office, in order to satisfy the demands of shipping, desires an absolute accuracy of 
about 2 metres and a computational accuracy in terms of centimetres.

Finally, as regards the cadastral survey institution, a projection is required the maximum 
distortion of which is less than i : 20 000. Careful tape measurements in the field involve an 
inaccuracy of this magnitude, so that linear measurements in the field may, the demands to 
the projection being fulfilled, be transferred to the plane direct.

As calculations in the plane are always on a scale of 1 :1 , an accuracy of calculation of 
1 centimetre is desired, but as surveyors and the cadastral survey institution never use the 
absolute astronomical observational methods, there are no requirements whatever for an 
absolute accuracy. The position of the point on the globe is of no interest, only its position 
in the fictitious projections is of interest. The relative rectangular coordinates (the picture 
on a scale 1: 1) actually constitute a scheme of calculations for taxation purposes and for 
the settlement of boundary disputes.

The different terrestrial (relative) methods of surveying.

In surveying different methods are used according to the size of the area to be surveyed.

If we make a survey of a room, we confine ourselves to measuring along the walls with 
a rule.

If a small street is to be surveyed, the orthogonal method will be used, i.e., a straight 
line will be run down the street, and the line and perpendiculars to the gutter, house corners, 
etc. will be measured by tape measure.

In surveying a large park, a closed polygonal measurement will be used in connection 
with tachymetry or the orthogonal method, and if the area is still larger, a basis for the 
survey will be established by a detailed triangulation with appropriate base line measurement.

All these terrestrial, relative methods are well known from land surveying and they 
have been developed to a high level of perfection. It is a characteristic of them all that they 
involve a greater or smaller accumulation of errors, but they are indispensable when it is a 
question of making a plane picture with relative accuracy, as they quickly, simply and plainly 
connect one point with another.

As will be known, first order triangulation with the use of the largest possible triangles 
involves less accumulation of errors than detail triangulation with several smaller triangles, 
and the detail triangulation is therefore made to conform to this superior method.

Polygonal measurement involves a large accumulation of error, as an error in the angle 
first measured will turn the entire subsequent polygonal line, and a surveyor will therefore 
never use this method without letting it begin and end at the same point or at two points 
deternr’ned by the superior method, i.e. triangulation.

Only methods constantly based on an absolute direction, like Boussole surveying, which 
is based on the magnetic meridians, or the geometrical levelling based on the actual plumb lines 
will have a favourable law of accumulation of error. Boussole surveying is therefore more 
favourable “  on a large scale ”  than polygonal measurements, which are only profitable “  on 
a small scale ” .

Each method has its own distinct field in which it may be favourably employed. No 
surveyor would ever think of using triangulation in surveying a room or a small street, as 
siting errors would make this method unfavourable and only involve increased observation and 
computation work without improving the accuracy.

Our charts are at present based on the first order triangulation and we can therefore 
confine ourselves to examine this net-work when we want to investigate the accuracy “  on a 
large scale ” , and it is ev:dent that if absolve accuracy is wanted great stress must be placed 
on the determination of this net-work on which the entire chart is based.

The Danish triangulation net-work of the first order is determined solely by terrestrial, 
relative observation; 5 baseline measurements and horizontal, relative direction measurements 
at all base end points and first order points.



A  net-work as large as the Danish first order triangulation was not subjected to one 
common adjustment, as this would give so many hundreds of conditional equations that the 
computations required to solve them would present a major task. For practical reasons it 
was therefore subdivided into several chains of triangles, each with its base line, each of 
which was adjusted and then combined into the net-work.

The law of the accumulation of errors in such a chain of triangles is not easy to 
determine as it depends on the form of the individual triangles.

By using the base line as a foundation it is possible to compute the error ellipses for 
the vertices of the triangles and thereby to give a graphical representation of the mean error 
of position in the different directions.

This is a major task which has been performed only in respect of the old first order 
triangulation in the conical-orthomorphic projection and the method is not a popular one, as it 
proved that when only quite few triangles had been computed the point error exceeded I metre, 
and gradually as the chain extended a positional mean error of up to about 30 metres resulted. 
Just as an error in the first angle measured in a polygonal line turns the entire subsequent 
part of the line and causes a considerable accumulation of errors, so an error in a direction 
measured in the first triangle of a chain will affect the entire subsequent part of the chain and 
be able to twist and deform it.

And the positional mean error may even greatly exceed that shown in the error ellipse, 
as all the observations, as will be shown, may involve one-sided errors.

“  When observations subject to one-sided errors are adjusted in accordance with the 
usual rules, the result will be that the system at hand is determined in a homogeneous manner 
and in close conformity with the observation, but the question as to whether the best approxi
mation to truth is attained depends upon pure accident and cannot as a rule be presupposed. 
At any rate, the mean errors in observations and determining elements and functions thereof 
appearing from the adjustment will be quite misleading and cannot at all serve as a criterion 
of the accuracy of the results obtained by the adjustment. If, for instance, an examination of 
the errors gives rise to the presumption that the observations are subject to one-sided errors, 
all possible means must be attempted to have them removed from the observation results ” 
(N.P. Johansen : XJdjcevning af 0 bservationsstfirrelser (The Adjustment of Observations).

As far as our charts are concerned the presumption of such one-sided errors will arise 
when the location of a definite point is compared in the Danish, German and Swedish geogra
phical grid, and a difference of several seconds of arc, i.e. a difference of up to some hundred 
metres will be found.

Let us fiirst consider the base line measurements which, as will be known, are made on 
the physical surface of the Earth. They are normally subject to a mean error of about 1 mil
limetre per kilometre, ascertained by checking the measurements and measuring with different 
tapes.

A  long base line of 10 kilometres will thus be inaccurate by centimetres at one end if 
we consider the other end to be fixed. This is the so-called “  internal mean error ” .

So far this base line has only been reduced to mean sea level, i.e. to an approximation 
to the geoid (the imaginary continuation of the sea beneath the continents) by means of the 
geometrical levelling, which (the actual gravity lines being used) will give the level above the 
mathematical surface of the Earth, and not above our calculation globe.

As in one part of the country the geoid may be several metres above and in another 
several metres below the spheroid, this fact may give rise to one-sided errors in the individual 
base lines.
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This will particularly be the case if a reference sphere is used instead of a reference 
ellipsoid and the base lines are not first (as done in the orthomorphic double projections 
previously used in Germany) transferred from the reference ellipsoid to the sphere before 
they are again transferred to the plane of the chart.

The mean error of measurement of the relative, horizontal direction observations in the 
case of fine first order measurements will (after horizon adjustment) range between ±  o” .2 
and ±  o” .5.

If, for argument’s sake, we imagine Denmark covered by one large triangle having its 
angles at the Scaw, on the island of R0m0 and on the island of M0en and we make horizontal 
direction observations between these three points, we will be unable to observe any difference, 
whether these three points are lying on the international reference spheroid or on a reference 
sphere with radius of curvature equal to the mean radius of curvature at the centre of gravity 
of the triangle, the angle between the normal sections and the geodesics being smaller than the 
normal inaccuracy of measurement.

This demonstrates that the relative, trigonometrical method of surveying is so uncertain 
or imperfect that over an area as large as Denmark it is unable to distinguish between a refe
rence ellipsoid and a reference sphere, but it does not prove that we may just as well use a 
reference sphere instead of the reference spheroid.

For, firstly, we have not paid ajfty regard to the second part of the relative, trigonome
trical method, namely the base line measurements, in which the direct application of a reference 
sphere instead of a reference ellipsoid, as stated, will give rise to the introduction of conside
rable one-sided errors.

Secondly, we cannot make observations over such long distances and we can only observe 
a number of considerably smaller triangles, giving rise to accumulation of errors. All the 
relative, horizontal direction observations are, of course, made on the physical Earth surface 
with instruments orientated in accordance with the actual plumb lmes which are not identical 
with the ideal:zed plumb lines of the reference spheroid or (still more) with those of the 
reference sphere.

“  In the observation of the horizontal angles an inclination of the vertical axis will 
cause errors in the angles observed, which errors are a defini'e function of the inclination of 
the axis and the location on the circle of the projection of the inclination of the axis on the 
observed directions. ”

“  The treatment of the systematic errors consists therein that through special investiga
tions the causes of the errors are determined, the errors are calculated and applied as corrections
to the results of observation, which will then appear freed from these errors..... ”  (N.P.
Johansen: Udjcevning of Observationsst0rrelser).

If the plumb line deflection is given by the components £ and y) the formula for the 

correction will be : (v) =  (^sin a  —  ^ cos a )  tan h, in which a  is the azimuth of the direction 
in question.

Let us consider an example: For a normal first order side (about 70 kilometres =  about 
40 nautical miles) V] is numerically equal to the angle of depression, which will be of the order 
of (1) (about 20’ — 1/30). (In this connection we assume that we sight along the straight line 
(the chord) between the points, and that both points are on the reference surface. The fact 
that refraction will raise the d'stant point closer to the horizon and that it is not on the 
reference surface cannot possibly increase the accuracy). If we then assume a plumb line 
deflection of the order of (2) (about 9” ), the correction may be an angle of the order of (3) 
(about o” .o6), in other words an angle smaller than the measuring accuracy, but by no means 
insignificant in geodetics.

From the above it will appear that the relative, trigonometrical method is so inaccurate 
or imperfect that within a range of about 70 kilometres it cannot distinguish between the 
reference ellipsoid and the reference sphere. It is therefore understandable that mean error in 
relative, horizontal direction observations is not. as we take it in this country, independent of 
the distance, but as also proved in Germany, it increases with the distance due to the factor 
tan h. If we consider that the first order sides are of a length of only about 15 kilometres, 
the direction correction of an orthomorphic, transverse cylinder projection will be smaller 
than the measuring accuracy as long as we remain in the neighbourhood of the initial meri
dian. Within this distance the relative, trigonometrical method cannot distinguish the Earth 
from a plane, but nevertheless it will not be advisable to replace the reference ellipsoid or the 
reference sphere with a reference plane, as the accumulation of errors would then, of course, 
become even greater when the observations are extended to comprise larger areas.



Thirdly, we have paid no regard to the other aids to geodesy, the astronomical observa
tions and the gravity measurements which, as will be shown, are capable of distinguishing: 
between geoid and reference ellipsoid and between reference ellipsoid and reference sphere.

In our first order net-work of triangles no regard has been paid to these systematic 
errors, for which no corrections have been applied and therefore give what are called one-sided 
errors.

“  One-sided errors are very dangerous for the observations, for not only may they 
encumber the observational results with errors which at times may be very considerable, but 
also they are difficult to ascertain and are therefore often overlooked.

In the planning of observational work the danger of introducing one-sided errors must 
therefore always be carefully considered and measures taken to avoid or eliminate them or to 
ascertain them definitely. ”  (N.P. Johansen : Udjcevning af Observationsstflrrelser.)

By means of trigonometry only a picture can be produced. In order to produce a chart 
it is necessary to make astronomical observations of latitude, longitude and azimuth at at 
least one point of the surface of the Earth in order to have the location of the picture 
established.

It will therefore be necessary to examine also the astronomical observations in detail.

Astronomical observations.

By an astronomical latitude observation the angle between the actual plumb line and the 
equatorial plane of the celestial sphere is ascertained (by means of the declinations of the stars).

If the observations are continued through a considerable t;me (about 1 year or more), 
it will be found that this “  observed latitude ”  is not a constant but that it is a function of 
time. As wLl be known, this is due to the polar movement, inasmuch as the world axis 
(axis of rotation) and the axis of the Earth (the line connecting the permanent “  mean poles ”  
°u *JFeocletlc poles ”  of the Earth) and thus the equatorial planes of the celestial sphere and 
the Earth (fundamental planes) do not coincide, but have one point only, the centre of the 
Earth, in common. Popularly speaking, the Earth is not fixed on the world axis, but 

rocks *’ slightly (about o” .os —  o” .03) about the centre of the Earth.

The cause of the polar movement is, as will be known, that the Earth is not alone in 
space, but is influenced by other celestial bodies. As the Earth is neither entirely fluid nor 
entirely rigid, but is an elastic body, the polar movement cannot be calculated, but it may be 
and is being observed by internationally arranged observations, so that all latitude observations 
may be reduced to the permanent mean poles of the Earth and the permanent Earth equatorial 
plane appertaining thereto.

