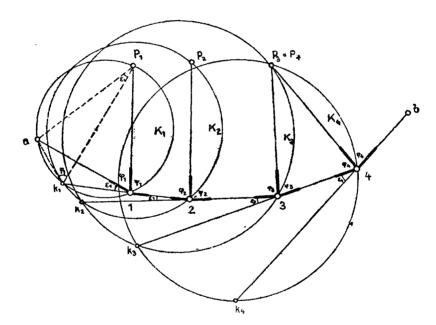
HINTS TO HYDROGRAPHIC SURVEYORS


ON MULTIPLE BACKWARD RESECTION

bу

Dr. KARL RINNER, MUNICH.

(Translated from the Allgemeine Vermessungs-Nachrichten, Berlin-Grunewald, 15th November 1939, page 654).

If n new points, 1.2 ldots n are to be determined from (n + 2) given points a, b, $p_1 ldots p_n$, as seen in the figure, one has to do with an n number of backward resections. This problem may be solved in a similar manner as with the simple backward resection, i.e. by the determination of two auxiliary angles and subsequent direct resection.

For the special case where $p_1 = p_2 = \dots = p_n = p$, Prof. Dr.-Ing. Werkmeister has given a method for the rapid progressive improvement of given approximation values for the auxiliary angles.

It is however also possible to reduce a multiple backward intersection to a purely manifold number of lateral resections, a method which corresponds to the simple backward resection with the aid of Collins' points. As a matter of fact, it may be shown that the proposition: "an n number of backward resections can be computed by 2 n lateral resections", is fully proved.

By referring to the figure, it is easily seen that the new point \mathbf{I} is located on circle K_1 determined by a, p_1 and φ_1 . The ray (12), since it includes with (a 1) the given angle $\varepsilon_1 = 180 - (\varphi_1 + \Psi_1)$, must pass through that point k_1 of K_1 which, with a, yields the periphery angle ε_1 . This point k_1 , determined by lateral resection of a and p_1 , will be called the Collins' point conjugated to new point \mathbf{I} . In precisely a similar manner the new point \mathbf{I} is to be sought on the circle determined by k_1 , p_2 and φ_2 , and passes (23) through the Collins' point k_2 belonging to 3 determined by lateral resection from k_1 , p_2 , and so

on. Finally, (k_1b) gives the direction of (nb). n can now be determined by lateral resection from pn, and b, n-1 by lateral resection from n, p_n-1 , and so on. Thus, for the determination of the Collins' points, there are required n, lateral resections; for the determination of the new points also n, consequently altogether 2n lateral resections are necessary for the solution of the problem.

