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With the increasing number of surveys based on astronomical coordinates 
and with loran stations established on oceanic islands far from the mainland and 
its geodetic control, there has been an increasing interest in deflections of the 
vertical.

Some of those who have a professional interest in deflections of the vertical 
but who have not analyzed the underlying conceptions seem to have the vague idea 
that there is something in nature that might properly be called the deflection of the 
vertical. In the present state of geodesy there is nothing that may properly be 
called the deflection of the vertical at a given point. All existing numerical values 
of the deflection depend on the assumed geodetic datum, and geodetic datum might 
conceivably be anything whatever, though in practice the choice is confined within 
rather narrow limits.

The usual geodetic datum is essentially arbitrary. Two geodesists with the 
same general background and the same mass of geodetic material before them might 
hit upon approximately the same choice of a datum and then again they might not. 
And since the choice of a datum is arbitrary, the deflections, dependent as they 
are on the datum, are arbitrary also.

We diminish the arbitrariness of choice and, what is more important, we 
get an intrinsically better geodetic datum, if we require that the center of the 
ellipsoid of reference shall coincide with the center of gravity of the Earth and that 
the axis of the ellipsoid shall coincide with the axis of rotation of the Earth.

As a matter of fact, our United States Datum, the predecessor of the North 
American Datum, was not adopted as the result of any special study. At first it just 
grew. Geodetic positions based on a supposedly temporary datum used in the 
eastern part of the country were found to agree satisfactorily with the astronomical 
positions further west, so the geodetic positions based on the eastern datum were 
accepted and the United States Datum was redefined in terms of a geodetic station 
in Kansas. Indeed, two of the items mentioned above were not explicitly considered 
when the decision was made; the position of the center of the ellipsoid of reference, 
and the direction of its axis. These are undetermined to this day. It is precisely 
these two items that will be emphasized in this paper.

The word “  ellipsoid ”  is used throughout this note in the sense of an 
ellipsoid of revolution. The more general term “  spheroid ”  is avoided. It is not 
difficult to adapt the formula for theoretical gravity to a predetermined spheroid 
that is not an exact ellipsoid of revolution, but the computation of triangulation 
on anything except an ellipsoid of revolution requires intricate numerical calcula
tions; whereas this note implies throughout a comparison between astronomico- 
geodetic deflections and gravimetric deflections. Hence, for convenience, we are 
obliged to stick to the ellipsoid and base our gravity anomalies on an appropriate 
formula for theoretical gravity.

About 100 years ago Stokes did some pioneer theoretical work that may 
eventually enable us to refer our geodetic measurements to an ellipsoid thus ideally 
situated; its center at the center of gravity of the Earth and its axis coincident 
with the Earth’s axis of rotation. If we insist that our geodetic datum shall be



based on an ideally-situated ellipsoid of this sort, the only elements of our datum 
left undetermined are the size and shape of the ellipsoid. If we specify these, 
then everything is determinate and we may properly speak of the deflection of the 
vertical at a given point. The problem then becomes one of computation.

Stokes’ mathematical developments in their original form do not give the 
deflections directly. The formula that he gave enables us to express the elevation 
of the geoid at a given point above the ellipsoid of reference in terms of the gravity 
anomalies. A gravity anomaly and a deflection may seem rather different in kind, 
but the gravity anomaly is an anomaly in the vertical component of the gravita
tional attraction; a deflection is an anomaly in the horizontal component. The 
nature of the force of which both are manifestations and the ingenuity of the 
mathematician make the connection between them. The ellipsoid is the particular 
ellipsoid already referred to, properly centered and properly oriented. The 
formula for the elevation of the geoid above this ellipsoid looks complicated, not 
to say perverse. No term of it has any obvious physical meaning. Stokes would 
probably have said that he was summing a series of spherical harmonics by an 
ingenious device. The more modern mathematician might say that he was solving 
an integral equation (Idelson, 1933).

In practical application we need a contour map of gravity anomalies. From 
it we can deduce the elevation of the geoid at various points. From enough such 
elevations we could draw contour lines of the geoid elevations referred to our 
chosen ellipsoid. These would be height contours, exactly similar to ordinary 
topographic contours. If we have enough such contours, we can estimate the slope 
from the distance between neighboring contour lines. The slope of the geoid is 
simply another term for the deflection of the vertical in a direction perpendicular 
to the contours. Stokes himself suggested this.