The observed latitude thus referred to the equator plane of the Earth has hitherto in 
this country been termed the “  astronomical latitude ” . In my opinion this term is misleading 
as tlvs latitude is no longer referred to the celestial sphere (it is only an observed latitude 
which should always be accompanied by a statement of time), and I will therefore in the 
following use the term “ the physical Earth latitude”  in order to designate the globe to 
which it belongs. As long as the plumb line (Zenith) remains unchanged (in relation to the 
Earth), the physical Earth latitude will also remain constant.

If we connect all points on the physical Earth surface having the physical Earth 
latitude zero by a line, we will have a curve showing the geometrical locus of the points the 
actual plumb line at which is parallel to the equatorial plane of the Earth, but not the 
intersection between the physical Earth surface and the equator plane of the Earth. Similarly 
the parallels of latitude on the physical Earth surface will be only geometrical loci.

If &e make the mental experiment of taking the latitude observations on the geoid and 
correcting them for the polar movement, we will obtain a “  geoidlc latitude The geoidic 
equator (the geometrical locus of the points on the geoid the plumb lines at which are 
parallel to the equatorial plane of the Earth or at right angles to the axis of the Earth) will 
be a geodesic on the geoid, inasmuch as its osculating plane at any point of the curve will 
contain the normal of the surface. On the other hand, the geoidic parallels will only be 

geometrical loci ” .

If we consider the geoid idealized into a spheroid, the “  spheroidic equator ”  will at 
the same time be the geometrical locus of the poin's on the spheroid, the idealized plumb 
lines at which are at right angles to the Earth axis (which is also the axis of the spheroid) 
and the intersection between the equatorial plane of the Earth (being at the same time the-



equatorial plane of the spheroid) and the spheroid; further, it will at the same time be a 
geodesic on the spheroid. Likewise, the spheroidic parallels will at the same time be 
“  geometrical loci ”  and intersections between the parallel planes and the spheroid.

If we consider the geoidic equator and the geoidic parallels “  depicted ” , “  transferred ”  
or “  projected ”  to the spheroid along the plumb lines (it is of no importance in this connection 
whether they are the idealized or actual plumb lines, as the surfaces of the globes are so 
relatively close to one another and the actual and the idealized plumb lines are at angles of 
.only a few seconds of arc with one another), then they will not coincide with the correspon
ding curves on the spheroid, in the same way as a geodesic between two points on the spheroid 
or a great circle on a sphere reproduced on a chart plane will not coincide with the straight 
line (the geodesic in the plane) between the corresponding points. At all the points at which 
the N-S component £ of the absolute plumb line deflection is zero, the corresponding curves

will intersect, and only at the few points in which both the N-S component £ and the E-W  

component V] are zero and the actual and the idealized plumb lines thus coincide, will the 
corresponding curves touch one another and thus coincide over a short length.

The most careful astronomical latitude observations made with portable instruments for 
geodetical purposes are subject to a mean observation error of ±  0” .02-0” .05 or about i metre 
on the globe. This is again an “  internal mean error ”  ascertained on the basis of the discre
pancies in a series of observations between the various pairs of stars and on the basis of the 
probable errors of the declinations of such stars entered in the star catalogue, and on the basis 
of the coordinates given for the polar movement. If the declinations are subject to considerable 
one-sided errors, the inaccuracy of the observations will, of course, be greater than that 
calculated. This shows that astronomy and geodesy are sciences so nearly related that pro
gress within the field of astronomy will be of benefit to geodesy, and although I am not an 
astronomer, I am of the opinion that the opposite will also be the case, and that the astrono
mers in their charting of the celestial sphere will be interested in ascertaining how much the 
actual plumb line and thus their instruments are inclined to the idealized plumb line.

When using a physical Earth latitude (so-called ‘ ‘ astronomical latitude” ) direct as 
an “  idealized latitude ”  (hitherto also called “  geodetic latitude ”  or “  geographical latitude ”) 
for the purpose of orientating a point on the reference ellipsoid and thus in the chart plane 
in direction N-S, we introduce an error of the same magnitude as the angle between a plane 
at right angles to the meridian plane containing the actual plumb line at the point in question 
and another plane at right angles to the meridian plane containing the normal of the spheroid 
at the corresponding point of the spheroid. This angle will also be equal to the N-S comp
onent £ of the actual plumb line deflection at the point +  the curvature of the idealized

gravity line from the physical surface of the Earth to the spheroid. The idealized gravity lines 
lie entirely within the meridian planes and have there only a very slight curvature which may 
be given by the formulae :—

—  sin 2 (P (given by Helmert) or 
5820 '

H , „
1070” ---- sin 2 (p (given by Gauss).

a

It will be seen that the curvature of the idealized gravity lines will have its maximum 
at 9  =  450 when it amounts to only about o” .oi6 per 100 metres and its minimum at =  oe 
and <P =  90°. In some countries these formulae have hitherto been used for the purpose of 
reducing the latitude observations to mean sea level (the geoid), but in Denmark no reduction 
has been applied, the correction for the small Danish heights being less than the inaccuracy 
of observation.

As far as I know, no one has so far made any correction for the absolute plumb line 
deflection (I have been unable to find any reference to such correction in the literature) and 
this correction which is introduced with its full value may amount to some seconds of an arc, 
in other words, considerably more than the mean error of observation; indeed, it will frequently 
be much greater than the correction for the polar movement.

By thus transferring a latitude directly from one globe to another (physical Earth or 
geoid to reference ellipsoid (reference spheroid, computation globe)) an error is made which 
may amount to some seconds of arc or a couple of hundred metres. It is assumed that the 
plumb line ** is vertical ”  in direction N-S, i.e. that it has no inclination in that direction 
relative to. the idealized plumb line.



Considerations somewhat similar to those applying to astronomical latitude observations 
apply also to astronomical longitude observations.
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By an Astronomical Longitude observation we ascertain (by means of the right ascen
sions of the stars and on the presumption that the Earth rotates uniformly) the angle 
(expressed in time) between a plane at right angles to the equatorial plane of the celestial 
sphere containing the actual plumb line of the reference station and another plane at right 
angles to the equatorial plane of the celestial sphere containing the actual plumb line of the 
point of observation. Otherwise expressed, we ascertain the arc on the infinitely remote 
equator of the celestial sphere cut off between one plane determined by the world axis and the 
direction of the actual plumb line of the reference station and another plane determined by 
the world axis and the direction of the actual plumb line of the point of observation, as it 
must be realized that the actual plumb lines at these two points by an extension need not 
necessarily intersect either the world axis or the axis of the Earth, being “  inclined ”  in relation 
to the idealized plumb lines.

If the observations are continued through a considerable space of time (about i year or 
more), it will be found that this “  observed longitude ”  is not a constant, but a function of 
time, and this is again due to the polar movement giving rise to the fact that world axis—  
Earth axis and thus the celestial equator plane and the Earth equator plane (fundamental 
planes) do not coincide.

By means of the internationally observed coordinates of the polar movement it is possible 
to reduce the observed longitude from the celestial equator plane to the Earth equator plane 
fixed in the Earth.

The “  observed longitude ”  thus referred to the equatorial plane of the Earth has 
hitherto in this country been termed the “  astronomical 'longitude ” . In my opinion this term 
is also misleading, it being no longer attached to the celestial sphere (but only an observed 
longitude which should always be accompanied by a statement of time), wherefore I will call 
it the “  physical Earth longitude ”  in order to designate the globe to which it is attached. As 
long as the actual plumb line (and thus the zenith) at reference station and point of observation



remains unchanged in relation to the Earth, also the “  physical Earth longitude ”  will remain 
a constant.

As a reference station for longitude the Royal Observatory at Greenwich which 
has a longitude zero is being used internationally in science (astronomy, geodesy, 
geophysics, etc.), and in navigation. If we consider all points on the physical surface of 
the Earth with zero physical Earth longitude connected by a line, we will have a 
curve indicating the geometrical locus of points on the physical Earth surface the 
actual plumb lines at which are parallel to a plane through the Earth axis parallel to the 
actual plumb line through Greenwich Observatory, but not the intersection between this plane 
and the physical Earth surface. We may call this curve the zero-meridian of the physical 
Earth surface and the plane “  the Greenwich meridian plane ”  in contradistinction to the 
“ meridian plane through Greenwich” , which (like the zero-meridian of the physical Earth 
surface) does pass through the Greenwich Observatory, but need not contain the plumb line of

that point and only will do so if the E-W  component V) 0f the absolute plumb line deflection 
at that point is O ; the two planes, the “  Greenwich meridian plane ”  and the “  meridian plane 
through Greenwich”  will then coincide. All points on a physical Earth meridian have a 
common “  meridian plane ” , whereas many “  meridian planes through any of them ”  will pass 
through the various points of a physical Earth meridian.

If for argument’s sake we make the longitude observations on the geoid and correct 
them for the polar movement, we will obtain a “  geoidic longitude All the “  geoidic meri
dians ”  (geometrical loci) will be geodesics on the geoid, their osculating planes containing 
the normal of the surface at any point of the curves. All-the “ geoidic meridians”  and 

geoidic parallels”  will intersect at right angles and thus form an orthogonal grid on the geoid.

If we consider the geoid idealized to the spheroid, all these “  geoidic meridians ”  
{geometrical loci) wh'ch are at the same time geodesics on the geoid will straighten themselves 
out and become “  spheroidic meridians ”  which at the same time are geometrical loci, geo
desics on the spheroid and lines of intersection between the spheroid and the meridian planes.

If we consider the geoidic meridians depicted or projected on the spheroid along the 
plumb lines, they will not coincide with the corresponding spheroidic meridians, but will 
intersect them at all points at which the E-W  componant IQ of the absolute plumb line 
deflection is zero. Only at the few points at which both the N-S. component  ̂ and the E-W

component 7] are simultaneously zero will the two corresponding curves touch one another and 
thus coincide over a short length.

The careful longitude observations made for geodetic purposes by means of portable 
instruments, radio time signals and chronographs are subject to an observational mean error



of the order of ±  0.003 —  0.005 seconds of time, which on the globe at our latitude will 
give a linear inaccuracy similar to that of the latitude observations of about 1 metre. This is 
again an “ internal mean error ”  determined on the basis of the discrepancies of a series of 
observations of many stars and on the basis of the probable errors in the right ascensions of 
such stars as given in the star catalogue, and on the basis of the coordinates given for the 
polar movement. The value of this “  internal mean error ”  depends upon the value of the 
probable errors in the right ascensions.

As the linear length on the globe of a minute of longitude decreases by cos <p, the error 
committed by making direct use of a “  physical Earth longitude ”  (so-called astronomical 
longitude) as “  idealized longitude ”  (hitherto also called “  geodetical longitude ”  or “  geogra
phical longitude” ) for the purpose of orientating a point on the reference ellipsoid and thus 
on the plane of the chart in direction E-W  without regard to the fact that the plumb line

(zenith) is thereby changed, will amount to ^ sec. ( f . As may amount to some seconds of 
src, the error may become considerably greater than the inaccuracy of observation and may 
give rise to a linear error of a couple of hundred metres. It is “  assumed ”  that the plumb 
line is vertical in direction E-W, i.e., that it has no inclination in that direction in relation to 
the idealized plumb line.

I shall next pass to an examination in detail of the astronomical azimuth observations, 
the determination of an absolute direction or the direction of the normal section through the 
point of observation and another point.

By an astronomical azimuth observation the angle is determined by means of the calcul' 
ated azimuth of a star between a plane at right angles to the equatorial plane of the celestial 
sphere, containing the actual plumb line of the point of observation, and another plane contain
ing the actual plumb line of the point of observation and the direction of the other point in 
question.

In other words the angle is measured in the actual horizontal plane of the point of 
observation between the direction to the pole of the celestial sphere and the direction in ques
tion. The azimuth of the star is calculated on the basis of the declination of the star (aken 
from the star catalogue), the local hour angle of the star (which in connection with a time 
signal is determined by means of the right ascension of the star and the geographical (idealized) 
longitude of the point of observation) and the geographical (idealized) latitude of the point of 
observation. An error in the geographical coordinates of the point of observation will there
fore affect the calculation of the azimuth of the star and thereby the value of the observation. 
In order to minimize th:s influence (as far as longitude is concerned), a pole star at its 
maximum easterly or westerly elongation should preferably be used for the observation.

Such an astronomical azimuth will doubtless be a function of time, as the pole of the 
celestial sphere is not stationary in relation to the mean pole of the Earth. Hitherto no correc
tion has been made in this country for the polar movement (whether it has been done abroad I 
do not know), presumably because the correction is much smaller than the uncertainty of 
observation. For while in this country a relative direction of a first order side is determined 
with 24 repe'itions, an absolute direction (azimuth) is determined with only 4-6 repetitions, 
presumably because the observational work is much greater.

Actually, however, it is not, of course, an astronomical azimuth, the angle in the actual 
horizontal plane between the direction to the celestial pole and the direction in question which 
is required, but an idealized azimuth, i.e. the angle in the idealized horizontal plane between 
the stationary mean pole of the Earth (at the same t ’me the pole of the spheroid) and the 
direction in question. When a geophysicist from the “  Meteorological Institute ”  studying 
Earth magnetism and the course of the magnetic meridians (the variation) on the globe, 
requests the “  Geodetic Institute ”  to provide him with an azimuth at the magnetic observatory 
in the Rude Forest, then it is the absolute direction on the idealized globe used for interna
tional scientific work he desires, in order that he may compare the results of scientific obser
vations in Denmark with those of other countries.

When the physical Earth is idealized to the spheroid, the actual plumb line (the zenith) 
and thus also the actual horizontal plane change position and the angle in that plane will 
thereby be changed. The correction of the angle required in such an idealization process 
(adjustment of the “  inclined ”  plumb line) is given by the formula 1} tan 9  •

As the E-W  component of the absolute plumb line deflection may amount to some 
seconds of arc, the error committed by the direct use of an astronomical azimuth as an



idealized azimuth in orientating a direction on the reference ellipsoid and thus in the plane of 
the chart may amount to some seconds of arc in our latitude, and at high latitudes to still more, 
an error which is considerably in excess of the mean error of observation.

It is “  assumed ”  that the actual plumb line at the point of observation is vertical in 
direction E-W , i.e. has no inclination in that direction relative to the idealized plumb line. 
Besides, an error (due to both components,  ̂ and of the plumb line deflection) in the geo

graphical (idealized) coordinates of the point of observation will affect the value of the 
calculated azimuth of the star and thus the results of the observation.

As the linear observational mean error in the case of fine astronomical latitude and 
longitude observations amounts to about i metre, we see that this astronomical method of 
surveying when extended beyond a few metres is capable of distinguishing the surface of the 
Earth from a plane in which all plumb lines are parallel. As the difference in absolute plumb 
line deflections (the relative plumb line deflection) between two neighbouring first order points 
may amount to several seconds of arc, we see that the survey method at these distances is 
capable of distinguishing plainly between the geoid and the reference ellipsoid both as regards 
coordinates and directions.

This fact has previously been used for the purpose of obtaining knowledge of the shape 
of the geoid (the mathematical earth surface) in relation to the reference ellipsoid under 
limited areas by the so-called “  astronomical levelling ”  e.g. by the investigation of the shape 
of the geoid in the Harz. The method is, however, not particularly suitable for this purpose 
as it involves an immense amount of astronomical observation, and it has therefore been used 
rarely and not at all in Denmark.

Thus, a plumb line deflect’on (and in this connection it is of no importance whether it 
is relative or absolute) may be “  felt ”  in the astronomical observations, as it may be relatively 
great in proportion to the observation mean error and may give rise to :—

A  plumb line deflection in latitude :  ̂ ;

A  plumb line deflection in longitude : T\ sec <p and 

A  plumb line deflection in azimuth : IQ tan 9  •

A  point on the physical Earth surface is (at a given time, or as long as the plumb line 
remains unchanged) uniquely determined by its physical Earth latitude and its “  physical Earth 
longitude ”  (from any reference station), as all potential surfaces have a concave curvature 
towards the centre of the Earth, and as the physical Earth surface (apart from perfectly 
vertical rock faces, subterranean grottoes and caves and the like) is not in several ** storeys *’ 
and as the “  geometrical loci ”  (position lines) intersect at right angles.

It is impossible by calculation to move a point determined on the physical Earth surface 
by physical Earth latitude and physical Earth longitude a given distance in a given direction, 
as the physical Earth surface cannot be seated in terms of mathematics and as the absolute 
plumb line deflection expressed as a function of place on that surface is unknown.

Nor is it possible by calculation to move a point given on the geoid by geoidic latitude 
and geoidic longitude a given distance in a given direction, it being not as yet possible (and it 
is doubtful whether it ever will be) to express the form of the mathematical Earth surface 
and thereby a geodesic on that surface in mathematical terms.

It will be possible to move by calculation only a point on the idealized Earth (the 
reference ellipsoid or the reference spheroid) given by geographical (idealized) latitude and 
longitude a given distance in a given direction. And this given direction is not a faultlessly 
observed astronomical azimuth to the other point (the point arrived at) corrected for polar 
movement, absolute plumb line deflection, curvature of the idealized gravity line and the 
height of the other point over the ellipsoid to the idealized azimuth, which gives the direction 
of the normal section from the point of departure, but the direction of the geodesic from the 
former point to the latter. This direction cannot be observed and the geodesic is therefore 
of significance only as a mathematical aid.

If, for argument’s sake, we observe all directions in a large first order triangle on a 
spheroid (idealized globe) without any error, then the triangle will not be closed, the sights 
being taken along mutual normal sections.



If we imagine that the points of the triangle, with the observed directions corrected by 
a faultlessly calculated direction correction, were transferred orthomorphically to a chart 
plane, the triangle would not be closed there either. Only the adjustment which applies a 
“  correction ”  to the faultlessly measured and transferred directions will close it. Only when 
the spheroid (the idealized globe) assumes the simple form of a sphere, the normal sections 
and geodesics of which coincide (great circles) the triangle will be closed before the 
adjustment is irlade.

But as far as the Earth spheroid is concerned the eccentricity is so small we may locally 
and for each first order triangle or for each first order point of observation use a spherical 
calculation, the angle between the mutual normal sections and the geodesic being much 
smaller than the observational mean error even in the case of the finest direction observations 
(both absolute and relative).

But the radius of curvature in the “  computation globes ”  used or the arbitrary cons
tants in the formulae for direction and distance correction (if we desire to calculate in a chart 
plane) must vary with our movements in the first order net of triangles, so that they will 
correspond to the mean radius of curvature in the centre of gravity of the triangle, or of the 
point of observation on the spheroid, in order to obviate an accumulation of one-sided errors.

In this country astronomical observations have not so far been used for the purpose of 
giving the picture (the relative coordinates) a greater absolute accuracy, but solely for the 
purpose of orientating the picture on the globe, by determining at one point the physical 
Earth latitude, physical Earth longitude and astronomical azimuth and then using these values 
direct as idealized values. For such purpose the astronomical observations alone will be 
unsuitable.

By thus transferring a physical Earth latitude from one globe (the physical Earth 
surface) direct to another (the reference spheroid), an error will be committed equal to the 
plumb line deflection in latitude £ less the curvature of the idealized gravity line from the

Earth surface to the spheroid, and, as regards longitude, an error equal to the plumb line

deflection in longitude 7] sec 9 ,  and as regards azimuth an error equal to the plumb line

deflection in azimuth 7) tan <p ; in other words, errors which linearly as regards the coordi
nates may amount to some hundreds of metres and as regards direction (azimuth) to several 
seconds of arc.

Whereas the relative direction of any first-order side in the chart plane of our system 
is determined by o” .ooi, the most fundamental of all directions, e.g. the direction of the 
Earth axis, and the direction of the geographical coordinate system (grid), in which other 
countries are placed in relation to Denmark, and whence navigators plot or calculate their 
courses, are determined only with an absolute accuracy of several seconds of arc.

It is “  assumed ”  that the plumb line at this point of departure is “  vertical ” , i.e. has 
no inclination in relation to the idealized plumb line on the idealized globe.

It will never be possible to determine a position on the idealized globe absolutely orien
tated with greater accuracy than that with which it is possible to determine the components 
of the absolute plumb line deflection.

Every navigator will know an analogous case, even if it is here only an example in the 
plane (the horizontal plane) and not in space.

A  compass placed on board a ship will by itself be of little value as an indicator of the 
absolute direction. The compass does not attain any value as a direction indicator until the 
variation, wlr'ch (being common to all ships') like the polar movement (common to all countries) 
is being checked by international observations; and deviations, which each ship must de ermine 
by observations on the different courses (just as each country must determine the plumb line 
deflection by observations in the neighbourhood around the various points of observation) are 
known.

Even the most skilful helmsman cannot keep h’s course with a greater accuracy than that 
with which the deviation is known; if there is an (unknown) deviation of, say 5°» the course 
will be 5° in error.

If we then successively calculate the geographic coordinates of all first order points 
from this point, then it is “  assumed ”  that the pic'ure (the relative coordinates) in the chart 
plane is free from error, but, of course, it can only be assumed to be so provided that all the 
relative, terrestrial observations are free from one-sided error, and this they can be assumed



to be only if the geoid underlying the area partakes of the form of the reference surface 
(the computation globe).

In the placing of the ellipsoid of the Danish degree measurement (the conical ortho- 
morphic system) in this country, it has been “  assumed ”  r Firstly, that the plumb line in the 
Round Tower in Copenhagen was vertical (i.e. that this point was subject to no absolute 
plumb line deflection, that the actual gravity line and the idealized gravity line correspond ng 
to the ellipsoid of the Danish degree measurement, coincided), and, secondly, that the geoid 
partakes of the form of the ellipsoid of the Danish degree measurement.

When the sys'em was established in 1841, it was impossible to reckon on the basis of 
other assumptions. This ellipsoid was determined by the Danish degree measurement to be 
that form of ellipsoid which gave the best conformity between the relative terrestrial and the 
astronomical observations in Denmark, and it was in those days impossible to determine the 
absolute plumb line deflection.

Perhaps the geographical latitude of the “  Round Tower ”  SS°4o’S3” 0000, has not been 
determined by observation at all, but has been “ chosen”  or “ fixed”  as a suitable value like 
the geographical longitude o°oo’oo” 0000. At that time, more than 100 years ago, when the 
system was established, the decl-nat:ons of the stars were rather indefinitely determined, the 
inaccuracy of as'ronomical observations was considerably greater than to-day, and the polar 
movement was not known to exist.

As far as I know, no astronomical longitude observations whatever were used in the 
establishment of the conical orthomorphic system; any such observations, at a time when 
telegraphy was in its infancy and the introduction of radio time signals still a very long way 
ahead, so that journeys with chronometers had to be resorted to, were at a very primitive stage 
compared with those of our days.

It is possible that in the extremi'ies of the grid astronomical azimuth observations have 
been us°d at discret:on in order to counteract an accumulation of errors of relative direction 
observation, but as shown in the foregoing these astronomical azimuth observations may be 
subject to one-sided errors (the plumb line deflection in azimuth 7) tan 9 )  of several seconds of 
arc.

As a modern chart, our conical orthomorphic system must therefore now be considered 
obsolete and defective, but ’’t was a very fine and beautiful piece of work at the time when it was 
created, a time when they had no close knowledge of the shape of the Earth “  on the whole ” , 
nor of the polar movement, when as'ronomy and observation-and instrument-technique were 
far behind their present-day sta*e, and when gravity measurements had not been developed at 
all. The system has served the country well and faithfully for several generations, and 
all honour and credit are due to the Danish degree measurements and the topographical 
department of the Danish general staff for the great pioneer work which was eminent for 
that age.

A  chart must, however, always to a certain extent be a “  snapshot ” , (1) partly on 
account of the cultural development on the actual surface depicted; (2) partly on account of 
movemen+s in the actual surface of the “  living ”  globe (in German termed “  sekulare Boden- 
bewegungen ” ), for even an actual plumb line is not something permanent and unchangeable, 
and (3) partly on account of the scientific development in the fields of geodesy, physics, 
astronomy and instrument mak’ng.

The greater part of all sc:entific research is necessary for practical life and will redound 
to its benefit, and thus the most recent results of geodesy are necessary in order that science 
and practical life (shipping) may be provided with the best possible charts, which must be 
based on a scientific foundation.

H'therto it has been impossible to produce a relatively accurate chart of the Sound, as 
the Danish and Swedish coasts geodet:cally have been lying each on its own globe (reference 
ellipsoid) and it has therefore been impossible at all points to obtain conformity between the 
geograplrcal coordinates be’onging to these globes. Only at a single point conformity may be 
obtained by a “  shifting ”  of Sweden.