An analytic process at once more elegant and more accurate was developed 
by Yening iMeinesz (1928) and De Graaff Hunter (1935). We need, as before, a 
contour map of gravity anomalies. The formula looks complicated, as before, but 
this time the leading term, the important term when we are dealing with areas 
near the deflection station, is of the same form as the expression used in computing 
topographic deflections or in the isostatic reduction of deflections c5f the vertical. 
There is a simple reason for this, which need not be discussed here. The regions 
near the deflection station are highly important in computing deflections, the 
remoter regions much less so. In computing geoid elevations the remoter regions 
are relatively more important. This may help to explain why we have more 
computations of the deflection than of geoid elevations. Because of the lack of 
well-distributed gravity data we have only a few computations of either kind.

It is interesting to consider how we might use gravity data to improve 
current processes for the computation of ordinary geodetic triangulation. If we 
knew the elevations of the geoid above the ellipsoid of reference, we could reduce 
the lengths of our measured bases to the level of that ellipsoid. At present, for 
lack of adequate information, they are reduced to the .level of the geoid, which, for 
the various bases, has various positions with respect to the ellipsoid. Again, if 
we knew the deflections of the vertical, we could apply the proper corrections to 
our observed horizontal directions. These corrections may be quite appreciable, 
especially for inclined lines of sight at stations where the deflection is large, but 
for the present these corrections are almost universally ignored because the 
necessary data are lacking. A possible use of the deflections of the vertical deter
mined from gravity anomalies to improve the adopted semi-axes of the spheroid of 
reference will be mentioned later in connection with the work of Kasansky (1935).

Let us briefly review recent work on geoid elevations and deflections of the 
vertical based on actual gravity anomalies.

For the geoid elevation we have the pioneer work of Hirvonen (1934); it 
necessarily involved much guessing at gravity anomalies in unexplored areas, but 
the results are interesting. Hirvonen’s work predicted a rather surprising rise of 
the geoid in the Malay Peninsula, a rise later confirmed by observation. 
Hirvonen’s work would seem to show that for India the proper ideal ellipsoid of 
reference should lie some 60 metres (Gulatee, 1940, p. 116) below the geoid at the 
origin of the datum in order that the center of the ellipsoid may coincide with



the center of the Earth. The not-so-ideal ellipsoids commonly used by geodesists 
keep fairly close to the geoid in the particular area under consideration, only to 
depart all the more widely from the geoid in remoter areas.

Work on deflections of the vertical from gravity anomalies has been done 
by Vening Meinesz in the Netherlands, by the « Survey of India » (Gulatee, 1940, 
pp. 97-101), and by Kasansky, in Russia. Of the work of Yening Meinesz we have 
few details. He makes the general statement that deflections were computed from 
gravity anomalies for three stations in the Netherlands and that the results agreed 
satisfactorily with those obtained from astronomico-geodetic work. The « Survey 
of India » also finds good agreement in a few test cases.

The work of Kasansky was more extensive than either of the foregoing and 
deserves careful study, not only for the results obtained but also for the methods 
employed. The region studied is near Moscow and covers an area of about three 
degrees in latitude and four degrees in longitude. This area contained a number 
of gravity stations so that the gravity contours could be drawn with fair accuracy; 
it also contained for comparison a considerable number of astronomical stations. 
Kasansky’s astronomico-geodetic deflections and his gravimetric deflections are on 
two different bases, the first on an arbitrary system, the second on an ideal system, 
but the relative deflections may be compared and errors estimated. Let £a and fig 
denote, respectively, the astronomico-geodetic deflection and the gravimetric 
deflection (note that the subscript g is for gravimetric, not geodetic), either in the 
meridian or the prime vertical, for the average results to be quoted include both, 
and form the difference ^a - fig. The mean error of this difference was found by 
Kasansky to be about 1” .0 (Kasansky used mean errors throughout; to find 
“ probable ”  errors apply the factor 2/3). After allowing for the error of >'a, then 
the mean error of § g, the gravimetric deflection by itself, comes out to be 0” .8. 
This arises from the errors of the observational data and of the contour lines based 
on them and on the inadequacy or absence of data for regions distant from Moscow.