Just as we in Denmark have “  assumed ”  that the plumb line through the “  Round 
Tower ”  was vertical and that the geoid partook of the shape of the Danish degree measure
ment reference ellipsoid, so they have in Sweden “  assumed ”  that the plumb line at Stock
holm was vertical and that the geoid partook of the shape of the reference ellipsoid used in 
Sweden.

It is therefore no wonder that the discrepancies between the geographical grids of the 
two countries are so great; the reference ellipsoids are not uniform and not orientated absolute



ly with their axes and equatorial planes coinciding with those of the Earth; the geographical 
grids (the geographical coordinates) are consequently not absolute, but relative, i.e. attached 
to the picture and related to the point of observation used by the country in question as a 
geodetic datum for its calculations.

It has always been the practice to let the geographical coordinates (the grid) be functions 
of the different relative (local) coord:nate systems, whether they are rectangular, spherical 
coordinates (the so-called Cassini-Soldner coordinates), rectangular spheroidic coordinates (the 
so-called Gauss-Kriiger coordinates) or rectangular, plane coordinates.

If we imagine that another point of departure had been chosen for the calculations and 
astronomical observations had been made at that point, entirely different geographical coor
dinates (an entirely different geographical grid) would be obtained with the same relative 
terrestrial observations, not so much on account of the observational inaccuracy of the astro
nomical observations, which is perceptible only in the second decimal of the second of arc 
(about 1 metre), but on account of the relative plumb line deflection (i.e. the difference 
between the absolute plumb line deflections) between the two points of departure, which may 
amount to several seconds of arc (up to some hundred metres).

While Denmark and Sweden thus have considered the method of relative terrestrial 
surveying (triangu’ation) the most accurate practical me'hod, and (apart from the point of 
departure) one-sidedly have let the geographical coordinates (the geographical grid) be func
tions of the relative coordinates (the picture), they have in other countries (e.g. Germany and 
Finland) been aware of the fact that this relative terrestrial method is subject to accumulation 
of errors, have tried to counteract this and thus to create a more accurate picture by means of 
absolute astronomical observations in which no accumulation of errors will take place. They 
have “  coordinated ”  or “  cooperated ”  the relative terrestrial and the absolute astronomical 
observations by a so-called Laplace— or geodetic astronomical— grid adjustment.

This method of adjustment was first introduced by Professor Helmert and subsequently 
developed by others.

In this method of adjustment the plumb line deflection is the angle between the normal 
of the reference ellipsoid and the actual plumb line, i.e. something relative, dependent upon the 
elements determining the reference ellipsoid used and its location or orientation.

In the Danish conical orthomorphic system this relative plumb line deflec'ion may be 
found at any point from astronomical latitude and longitude observations made at that point 
and corrected for the polar movement, by collating the results with the “  geodetic “  latitude and 
“  geodetic ”  longitude, i.e. the values for the point in question taken from the chart plane 
(by means of the geographical grid) or calculated; thereby the relative plumb line deflection 
in latitude  ̂ and the relative plumb line deflection in longitude V] sec <p will be obtained,

whence the components  ̂ and 1] of the plumb line deflection or the total plumb line deflection

0 =  y/ +  vj2and its azimuth s (having  ̂ =  0 cos e and yj =r 0 sin £) may be calculated.

If we consider an astronomical latitude observation made at our geodetic datum, the 
“ Round Tow er”  in Copenhagen, and corrected for polar movement and height above “ sea 
level ” , the peculiar fact may emerge that even the “  Round Tower ”  has a relative plumb 
line deflection in latitude £, whe'her this may be due : (1) to the fact that the geodetic

latitude of the “  Round Tower ” , ss^ jo^ ’̂ oooo has not at all been determined by observation, 
but has been fixed or adopted as a suitable value, or (2) to the fact that in those days the 
latitude could not be determined with the same accuracy as nowadays, or finally (3) to the fact 
that the plumb line through the “  Round Tower ”  in the course of time has changed in 
direction N-S in relation to the Earth.

The longitude of the “  Round Tower ”  with that tower as a reference station will, of 
course, continue to be o°oo’oo” .oo. But if we imagine an astronomical longitude observa'ion 
with Greenwich as a reference station made at the “  Round Tower ”  and corrected for the 
polar movement, then it may similarly be possible to ascertain a relative plumb line deflection 
in longi'ude from the geodetic longitude of the “  Round Tower ”  on the basis of Greenwich 
given in more modern charts, whether this is due to the fact that the plumb line at the 
Observatory of Copenhagen, at the “  Round Tower ”  or at Greenwich has changed in direc
tion E-W  in re1at:on to the Ear'h, since the longitude of the Observatory was determined, or 
to the fact that in those days the astronomical longitude could not be determined with the same 
accuracy as nowadays.



The basis for the orientation of the reference ellipsoid of the Danish degree measure
ment (the conical orthomorphic system) must therefore probably now be said to have been lost.

By the Laplace adjustment we find the components  ̂ and yj of the relative plumb line 

deflection, and thus the plumb line deflection in latitude ^ , the plumb line deflection in longi

tude V] sec (p and the plumb line deflection in azimuth^ tan 'j> (i.e. the “ corrections”  to be 
applied to the astronomically observed values of latitude, longitude and azimuth corrected for 
polar movement in order to convert them into “  geodetic ”  values (i.e. located on the reference 
ellipsoid), at all the so-called “  Laplace Points ” , at which astronomical latitude, longitude and 
azimuth observations have been made, by an adjustment of these observations as well as of the 
relative terrestrial first order observations before any chart (system) whatever has been 
drawn or has become available.

By a degree measurement, the elements are determined of that ellipsoid of rotation which 
will give the best possible conformity between some given astronomical and relative terrestrial 
observations within a certain limited area. The Laplace adjustment proceeds in the opposite 
direction and finds that orientation of a given reference ellipsoid (on the basis of a point of 
departure or point of reference considered to be without error), which will give the best 
possible conformity between the astronomical and the relative terrestrial observations within 
the area and the correction to be applied to these observations in order to give such conformity.

This orientation or location of the reference ellipsoid is not absolute (i.e. having the 
axis and equatorial plane coinciding with those of the Earth), and the geodetic, geographical 
coordinates (latitude and longitude) will therefore not be absolute either, but will depend 
upon : (i) the elements determining the reference ellipsoid, and (2) the point of departure 
(geodetic datum) chosen for the calculations.

If we choose another point of departure for the calculations we will (on a reference 
ellipsoid with the same determining elements and the same astronomical and terrestrial 
observations) obtain an entirely different system of plumb line deflections and thus quite 
different geodetic-geographical coordinates. In this principle of adjustment it is “  assumed ”  
that the relative plumb line deflection at all Laplace points in the area assume the same 
character as an accidental error ( ^  Q2 =  minimum i.e. £   ̂ =  °> 7] =  °)> an<̂  ^ at ^  

plumb line at the point of departure is “  vertical ” .
In the European plumb line deflection system created by Germany (which system 

comprises also Denmark and in which the astronomical observations and the base line measure
ments are given the weight^o)» it has been “  assumed ”  that the elements are those of the 
Bessel reference ellipsoid, that the plumb line at Greenwich is vertical (i.e. in respect of 
Greenwich astronomical latitude =  geodetic latitude, astronomical longitude o° =  geodetic 
longitude o°, and relative plumb line deflection o), and that the relative plumb line deflection 
at all Laplace points distributed all over Europe has the same character as an accidental 
error. Thus, this plumb line deflection system can never be extended to areas which cannot be 
trigonometrically (visually) connected with the European continent (in other words, islands 
so far out in the ocean that they cannot be seen from the continent).

Even if the Greenwich Observatory is being used internationally as a reference point in 
determining longitude and time, it is improbable that the plumb line for that reason will be 
“  vertical ”  just at that point, and it can by no means be taken for granted that the plumb 
line deflections at the relatively few, casually selected Laplace points assume the character of 
an accidental error.



If. for example, the geoid is regularly undulating in any direction (say E-W) (i.e. has 
a continually varying radius of curvature, in this case radius of normal curvature) and all 
the Laplace points about that direction (parallel of latitude) happen to lie on the same side of 
the undulations, this will give rise to a one-sided orientation of the reference ellipsoid m 
relation to the spheroid. Or if the geoid under the territory in question has a continental rise 
(and rises are found to such an extent that it has been considered that the best geometrical 
approximation to the geoid might be obtained by a 3-sxial ellipsoid), this fact may also cause 
a one-sided orientation of the reference ellipsoid in relation to the spheroid. The axis and 
equatorial plane (fundamental plane) of the reference ellipsoid will not coincide with the axis 
and the equatorial plane, respectively, of the Earth.

The adjustment principle is closely related to the degree measurement epoch and cannot, 
therefore, in my opinion be used in a country which has (internationally) adopted the interna
tional reference spheroid; this, of course, is not to be orientated so as to give the best possible 
conformity between the terrestrial and astronomical observations at relatively few points 
within the small part of the Earth covered by the country. If so the internationally adopted 
common computation globe (the reference spheroid, at present the physically best possible 
approximation “  on the whole ”  to the mathematical Earth surface, applicable to computations) 
would be split up into many small pieces, and every country would orientate its little piece of 
“  shell ”  in such a way as to give the closest possible conformity with the terrestrial and 
astronomical observations within its area and without connection with those of surrounding 
countries. But this spheroid must be as far as possible orientated absolutely, i.e. so that the 
axis and equatorial plane of the reference spheroid will coincide with those of the Earth.

Thereby the plumb line deflection will become an absolute quantity, the angle between the 
idealized plumb line belonging to the reference spheroid and the actual plumb line, or the 
horizon'al component of the vector difference between the normal vectors (gravity vectors) of 
the idealized and actual potential surfaces.

As both the reference spheroid and the geoid are potential surfaces with equatorial 
plane (fundamental plane) and axis in common, and as the difference between two potential 
functions is a potential function, then in this case it is the integral of the plumb line deflection 
0, taken over all surface elements on the globe, that is to be zero.

The question is then whether it is possible by observation to determine at the various 
points the absolute plumb line deflection so that it will be possible to reduce or refer the 
direction observations there made (both astronomical and terrestrial) to the reference spheroid 
before an adjustment is made either here or in a chart plane defined on the basis of the 
reference spheroid in order to obtain conformity between all the observations made.

As the actual and the idealized gravity are functions of force for the actual and the 
idealized potential surfaces, respectively, then it would be prima facie probable that gravity 
observations might solve this question, and it will therefore be of interest to examine gravity 
observations in detail.

Gravity Observations

A  mathematical pendulum is defined as a material point suspended by a thread without 
weight (of length 1) which, solely subject to the acceleration of gravity (g) makes oscillations 
(of amplitude v) on a horizontal axis.

The period of oscillation T  of such a mathematical pendulum is given by the formula :

T  =  tz 4 / -I (1 +  i ,;4 sin2 —  +  sin4 ) •V g 2 64 2
If we let the amplitude converge towards zero the period of oscillation will also converge 

towards a definite limit, T0, determined by :—



 ̂ T, = Vt
The observation of the period of oscillation of a pendulum must always be made at 

small finite, not infinitely small amplitudes, but by means of the former equation it is 
possible to reduce or refer the observations to infinitesimal amplitudes, so that for the calcul
ation of the acceleration of gravity it is only necessary to use the second equation from which 
we obtain :—

2 1g  =  ir ‘-=- 2
o

From this the dimension of the acceleration of gravity may be seen directly. If we take 
the cm. as a unit of length and the second as a unit of time, the dimension of the acceleration 
of gravity will be given in cm/sec*. This physical unit, cm/sec*, is also called the gal (as 
a tribute to Galilei) with the smaller unit the milligal (i gal =  iooo mgal.).

Unfortunately, it is impossible to construct such an idealized mathematical pendulum; 
only physical pendulums can be constructed. The measurement of the absolute gravity at 
any point is therefore one of the most difficult observations in physics, and it is made by means 
of several sets of reversible quartz pendulums in thermostats almost exhausted for air. The 
observation therefore takes a very long time and comprises almost all of the finest measurements 
known to physics (temperature, time, air pressure, volume, mass, and linear measurements and 
determination of the co-oscillation of the point of suspension, etc.).

Therefore, as will be mentioned later, only a few absolute gravity measurements have 
been made all over the Earth, i.e. measurement of the numerical value of the vector of 
gravity (the length of the normal vector to the actual level through the point in question) 
expressed in the physical unit gal.

The relative gravity measurements have assumed much greater practical importance. 
For this purpose physical pendulums of a far simpler construction were used at first and are 
still being used extensively.

If the value (gt ) of gravity is given at a point in space and the period of oscillation of 
a pendulum Ti has been determined at that point, then it will be possible by moving to 
another point in space and there determine the period of oscillation T2 of the same pendulum, 
to calculate the value of the gravity at that point as

T 5 _  6  T? 
T j  g, > or &  —  & -j-2

It is thus possible by moving the pendulum to measure the gravity difference from point 
to point. The observations are, however, still rather protracted and cumbersome, as the period 
of oscillation must be observed with great accuracy (which requires the application of the 
coincidence principle, radio time signals, chronograph or photographic recording), and there 
are several corrections to be made for temperature, air pressure, moisture and co-oscillation.

The relative gravity measurements have become much simpler and speedier since the 
development of the static-gravimeters on the spring balance or torsion thread principle. I 
shall not enlarge upon the construction of the different instruments, but only call attention 
to the fact that such an instrument, by means of which the gravity difference is measured from 
point to point, frequently over long distances, must be as portable, sensitive and stable as 
possible, i.e. constructed in such a way as to be as far as possible unaffected by shocks in 
transportation, electricity, magnetism, changes in temperature, air pressure and humidity, so as 
to have no (or only very slight) “  rate ” .

By these instruments the observations of relative gravity have been facilitated to such an 
extent that a single observation may be made in a few minutes, and the instruments have a 
very great sensitivity (reading accuracy 2-3 decimal of a mgal).

As mentioned before, only few absolute gravity determinations have been made in the 
world. The oldest of the absolute gravity determinations still in use is the so-called Potsdam 
System, in which the absolute gravity was determined by F. Kiihnen and Th. Furtwängler in 
1898-1904 in the pendulum hall of the geodetic institute at Potsdam (52°22’,86 N. - 13°04’,06 E., 

.87 metres above sea level) by means of '5 reversible pendulums of different weight.
The result was g =  981,274 ±  0.003 gal.
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The observational mean error given of ±  3 mgal is an “  internal mean error "  ascertain
ed in the different observation series with different pendulums.

Denmark still adheres to that system, the gravity on the reference pillar in the base
ment of the geodetic institute being determined by a transfer from Potsdam at g =  981,558 gal.

A  more recent determination was made at Washington (38°56’3o’\i43 N. 77°03’56” ,893 
W., 94.75 metres above sea level) from September 1934 to July 1935 by the National Bureau 
of Standards on account of the fact that the gravity transferred relatively to that place from 
various stations in Europe and Canada varied from 980,112 to 980,121 gal, in other words, 
showed a difference of almost 10 mgal.

The determination was made by means of 4 reversible quartz pendulums at pressure of 
only 0.1 mm. with 70 individual measurements and gave the following result :—

g =  980,080 ±  0.003 gal.

The most recent absolute gravity determination was made by the National Physical 
Laboratory at Teddington near London (5i°25’ i4” N. - o°2o’2i” W., 10 metres above sea 
level) from July 1936 to February 1938. The determination was made in 9 series, and for the 
first time the linear length of the quartz reversion pendulums was determined by means of a 
lightwave interference comparator with a mean error of ±: 0.00025 mm. The result of the 
determination was :—

g =  981,1815 ±  0.0014 gal, 
whereas a relative gravity transfer from Potsdam gave g =  981,193 gal.

If conversely we transfer the gravity from Washington and Teddington to Potsdam, 
we obtain a value which is about 20 mgal smaller than that observed by Kühnen and Furt
wängler in 1898-1904, and this ma}r be due either to the fact that they could not then measure 
the absolute gravity with the same accuracy as now, or to one-sided errors in the different 
observations, or to the fact that in the course of the years the absolute gravity at Potsdam has 
changed, so that the actual potential surface (which is “  alive ” ) through the pendulum hall 
at the geodetic institute at Potsdam now has a smaller normal vector than then.

All the absolute or relative gravity measurements made cannot be compared immediately; 
they are made on the physical Earth surface, i.e. at a great number of different, actual levels 
and in order to make it possible to compare them, they must all be reduced to the same level, 
and it would then be natural to reduce them to “  mean sea level ” , which with great approxi
mation coincides with the geoid.

This reduction, the so-called “ Bouguer Reduction ” , consists of three different parts, 
and is named after Bouguer, who in 1749 in his publication La Figure de la Terre developed 
its second part.

I am not going to enlarge upon the derivation of the formula and the various corrections 
and their calculation, but only wish to call attention to the fact that in this case also there is 
a series of approximations. It is “  assumed ”  that the density of the Earth below the point of 
observation down to the geoid is identical with that ascertained on the physical Earth surface, 
and regard has only been paid to the main part of the formula for the gravity at sea level 
(Clairaut’s Theorem): it is “  assumed ”  that the actual gravity lines run along straight lines 
down to the geoid, and of course, it is impossible to calculate on other assumptions without 
knowing the density function of the mass of the subsoil.

It is therefore, in geodetical respect, a great advantage for a country to be a low country 
situated by the sea, so that the physical Earth surface will not be far removed from the geoid.

The reduced, actual gravity (g” 0) will run into very high figures (in Denmark about 
981480 - 981750 mgal), but is of no real interest. On the other hand, great interest is attached 
to the deviation of this value from normal, i.e. the gravity anomaly or the difference between 
the value of the reduced, actual gravity at sea level (g”0) and the value ( y 0) which the gravity 
would have if the geoid was idealized into a spheroid and all irregularities in the mass distrib
ution of the strata disappeared. If the spheroid assumes the shape of the international 
reference spheroid, the normal (idealized) gravity value will be given by the international 
formula :—

y 0 =  978,049 (1 -(- 0.0052884 sin2 tp —  0.0000059 sin2 2 9 ) gal so that the normal 
value of gravity may be calculated when the idealized latitude is known.

A  graphical reproduction of the gravity anomaly for Denmark is shown in the 
illustration.

When we consider such a graphic reproduction of the gravity anomaly (g” 0 —  Yo )>



it would be natural to think that it depicts the shape of the geoid in relation to the ref
erence spheroid; if, for argument’s sake, we imagine ourselves moving around on the 
geoid, we will always have the actual, reduced gravity (g” 0) provided that the reduction made 
is “  correct ” , and if we imagine ourselves moving around on the reference spheroid (which is 
reproduced by means of the chart plane), we will always have the idealized (normal) gravity 
y 0 provided that the international gravity formula is “  correct ” . Thus, the gravity 
anomaly indicates the difference in gravity (i.e. the distance) between corresponding points on 
the geoid and reference spheroid, respectively, orientated with a common axis and equatorial 
plane, and expressed in the physical unit mgal.

Just as we speak of geometrical and astronomical levelling, we may term the gravity 
observations the gravimetrical levelling.

Along the curve in which the gravity anomaly is zero, the two globes, geoid and 
spheroid, will intersect and have normal vectors of the same numerical value (linear length), 
but possibly of different direction, and at the points at which the gravity anomaly is at 
maximum, the geoid will be distant a relative, maximum length from the reference spheroid, 
and there the normal vectors of the two planes will have the same direction, but possibly a 
different numerical value.

From such a chart of gravity conditions it is possible to read the plumb line deflection 
direct, as its direction must be at right angles to the “  gravity level curves ”  (isoanomaly 
curves, i.e. curves through points having the same gravity anomaly) and its value in inverse 
proportion to the distance between the curves.

In the waters between Elsinore and Halsingborg, where the curves are very closely 
packed in a N W -SE direction, the plumb line deflection will be in direction SW  and attain 
its maximum value (about 20” ) within Danish territory.

This is in good conformity with the rather few NS-components of the relative plumb line 
deflection so far observed in Denmark.

Such a chart not only shows geologists that in the subsoil in Mid-Jutland, W  of 
Aarhus, where the gravity anomaly has a maximum, there is an increase in density of the 
masses of the Earth, and that in the subsoil at Skive where the gravity anomaly has a 
minimum, there is a decrease in the density of the masses, but at the same time it shows 
geodesists that at each of these places there is a point at which the plumb line deflection is 
zero (i.e. where the plumb line is “  vertical ” ).

At the same time it is, however, obvious that the said graphical reproduction of gravity 
conditions must not be taken to be gravity charts, but only considered as gravity maps.

They cannot be taken to conform to similar gravity maps prepared by other countries, 
as their geographical grids do not conform to the Danish grid, and as they may have used 
another datum for the absolute gravity. The idealized latitudes which have been “  assumed ”  
in the calculation of Yo were taken from our conical-orthomorphic projection chart plane, 
which is calculated on a globe (the reference ellipsoid of the Danish degree measurement) 
entirely different from the international reference spheroid, on the basis of which the interna
tional gravity formula is calculated.

The conical-orthomorphic system has become so much of a dogma to the Danish 
Geodetic Institute that it is considered faultless, so that they one-sidedly let the gravity anomaly 
be a function of the coordinates of the chart plane of that system, rather than using the 
gravity observations to show the deviation of the geoid from the reference spheroid or the 
deflection of the actual plumb line from that of the idealized plumb line, and then correcting 
all the other observations (terrestrial and astronomical) for one-sided errors.

The relative, terrestrial observations (base line measurements, horizontal direction— or 
angle measurements and the geometrical levelling) are made in the actual horizontal plane 
(horizontal direction); gravity measurements (gravimetrical levelling) are made in the actual 
plumb line (vertical direction), whereas astronomical observations are made in all directions.

A  plumb line deflection (a small “  slant ”  in the position of the plumb line) will therefore 
only slightly influence the relative, terrestrial observations and conversely a small one-sided 
error of a few seconds of arc in the idealized, geographical coordinates will only slightly 
influence the gravity anomaly, so that the maps (pictures) produced from the conical ortho- 
morphic system and the deduced gravity maps will on the whole be nearly correct.

If we imagine that Denmark had used the most recent absolute gravity determination at 
Teddington as a datum instead of the absolute gravity determination at Potsdam, we will see 
ihat this will cause a shifting of the gravity map in a vertical direction; the iso-anomaly curve



which now has the value of +  11.5 mgal will instead have the value zero. The geoid under 
Denmark will, on the whole, prove to approximate to the international reference spheroid 
more closely than appears from the present gravity map. The basic, absolute gravity deter
mination has the character of an orientation constant positioning the reference spheroid (and 
thus the chart plane) in vertical direction.

If it were possible to consider the geoid to be a plane, the numerical value of the 
reduced gravity (the length of the normal vector) would everywhere on this plane be^o. As 
it is possible by the absolute gravity measurements to ascertain that the gravity (the normal 
vector) is not infinite, but varies between about 978,049 gal at the equator and about 983,221 
gal at the poles, we see that the absolute gravity observations are able to distinguish the geoid 
from a plane.

As the numerical value of gravity (the linear length of the normal vector) is large, it 
is difficult to determine it, and the mean error in the determination must be taken to be in 
excess of the internal mean error of ±  1.4 —  ± 3  mgal found, which will appear when we 
transfer the gravity relatively between the three different absolute determinations. A  one
sided error of ±  0.001 mm. in the determination of the pendulum lengths will cause a one
sided error throughout the determination.

The difference between the gravities at the different points may be determined with 
much greater relative accuracy by means of the relative gravity measuring instruments, as in 
this instance the values are much smaller; as previously mentioned, the most recent, static, 
relative gravity measuring instruments (gravimeters) have a sensitivity (reading accuracy) 

2“3 decimals of a mgal.
It is even possible to show that the gravity at the same point does not remain a 

constant, which is only natural, as it is the normal vector of a “ living”  or “ breathing”  
potential surface. In 1844 Professor C.A.V. Peters showed theoretically that the attraction 
of the Moon may give a maximum change in gravity at the same point of ±  0.11 mgal, and 
the attraction of the Sun a change of maximum ±  0.05 mgal. Only on the idealized and “ dead”  
computation globe (reference spheroid) the gravity ( y 0) is constant at each individual point.

If the geoid could be considered a sphere, the numerical value of the reduced gravity 
would be a constant everywhere on this surface. As the gravity in Denmark varies from 
about 981.500 mgal in the southern part to about 981.750 mgal in the northern part, or a 
variation of about 250 mgal, and far more than the uncertainty of observation, we see that 
gravimetrical levelling extended over Danish territory will be plainly capable of distinguishing 
the geoid from a sphere.