Kasansky tests several groups of astronomico-geodetic stations. In one 
group the deflections were based on an origin at Pulkowa Observatory, about 
400 miles northwest of Moscow; this was the origin of Struve’s survey, one of the 
early Russian geodetic surveys. Bessel’s ellipsoid was used; this is known to have 
its radial dimensions some 700 metres smaller than the ellipsoid best adaoted to 
Russia. This error in radius was manifest in the astronomico-geodetic deflections 
^a, which changed systematically from northwest to southeast, even within the 
comparatively small area studied. The gravimetric defllections, on the other hand, 
are practically unaffected by the error in the dimensions of the ellipsoid. The 
error of the conventional astronomico-geodetic deflection in latitude for the center 
of the Moscow region is thus built up to about 2” .5.

The method of gravimetric deflections can be applied anywhere in the world, 
provided the gravity observations are available. We could determine from gravity 
observations a proper datum for South America and it would be on the same basis 
as a datum similarly determined for North America, even before those two conti
nents are connected by triangulation. Gravimetric data could also be used to 
great advantage in the proposed readjustment of the triangulation of Eurone.' As 
mentioned in a preceding paragraph, the bases could be reduced to the ellipsoid, 
the observed directions could be corrected for deflection and perhaps the dimen
sions of the adopted ellipsoid could be improved.

The Section of Gravity and Astronomy of the United States Coast and 
Geodetic Survey has undertaken the determination of the elevations of the geoid 
and the deflections of the vertical in Missouri. For Missouri itself the work will 
be based on a gravimetric map of the state published by the State Geological 
Survey. The gravity determinations were made with gravimeters and tied in 
with pendulum determinations of the Coast and Geodetic Survey.

The map gives contours for the Bouguer anomaly. It was necessary to 
redraw the map entirely in order to have contours for the free-air anomaly. It 
has been assumed that, in spite of the mildly rugged topography in the Ozark area, 
the results from the uncorrected free-air anomalies will be reasonably satisfactory. 
The question of the best method of reducing to sea level, whether by an isostatic 
reduction, by condensation, by inversion, or by no reduction at all except the



free-air reduction for elevation, has not yet been settled to the entire satisfaction 
of all geodesists and is too large a question to be discussed here.

This study was undertaken partly for the information that it is expected to 
yield, partly for the training it will afford. For instance, it will be interesting to 
see what we find for the position of the ellipsoid with respect to the geoid in the 
area of our experimental work, namely Missouri. Hirvonen’s results for the 
United States are rather curious, differing rather markedly from accepted ideas. 
His results are, of course, subject to substantial modification when additional 
gravity data are taken into account. At the end of the job we of the Section of 
Gravity and Astronomy should be familiar with the various necessary techniques 
of what seems to be the coming method of determining deflections of the vertical, 
deflections less arbitrary and more scientific than those in use hitherto, deflections 
that may be computed even for points isolated from existing blocks of geodetic 
triangulation.

We shall have also a scientific basis for the choice of a geodetic datum, a 
datum as free as possible from arbitrary elements. The center of our ellipsoid 
of reference will be where it should be; the direction of the axis of the ellipsoid 
will be what it should be. Only the linear dimensions will be open to choice, and 
a comparison of the gravimetric deflections at various points with the corresponding 
astronomico-geodetic deflections will give us a good hold on the proper dimensions 
to choose. This is as near as we can come to the deflection of the vertical at 
a point.

As a by-product of the study we shall have rather full and accurate tables 
of four functions useful in the computation of gravimetric deflections. Defining 
Stokes’ function f ( ¿ )  by the formula :
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The indicated integration cannot be performed in terms of the elementary 
functions, so it was necessary to resort to expansion in power series and to 
mechanical quadrature. The value of a , the lower limit of integration, was 
arbitrarily taken as 10  metres of great-circle arc, or approximately one centesimal



second, since a zero value would have given rise to a logarithmic infinity. The 
values of f ^  itself, used in computing geoid elevations referred to the spheroid,
are given in Special Publication No. 199 of the U.S. Coast and Geodetic Survey 
(Lambert and Darling, 1936, pp. 114-117).

It will be fairly easy to interpolate in the new tables in order to form special 
tables for whatever arrangement of zones may be deemed convenient for map 
reading and computation. The tables will be published in a forthcoming issue of 
this journal.
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