If the geoid were a spheroid, the reduced gravity would be constant in the same parallel 
of latitude; as, however, a variation of several mgal of the reduced gravity in the same 
latitude may be measured, i.e. far more than the observational uncertainty over distances 
similar to an ordinary first order side, we see that the gravimetrical levelling at such distances 
is plainly able to distinguish between the geoid and the reference spheroid.

As the gravimetrical levelling is sensitive enough to distinguish, even within relatively 
short distances, between the geoid and the reference spheroid, it would be natural to use it in 
the determination of the absolute plumb line deflection.



For the purpose of making a more detailed investigation of the various actual and 
idealized potential surfaces, we may first consider the idealized globe and potential surface, 
the spheroid. The fact that the spheroid is a potential surface will mean that tlye work to be 
expended in moving a particle from the centre of the spheroid to any point of its surface against 
the vector field produced by its attraction and its rotation is constant and independent of the way 
the particle is taken (the path of integration). If the particle is taken to one of the poles, only 
the attraction is to be overcome, and the centrifugal force (created by the rotation of the 
system) will have no influence. If, on the other hand, the particle is taken to the equator, 
its movement will receive the maximum aid from the centrifugal force, and the particle may 
therefore be taken a longer way before the same constant amount of work has been expended, 
and the radius vector to the equator will therefore be longer than the radius vector to either 
of the poles.

If, for argument’s sake, we calculate how much water it will be necessary to supply to 
this idealized globe in order to make the level rise I m. everywhere on the surface, and we 
supply this amount of water to the idealized globe, the water will not actually rise i m. 
everywhere, but on account of the centrifugal force it will rise a little less than i m. at the 
poles and a little more than I m. at the equator.

This shows that the surface elements of the different idealized potential surfaces on the 
same gravity line are not parallel; only at the poles and at the equator where the idealized 
gravity lines are straight lines, all surface elements will be parallel, at all other places they 
will converge slightly towards the poles.

In the ordinary geometrical levelling it is “  assumed ”  that all the actual level surface 
elements on the same plumb line are parallel, i.e. that all gravity lines are straight lines, or 
that the Earth is spherical; only in the precision levelling regard is had— by the so-called 
“  orthometrical correction to the fact that this is not the case, and it is “  assumed ”  that 
the actual level surface elements converge towards the poles to the same extent as the 
idealized level surface elements.

It further shows that the linear value of the mgal, i.e. the distance it is necessary to 
move upwards or downwards on the idealized plumb line in order to change the idealized 
gravity i mgal, is not a constant, but a function of the position; it is smaller at the poles 
than at the equator, as Yo ( 9  ) dz everywhere on the idealized globe must be a constant, 
just as the linear length of a minute of are of the meridian increases with the idealized lati
tude 9 , so that at the equator it is only about 1842.92 m, whereas at the poles it is about 
1861.67 m., so the linear length of a mgal decreases with an increasing •

Besides being a function of the idealized latitude the linear value of a mgal depends 
upon whether the movement is outwards in space or inwards inside the globe, as will be seen 
from Bouguer’s correction.

If we move along any idealized gravity line from the infinitely remote (or the potential 

surface with potential zero) where Y is zero, Y will be continuously increasing till it reaches 

its maximum Yo on the surface of the spheroid and will then change and decrease continuously 
to zero in the centre of the spheroid.

I f  we next consider the mathematical Earth : the geoid, on which besides the normal 
attraction and centrifugal force, also irregularly distributed increases and decreases of the 
density of the surface layers occur, it will be evident that an increase of the density around a 
point will attract our particle so that it may be taken over a longer distance before the same 
amount of normal work has been expended, and thus increase the normal radius vector or cause 
a rise in the geoid from the normal spheroid. Conversely, a decrease in the density around a 
point will cause a lowering of the geoid in relation to the normal spheroid.

Coordination of the different observations.

The problem now at hand is to establish conformity between a number of observations 
differing in principle: astronomical, gravimetrical, terrestrial and tidal observations, for the 
purpose of producing a chart with the maximum absolute accuracy and the maximum economy 
as regards observations and calculations.

As mentioned above, of all observations the absolute gravity determination demands the 
greatest amount of work, next come the astronomical latitude, longitude and azimuth obser
vations, the base line measurements, and, finally, those demanding the least work: the relative 
gravity measurements (gravimetrical levelling) and the other relative, terrestrial observations 
(angle or direction measurements, geometrical levelling), and the tidal observations.



For a rational, scientifically working geodetic institute which does not have the map as 
its goal, but for which the map projection is only a means to —

(1) show graphically in a plane the relative location of points which are naturally 
distributed in the three-dimensional space, and

(2) simplify the calculations from spheroidic trigonometry to plane trigonometry, 
and for which the absolute location of the different points on the common, internationally 
adopted, idealized computation globe is the essential, a method of survey entirely different 
from the terrestrial (trigonometrical) method, would be the natural form.

This natural, geodetical method would be, firstly by astronomical observations to deter
mine the astronomical latitude, longitude and azimuth of an observation point (fixed point); 
then by means of the international observations for the determination of the polar movement to 
reduce these observations to the Earth equator plane and Earth axis fixed in the Earth (i.e. 
to physical Earth latitude, longitude and azimuth), and, finally, by means of a combination of 
relative terrestrial and gravimetrical observations not only at the point of observation, but in 
a small area around it, to determine the absolute plumb line deflection, so as to be able to 
reduce latitude, longitude and azimuth to the idealized globe; as it were, to make a gravity 
detail chart of the vicinity of the point of observaion on a scale of 1 :1  and thence take the 
plumb line deflection.

To be true, such a gravity chart cannot be made without a datum at which the absolute 
gravity is determined and without knowledge of latitude and azimuth (which again will mean 
longitude). But as a usable first approximation to latitude and azimuth, the values of phy
sical Earth latitude and azimuth, which are “  correct ”  within a few seconds of arc, may be 
applied, so that on the basis of these approximate values an approximate value of the plumb 
line deflection may be calculated, whereby a better second approximation of the idealized 
latitude and azimuth may be obtained, and from these again presumably a sufficiently accurate 
value of the plumb line deflection.

Through each such point of observation passes one actual potential surface, which may 
be depicted or established by an ordinary, geometrical or hydrostatic levelling, and one

idealized potential surface. In the parallel of latitude (9  constant) on the idealized potential 
surface through the point of observation the gravity will be constant; if that is not the case 
in direction E-W  (the compass line) on the actual level surface, this must be due to the deviation 
of the actual potential surface from the idealized potential surface in this direction, i.e. the

E-W  component of the plumb line deflection, which may thereby be found. Correspond
ingly, the N-S component of the plumb line deflection may be found by a similar combin

ation of geometrical or hydrostatic and gravimetric levelling in direction N-S, inasmuch as 
the variation in this direction of the idealized gravity on the spheroid is given by the inter
national gravity formula.

I shall not go into detail with regard to the way in which these observations may best 
be made in practice (how large the “  vicinity area ”  should be, how densely the observations 
should be distributed, and whether observations should be made in several directions or should 
be confined to NS and EW , etc.) in order to obtain sufficient accuracy; these points can 
probably only be established by a geodetic institute possessing the necessary instruments and 
a qualified staff. My only object in this connection is to indicate that it is possible in this 
way to find the two components  ̂ and ^ of the plumb line deflection.

On this principle a pair of curved s-axes (gravity sections) are laid in direction N-S and

E-W  and the components £ and T\ determined by numerical differentiation to be % ~ T  ^

in these directions. With the great sensibility of static gravimeters, I should think it 
possible to determine the components of the plumb line deflection with the same accuracy as 
astronomical latitude and longitude (inaccuracy in the second decimal of a second of arc), as 
for this purpose at most three correct digits only will be required.

If the polar movement is subject to a similar inaccuracy, the location on the idealized 
globe may be determined, in accordance with the law of accumulation of errors with an

uncertainty of about 1 X  \/ 3 m., which it would be impossible to distinguish in a chart 
on a scale of 1: 10 000.

The same principle is well known to every navigator in a field which also deals with 
attraction and potential, namely in the determination of the deviation of the compass by 
deflector in misty weather. By deflector the difference of the adjusting power of the compass



from the normal is determined, i.e. the difference between the horizontal component of the 
Earth’s magnetism (the normal) and the horizontal component of the ship’ s magnetism (the 
abnormal) on various courses, and thence the deviation of the compass is calculated (apart 
from the constant deviation, which plays the same part as an orientation constant, as does the 
absolute gravity determination). At the courses on which the adjusting power of the compass 
has a maximum or minimum the deviation is zero (apart from the constant deviation).

Just as the deflector serves to determine the difference of the adjusting power of the 
compass from normal on the different courses and thus the deviation of the compass on these 
courses, so the gravimeter may be used to determine the difference of gravity from normal 
(the gravity anomaly) in different directions and thence the component of the plumb line

deflection in these directions: at the points at which — —  is zero in all directions (i.e.
ds

when the gravity anomaly has a maximum or minimum e.g. at Skive and in Mid-Jutland W  of 
Aarhus) the absolute plumb line deflection will be zero.

As regards the absolute gravity determination (orientation constant, constant deviation) 
to be used as a datum for the system, I think that in this country we ought to use the 
British, absolute determination made at Teddington in 1936-38, for the following reasons :—

Io It is the most recent determination ;
20 It has the smallest “  internal mean error ” ;
3° It lies between the German and the American determination;
4° It lies so close to Scandinavia that the gravity may relatively easily and 

with a great number of repetitions (possibly by air) be transferred to this 
country;

5° It lies closest (10 m.) to the level (mean sea level) to which it is to be 
reduced, whereas the American determination lies 95 m. and the German 87 m. 
from it, rather far inland on the continents;

6° It is in the near vicinity of the internationally used reference point for 
time and longitude (Greenwich Observatory).

If the location on the idealized globe of all the many thousands of coordinated points 
in Denmark were to be determined in this way, the work would be immense and absolutely 
impracticable; even if we confined ourselves to the 48 first order points in Denmark, the 
work would nevertheless be very great and impracticable.

The disadvantage of this method of surveying is that it requires a great amount oí 
work and that if it is desired to adhere to the scientific principle generally used of including 
only the “  certain ”  ciphers, it is impossible at the present stage of development of science 
(astronomical, instrumental and observational technique) to obtain the relative accuracy 
(calculation accuracy) of 1 centimetre desired by the detail survey institutions.

The latter difficulty may, however, easily be surmounted by committing a breach on 
the above-mentioned principle and include the fourth decimal of a second of arc in the 
adjustment of latitude, longitude and plumb line deflection observations, even if this fourth 
decimal has no actual value whatever.

When a calculation accuracy of 1 centimetre 4 decimals of a second) has been 
fixed, this accuracy must be consistently adhered to.

As the method of surveying requires much work, it is necessary to restrict it as much 
as possible in view of observation economy. We may, for instance, consider using it at a 
geodetic datum, just as the “  Round Tower ”  was used in the conical-orthomorphic system only 
for orientation of the relative terrestrial observations. Thereby the advantage will be derived 
of obvia'ing at the actual point of departure the one-sided error formerly introduced by the 
assumption that the plumb line at that point was “  vertical It might also be possible

instead to take one of the points (e.g. at Skive or W . of Aarhus) at which ^  =  oas
in all directions, i.e. where the gravity anomaly is at an extreme and the plumb line deflection 
consequently zero, as a geodetic datum; such a point will, however, presumably not be a first 
order point, as these points are chosen on the basis of quite different considerations (high 
location, long sighting lines, well-shaped triangles), and the work of observation would thus 
be increased by the work of combining this point of departure with the first order network 
of triangles.

Neither of these methods will, however, utilize the great advantage of the natural, 
geodetic method of surveying, namely : that no accumulation of errors takes place, the 
observations at two different points being entirely independent of one another.



In contradistinction to the relative terrestrial method in which the accumulation of 
errors in a chain of triangles will increase with the extension of the chain, such an accumu
lation of errors will not exist in the determination of the absolute location on the idealized 
globe of the two termini of the chain of triangles. The method is therefore advantageous 
“  on a large scale ” , but highly disadvantageous “  on a small scale ” , where the relative 
terrestrial methods have their advantage.

In my opinion, the method may therefore be successfully used if it is applied to the 
termini of such long chains of triangles as it will be practical to adjust together (about 
10-15 triangles) and at one point on each of the smaller islands which are so far removed that 
they cannot be trigonometrically connected with the rest of the system (e.g. Bornholm and 
Anholt). We may call the points thus determined O-order points.

When the chart planes and their rectangular, plane coordinate systems are defined from 
the international reference spheroid, it will be possible to depict the geographical grid in the 
chart plane on the scale 1 :1  with any desired degree of accuracy. This is a sheer mathema
tical problem, which in actual fact has nothing to do with surveying.

As regards the two projections mostly used nowadays, the orthomorphic transverse 
cylinder projection (also called the meridian strip or transverse Mercator projection) and the 
normal, orthomorphic cylinder projection (Mercator’s projection), the geographical grid may 
be easily and simply plotted by means of the excellent tables of the international reference 
spheroid with an accuracy of 1 mm. and 1 cm. respectively.

The task now facing the surveyor in order to make a chart will be to locate the more 
or less perfect human work, the picture of the country, to the best advantage in this geogra
phical grid.

The O-order points may also easily and simply be transferred to the chart plane with 
the accuracy with which they are defined, e.g. 1 mm. or 1 cm., or a far greater accuracy 
than that with which they may at present be determined. The O-order points of one transverse 
Mercator projection may likewise be transferred with the same accuracy to another transverse 
Mercator projection defined from another meridian. The O-order grid formed by these 
O-order points should, in my opinion, form the basis of the picture, and the network of 
triangles of first order must be made to conform to them by grid adjustment, the natural, 
geodetical method of surveying being more advantageous “  on the large scale ”  than the 
relative, trigonometrical method which is subject to accumulation of errors. Exactly in the 
same way as a navigator after a protracted voyage will prefer an observed position to a 
position by dead reckoning.

In the course of the voyage the navigation has been subject to one-sided errors (errors 
in the log reading, errors in the observed deviation, errors in the observed drift and in the 
estimated set and rate of the current, etc.), just as the chain of triangles in its progress has 
been subject to one-sided errors (errors in the observed length of the standard metre proto
type with consequent errors in the observed length of the base line, errors due to the latter 
not being reduced to the reference spheroid, and errors in the observed directions on account 
of the plumb line deflection, in short, errors due to the difference between the geoid and the 
reference spheroid).

Just as the natural method when a thermometer tube and a thermometer scale are to be 
fixed in relation to each other would be to start from some physically defined datum point 
(the freezing and boiling points of distilled water at a certain atmospheric pressure), thus the 
natural method when the picture and the geographical grid are to be located in relation to 
each other will be to start from some geodetically defined datum points (O-order points), 
around which, and within an area so small that the relative terrestrial method will have no 
appreciable accumulation of errors, conformity has been established between astronomical, 
gravimetrical and terrestrial observations.

As the gravity anomaly g” 0 —  Yo at a point indicates the distance at that point 
between the geoid and the reference spheroid, it will be possible by means of gravity observa
tions and levelling to reduce the base line measurements to the reference spheroid before the 
computations (grid adjustments) are made.

As  ̂ ^  at a point indicates the component of the plumb line deflection at that
ds

point in the direction of the s-axis, we are also capable of reducing the astronomical and the 
relative terrestrial observations to the reference spheroid before the adjustment is made, 
provided that we have a sufficient number of gravity observations and levels in the vicinity 
or a gravity chart.



For the correction of the astronomical observations the components  ̂ and yj must be

known with a great accuracy (the same accuracy as the actual astronomical observations) as 
they enter at about their full value ( ^  yj sec cp, 7] tan (p), i.e. that the gravity chart of the

small area around the O-order point must be made out on a very large scale or be given only 
in figures, as an actual graphical reproduction will be impossible on a full scale.

For the reduction of the relative, terrestrial direction observations in the network 
of triangles the components £ and yj of the plumb line deflection need not be known with any

great degree of accuracy, they may be taken from a gravity chart on a small scale, as on 
account of the factor tan h (in which h is a small angle: the angle of depression) they enter 
with only a small fraction of their value, and the correction will be smaller than the observa
tional mean error.

In the computations (the grid adjustment) the base line measurements are not to be 
considered faultless, but may be subject to error. By considering the corrections to be applied 
to the observed and reduced base line measurements in order to obtain conformity throughout 
the system, it is possible to obtain an impression of the degree of conformity, and gradually as 
results become obtainable from many countries distributed all over the Earth it may be seen 
whether they are of a casual or a systematic character, and we may thereby obtain data for a 
determination of a better shape of the spheroid and thus a better formula for the idealized 
gravity y 0.

In the trigonometrical method (by considering the relative observations as subject only 
to casual errors) a continuous accumulation of errors is made in the building up of the 
system (the map) over and beyond the unavoidable observational errors in the determination of 
the geographical coordinates of the initial point (geodetic datum). The accumulation of 
errors will increase towards the extremities of the system.

In the natural, geodetical method a distribution is made within the system of the una
voidable observational errors in the determination of the geographical coordinates of the 
O-order points in the extremities of the system between the hundreds of relative observations 
which previously, to the greatest extent possible have been freed from the causes of one-sided 
errors.

The relative base-line measurements are in actual fact superfluous determinations, which 
serve only to check the efficiency of all the observations and the conformity between our two 
definitions of the metre and of the idealized globe.

As the Danish charts are to constitute a bridge between the German, Swedish and 
Norwegian charts in our production of a chart of the entire Earth, a parable from the science 
of engineering may be used.

When a large bridge is to be built the problem is not the simple one of making a 
cantilever girder of sufficient length (chain of triangles); the girder must perhaps be so long 
that it cannot support itself and will assume different shapes according to the points at which 
it is supported. Instead it is necessary first to make a careful survey, investigation of soil 
and sub-soil, and to prepare a project, corresponding to the now completed degree measure
ment epoch with its results : picture of terrain (our conical orthomorphic system), gravity 
conditions and our knowledge of the shape ** on the whole ”  of the Earth.

Next, bridge piers (O-order points) will have to be built on the best possible foundation, 
and not until then the various spans (chains of triangles) fitting between the piers may be 
manufactured. The bridge piers may possibly be located only with a margin of some cm. 
even if the individual girders of the spans have a tolerance in fractions of a mm.

If more work is expended on building many bridge piers, the work to be expended on 
the consequent shorter spans will be less. Likewise, the computations (grid adjustment) of 
the chains of triangles will be simpler and more comprehensible the more O-order points we 
have determined, with the consequent shorter trains of triangles.

For purposes of working economy the most advantageous way would, however, probably 
be that of limiting the number of O-order points (bridge piers) as much as possible, but other 
considerations may, of course, intervene : e.g. the sub-division of the first order net into 
suitable chains of triangles which may make it desirable to include a central point at which 
several chains of triangles meet; further, it may be expedient for two countries at points at 
which they may be connected trigonometrically to use common O-order points (bridge piers) 
and first order triangle chains (spans), so that for instance Denmark and Sweden by a practical, 
scientific Scandinavism, jointly determined the O-order points of Kullen and St. MjzJllehjzfj



(Stevns) or Kongsbjerg (M0en) and the first order triangle chain between them; thereby 
complete conformity would be obtained between the charts of the two countries, which would 
be of great practical importance to hydrographic surveys and shipping.

On an estimate it will be necessary to use as many O-order points as we have hitherto 
used base line measurements, thus, in the Danish grid S. Topographical conditions in the 
vicinity of the station may, of course, be of some importance in the choice of the points.

If a quantity is to be measured, this is done by comparing it with another quantity of 
known magnitude.

This can, of course, best be done if the two quantities have approximately equal 
magnitudes. If we are to measure the length of a large room, it will not be expedient to use 
a small foot-rule, even if it is very carefully calibrated and accurate; it is more advantageous 
to use a tape or rule of approximately the same length as the room and then determine only 
the small difference from the end wall of the room to the nearest calibration on the long rule 
by means of the small, finely calibrated rule.

On this ideal method the Danish standard metre prototype has been compared with the 
world prototype at Sèvres. This very comparison is subject to an inaccuracy in the first or

second decimal of fJ. ( fX =  i micron =  o.ooi mm.). In the comparison of the Danish 
prototype with the standard metre of the Danish geodetic institute, the uncertainty will at 
least be of the same magnitude. But when this standard metre by less ideal methods is being 
compared with 24 m. long base measuring tapes, the uncertainty will be correspondingly greater, 
and when these tapes are again compared with a base line several kilometres long, the uncer
tainty becomes appreciable, and the internal mean error of the observation need not give a 
true picture of the uncertainty to which the observation is subject and will do so only if all 
the preceding comparisons (observations) are not subject to one-sided errors. When thereupon 
this base line through angle or direction measurements (which may all be subject to one-sided 
errors) in the base grid is enlarged to a base side and this base side through a long chain of 
triangles (in which the observations may likewise be subject to one-sided error) is enlarged so 
as to cover a distance as, for instance, from the Danish-German frontier to the Scaw or from 
Esbjerg to Copenhagen (about 300 kilometres), it will be evident that centimetres will be of 
no actual value whatever on these distances. The distance (in centimetres) contains 8 digits, 
whereas perhaps only 7 digits of the standard metre of the Geodetic Institute are correct; 
the linear uncertainty must be presumed to be at least in tens of metres.

But what is understood by the term of a knozvn magnitude ?

The magnitude of a quantity may be known through observation, but it must then be 
presumed to be known only subject to a* certain uncertainty, as, for instance, the standard 
metre of the Geodetic Institute. Actually known are only such magnitudes as are fixed by 
definition as, for instance, the metre which is defined by our world prototype at Sèvres or our 
idealized globe (the international reference spheroid), which is defined by the international 
gravity formula or by a =  6.378.388 m and a  =  1:297.0; by this latter definition the geo
graphical grid on the reference spheroid or in charts defined from the reference spheroid has 
been established.

Originally, the metre was defined as a one-tenth millionth of the Earth quadrant. 
As this definition proved unusable, a new definition was established. Now we have by 
definition fixed the idealized Earth, but then, in my opinion, we should take the full conse
quences of this definition and embark on new methods and working hypotheses and measure 
(compare) the geoid (the mathematical Earth surface) by means of the international reference 
spheroid which is of approximately the same size. These methods have at the same time been 
made possible by the development of the observational technique for absolute gravity measure
ments and by the development of the static gravimeters.

Perhaps, when sufficient data have become available for a judgment, a systematic 
anomaly will appear between our definition of the metre and our definition of the idealized 
globe. A  new and better definition may then be given of the idealized globe (the shape of 
the Earth “  on the whole ” ), and we will thus have a chance of getting a step nearer to the 
truth. “  Science advances rather by providing a succession of approximations to the truth, 
each more accurate than the last, but each capable of endless degrees of higher accuracy”  
(Sir James Jeans : The Universe around us). The development of science consists in a con
stant struggle to eliminate one-sided errors by converting them into systematic errors the 
effects of which may be taken into account and to obtain better and better approximations. 
When a better approximation is obtained, it is taken into use in a new working hypothesis,



and gradually the discrepancies remaining in the system will emerge and the causes of the 
one-sided errors will be found. The new one-sided errors will again by a new working 
hypothesis be converted into systematic errors, determined by special observations, they are 
corrected for, and the possibility of determining a new and better approximation arises.

The object of geodesy is to determine the mathematical Earth surface (the geoid) and 
this may be done by determining its normal vector at a sufficient number of points, it being 
known from potential theory that it has a continuous shape and is differentiable at all points.

By using the gravity observations we find g0” , the numerical value of the actual gravity 
acceleration vector at mean sea level given in the physical unit mgal. By comparing it with

the numerical value y 0 of the corresponding gravity acceleration vector of the reference 
spheroid, we will be able to ascertain the shape of the geoid in relation to the reference spheroid 
at the individual points and thus to reduce all the astronomical and terrestrial observations 
to the idealized, fixed plumb lines of the reference spheroid (i.e. correct them for systematic 
errors) before making the adjustment either on the reference spheroid or, what iŝ  considerably 
easier, in a chart plane defined from the reference spheroid. It is no longer our little standard 
metre which gives the dimensions, but the normal vector in the defined international reference 
spheroid itself.

In this method we do not work on the hypothesis that the geoid is considered to coincide 
with the reference spheroid, but we first reduce our observations to the computation globe and 
thence to the chart plane (planes) before we commence our adjustment.

On the other hand, we use as a new working hypothesis that mean sea level and the 
geoid are considered to coincide and like the actual gravity and the actual plumb line arc 
considered fixed and unchangeable. The sea level is common to all open coasts on the Earth 
and its mean level may be determined by observations.

The computations (grid adjustment) will be relatively simple, comprehensible and easy, 
far simpler than the so-called Laplace adjustment used in Germany and Finland, inasmuch as 
the absolute gravity measurements and the astronomical latitude, longitude and azimuth obser- 
va4ions after station adjustment and correction for plumb line deflection are considered to be 
without error. This is of course in full conformity with the adjustment principle normally 
used, in which two points are connected (“  double ’ ’— determined) by two different methods 
of surveying :—

If the relative positions of the two points are “  double ” — determined by both first 
order triangulation and detail triangulation or by detail triangulation and traverse measure
ment, the method having the least accumulation of errors will dominate.

Just as a land surveyor will avoid blind traverses as far as possible, i.e. traverses thi 
termini of which are not both determined by triangulation and would only think of using 
such traverses with at most one or two lines, thus a geodesist should, in my opinion, avoid 
blind triangle chains, i.e. a triangle chain, the termini of which are not both O-order points, 
and only think of using such chains on one or two triangles, e.g. on small isolated islands like 
Bornholm and Anholt.

The greatest possible care should be exercised in the determination of the O-order points 
on which the whole chart, the picture in relation to the geographical grid, is based. The 
azimuth should in this case be determined from as many observations as the horizontal direc
tion observations at the first order points. Likewise the greatest possible care should be 
used in the transfer of the absolute gravity from the datum at Teddington in England to the 
O-order points in Denmark. This transfer should be made with many repetitions, as quickly 
as possible, and with Sun and Moon in as varying positions as possible, in order that a really 
valid mean value may be obtained, even if this will increase the “  internal mean error ” , the 
actual gravity varying slightly at all times.

It will probably never be possible to obtain an absolute accuracy in terms of centi
metres (4 “ correct”  decimals of a second of arc in the geographical coordinates), as this 
would require an immense 'development within all fields of science, more especially in the field 
of astronomy (better star places and polar movement coordinates) and in instrument technique 
(more sensitive spirit levels). At the present time our finest verniers and spirit levels can
_with many repetitions— give us only an accuracy within the second decimal of a second of
arc, so for the time being the absolute accuracy cannot possibly be greater than that. The 
second decimal of a second of arc alone requires the use of 8-place trigonometrical tables, 
whereas the present coordinates in Denmark are calculated only with 6-place trigonometrical 
tables corresponding to an accuracy within a second of arc.



The actual users of charts (science and shipping) do not therefore expect to have the 
absolute geographical coordinates given correctly with 4 decimals of a second of arc ( ^  cm. 
accuracy) but are satisfied if the accuracy is great enough for errors to be indistinguishable 
on charts on the scales generally used (i.e. in charts on the scale of 1 :10000 an uncertainty 
of a couple of metres uncertainty in the second decimal of second of arc).

Whether it will be possible to attain this accuracy cannot be said. The true value of an 
absolute quantity determined by observation and the true error on a series of observations of 
that quantity are unknown, only the most probable system of errors with the consequent 
internal mean error may be determined.

With the primitive methods used for taking astronomical observations on board, a ship 
will normally be unable to ascertain errors in the chart (the picture in relation to the geo
graphical grid) as the sextant may be read only wilh an accuracy of 0.5 minutes of arc, as 
the same degree of accuracy is being used in the calculations, and as refraction and dip 
anomalies may occur together with the plumb line deflections of the same magnitude besides 
the polar movement. As soon as a ship is in sight of land, the navigator will therefore 
abandon the astronomical observation methods and will trust to terrestrial observations, i.e. 
assume that the chart is correct.

“  The navigator may only be able to determine his position to the nearest mile or so, 
but he is entitled to expect that the geographical positions of points on the chart, as scaled off 
from the graduation, are free from any appreciable error ”  (Admiralty Manual of Hydrogra
phic Surveying, London, 1938).

This requirement is not fulfilled as far as our charts are concerned, as the basis (the 
old reference ellipsoid) is obsolete and one-sided stress has been placed on the relative accu
racy and, apart from the astronomical observations at the point of departure, only relative, 
terrestrial observations which are subject to an accumulation of one-sided errors have been 
used.

It will in no case be possible to determine the absolute position on the idealized globe 
absolutely orientated with a higher degree of accuracy than that with which the absolute 
plumb line deflection may be determined. An (unknown) N-S component of a plumb line 
deflection of 6-7” will thus give rise to an error in the idealized geographical latitude of 6-7” , 
or about 200 metres, i.e. it will only become imperceptible in charts on a scale of less than 
1: 1000 000. As shown there is a great difference between relative accuracy and absolute 
accuracy.

Somewhat similar considerations apply to levels.
Some users of levels require to know the height above mean sea level and the height 

which at various times may be anticipated between the immediate sea level and mean sea 
level. These users are mostly scientists (who have to reduce different observations to sea 
level), civil engineers (working out projects for draining and reclamation work, dykes, etc.) 
and shipping (moving on the surface of the sea). These absolute levels can never be deter
mined with a greater degree of accuracy than that with which the mean level of the sea may 
be determined (inaccuracy in centimetres), and the farther we pass from the sea, where mean 
sea level may be observed, inland, the greater the inaccuracy with which the absolute levels 
are determined. Other users (inspectors of roads and surveyors, architects, housebuilders, 
etc.), require only level differences with great relative accuracy (mm) in order to ascertain 
the gradient of the terrain or in order to undertake a local levelling and thus work on the 
basis created by the geodetic institute, whereas the actual level of the place above mean sea 
level is of no interest to them.

It would be a misunderstanding to think that these last-mentioned users require greater 
accuracy than the others. It is only a question of another kind of accuracy, a relative accu
racy instead of an absolute accuracy.

If we look more closely at the Danish list of levels, the curious fact will emerge that 
some fixed points used in the levelling have a negative level, even if they are actually on dry 
land without protection of dykes or the like. Just as the Geodetic Institute has one-sidedly 
let the absolute geographical coordinates (the geographical grid) be functions of the relative 
coordinates (the picture or map), thus they have also one-sidedly let the absolute levels (the 
level above mean sea level) be functions of the geometrical and hydrostatic levelling based 
on the Danish standard zero point in the Cathedral of Aarhus, rather than letting them be 
functions of the different tidal observations.

The relative geometrical levelling is presumably also subject to a (slight) accumulation 
of one-sided errors.



In my opinion, the mean sea level indicated by the tide gauges should be used as 
O-order fixed points in the levelling instead of the Danish standard zero point.

As mentioned, considerable discrepancies between the charts of the different countries 
may be ascertained. Last summer the R.A.F. in coorperation with the Geodetic Institute in 
Denmark and the Norwegian Geographical Survey made trigonometrical observations of 
oarachute flares dropped over the Skagerrack in order to ascertain the discrepancies between 
the Danish and the Norwegian charts. The discrepancies amounted to 150-180 metres in 
direction N-S and E-W . I have been told that the discrepancies between the Spanish, 
Norwegian and Finnish charts at the northern frontier are considerably greater.

In the Hydrographic Office in England I was shown that the discrepancies between 
Greek, Italian and Turkish charts at Cyprus amounted to about 5-6000 metres.

Even in making hydrographic surveys of the Sound it is necessary to use geodetic 
control either 011 one side or on the other, as the Danish and Swedish geographical coordinates 
do not agree.

Before the invasion of Normandy it was necessary in England to convert the French 
chain of triangles from Calais-Dover (where contact may be established) to Normandy from 
the French reference ellipsoid to that used in England (Airy’s) in order to be able to utilize 
the accuracy which the Gee and Decca stations established in England might give.

From the point of view of geodesy each country is at present actually lying on its own 
globe. The project prepared by the Decca-Navigation Co. for a Scandinavian chain cannot be 
carried out at present, as the relative positions of Hirtshals in Denmark and Gothenburg in 
Sweden are not known with sufficient accuracy.

Therefore, in my opinion the adoption of the international reference spheroid is of 
immense and epoch-making importance. The object of geodesy is now quite different from that 
of former days, when the idealized Earth, which is now fixed by definition, was not known. 
Plumb line deflections have become absolute quantities which may and should be measured. 
The object is now to compare the faintly “  alive ”  geoid with the international spheroid and 
to transfer the mean positions of the points to this “  dead ”  computation globe before the 
relative observations are adjusted.

The calculation accuracy is something fixed or adopted. In Germany they used calcula
tion accuracy in terms of millimetres ( ^  5th decimal of a second of arc in the geographical 
coordinates); although it cannot be claimed that the German charts had greater absolute 
accuracy than the Danish ones.

If the calculation accuracy is to assume any actual importance, endeavour should be 
made before the adjustment to correct for all the systematic sources of error that may apply 
to the calculation accuracy, irrespective of whether the corrections are less than the normal 
mean error of the category of observation used; for instance for the plumb line deflection in 
the first order network of triangles as o’’’o6 at a distance of 70 kilometres will mean 2 centi
metres for the level of the distant point, and in astronomical latitude observations for the 
level of the point of observation, as o”oi in latitude will mean about 30 centimetres.

The absolute accuracy is something that only the geodetic institutes may strive to 
impart to the system during its elaboration by endeavouring to find the cohesion between the 
phenomena, by endeavouring to seek the truth by counteracting accumlation errors, correcting 
for as many sources of error as possible, and by using sufficiently efficient working hypotheses, 
and the absolute accuracy can never be greater than that with which the Geodetic Institute 
can determine the position of a single point on the international, scientifically used reference 
spheroid orientated with its axis and equatorial plane coinciding with those of the Earth.

A  chart is more than a map; it is a map orientated in a geographical grid.

By the relative, terrestrial methods of surveying (land surveys) it is possible only to 
create maps.

By a combination of terrestrial and astronomical observations it may be possible to 
create a chart, but not with greater absolute accuracy than that of the plumb line deflection 
at the point of departure.

Only by a combination of terrestrial, astronomical and gravimetrical observations will 
it— in my opinion— be possible to produce a chart which will presumably satisfy science and 
shipping as a scientific instrument and at the same time contribute towards the solution of the 
geodetical problem: the determination of the shape and size of the geoid and the spheroid.



“  The various sciences can no longer be treated as distinct; scientific discovery advances 
along a continuous front, which extends unbroken from electrons of a fraction of a millionth 
of a millionth of an inch in diameter to nebulae whose diameters are measured in hundreds of 
thousands of millions of millions of miles. A  gain of astronomical knowledge may add to 
our knowledge of physics and chemistry and vice versa (Sir James Jeans : The Universe 
around us.)

Astronomy, physics and instrument technique have advanced greatly since the present 
basis of our charts was established a hundred years ago. Geodesy has fallen behind the other 
sciences and stands (at any rate as far as our charts are concerned) where it stood then. 
Also the other sciences require the scientific instrument constituted by a modern chart.

One of the disadvantages of the Decca system is that the rate of propagation of the radio 
waves used is not as yet known with sufficient accuracy. At present the figure of 
3.9925 X  ios km/sec. is used, and this mean figure has been obtained by letting aircraft fly 
around Decca bases with a Decca receiver for the purpose of ascertaining how many hyperbolae 
they contained. Actually the base line is measured with half the comparison wave-length in 
question as a unit, and the rate of propagation is calculated there-from. It is the task of 
geodesy to provide the measure for these long base lines, which should preferably lie across 
water, and it is not sufficient to have the base length given with a relative accuracy in terms 
of centimetres when perhaps they are uncertain by tens or hundreds of metres.

The base lines, the foundation of hydrographic surveys, are always on land. The 
farther we get away from land, the less the accuracy will be, but at the same time the 
navigator’s demands for accuracy will be less. Charts on a scale of 1: 10000 with a reading 
accuracy of a couple of metres is not required in mid-Atlantic; they are needed only in 
difficult fairways.

The new methods of obtaining radio fixes afford hydrographic surveying a chance of 
getting much farther away from land with much less losses of accuracy than did the old 
methods. But at the same time they make much greater demands as regards absolute accuracy 
and the geodetical foundation, now that it is possible to reach across the sea from shore to 
shore.

In my opinion the Scandinavian Hydrographic Offices should therefore apply to the 
respective geodetic institutes and suggest a mutual cooperation, so that at least the Scandi
navian countries can all use the same globe, and so that our charts can obtain both the requisite 
relative accuracy and the maximum absolute accuracy attainable at the present time.


