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The method for calculating ocean current in a given direction, derived by W .  W e r e n s - 
k io l d  (1), is indeed much simpler than the usual computations of dynamical height of 
isobaric surfaces. His method, which applies only to one dimensional currents, can be extended 
so as to become applicable also to two-dimensional currents, of which the direction is not 
given before hand.

W e r e n s k io l d ’s formula is

where v  is the velocity, or the velocity component, at some level, perpendicular to a vertical 
hydrographic section, which passes through the station, and j  is the angle o f inclination, 
measured in clockwise direction, o f each isopycnal line drawn on the vertical section with

summation must be ranged from a base-level, z  —  z0, where there is no considerable current, 
to the higher level at which the speed of current is calculated.

The shortest way to obtain the formula is, perhaps, somewhat like as follows (2) :■—

In a left-hand system of rectangular coordinates (x, y, z), let 2-axis be directed verti­
cally downwards and let the vertical section be parallel to s-^r-plane. Then, the hydro- 
dynamic equations for steady non-turbulent ocean currents are

where p is the pressure and v the ^-component of velocity, while the latitude <p is measured 
positive toward north. Integrating the second equation in (2) from the sea surface s  —  z  % 
to some level we get

where 7 )s and ps are respectively the elevation and the density of water at the sea surface, 
and the atmospheric pressure, ps , is assumably constant. Inserting (3) into the first equation

of (2), and putting p ~  Pi at level z\, we have

(1) W e r e n s k io l d , W . : Coastal currents. Geofys. Pubi. 10 (13), 1935, 1-14; Die Be­
rechnung von Meeresströmungen. Ann. d. Hydrogr. u. Marit. Meteor., 65 (2), 1937» 68-72; 
Berechnung der Geschwindigkeit an der Wasseroberfläche. Ann. d. Hydrogr. u.s.w., 65 (4) 
1 9 3 7 , 185-186.

(2) see the remark on page 4 below.
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By side-by-sidc substraction, we obtain

Now, by integration by parts, we can put
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where Po denotes the density at level z q . In the last term, z  is considered as a function of

p and x, i.e. as the depth of iso-pycnal line, while the limits"of integration must be considered 
as functions of x and s, z  representing a fixed level. By differentiation with respect to x, 
we obtain
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On the other hand, by definition of j, we can write ($%j$x) =  tan;. Hence, (4) becomes
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which is nothing but the formula (1).

The extension to two-dimensional cases is performable by just the similar way, starting 
from the fundamental equations,
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W e obtain similarly as (4) and (5),
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or denoting the averaged value of p1 by p1; and putting
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we can write for sufficient approximation u =  t —  , and v —  —  —  which show that

Oy o x
is a stream function.

In the form like as (1), the stream function (7) can be written as
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of which the numerical computations are very easy with any hydrographic chart. Now, 

the stream function ^  can have an arbitrary additive constant. Hence, in the first term

of (8). depth of each iso-pycnal surface z  can be substituted by the difference, £ =  z  —  z ’ 
from a suitable constant level s’, chosen each for each iso-pycnal surface, provided that

the value of p for that iso-pycnal surface lies between the maximum density pm at level z x

and the minimum density pni0 at level z Q, or, in other words, provided that the iso-pycnal 
surface passes through all stations in the domain at some level between z\ and z 0 (Fig. 1).

For iso-pycnal surfaces, o f which p is greater than pm0> let z  =  z 0 -f- s and at the same

'f, = ^ r ,:: £ - n( J pF[ ^ p  — p *  +  p * ) ’  «

time let p0 =  pm0 -j-  n0$ , then
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where pm0̂ 0 is constant. Hence, if we substitute £ to z, we can drop the second term in

(8). Similarly, if we measure the depth of each iso-pycnal, of which p is less than p m,

from the level z u  and denote it by £ , we can drop the third term in (8). Thus, we finally 
obtain :—
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where £ = 2  —  2’, provided that z ’  =  21 for p<C pm and that z ’ =  z\  for p^>_ pm0

The last restriction for the choice of z ’ disables the formula from being employed, if 
there exists such an iso-pycnal surface, which passes through both of the end levels z\ and Zq 
Some device may be possible to remove this difficulty. But, in such a case it is perhaps to 
resort to the formula (8), in which the third term can be dropped 
by putting z L = 0 .

It is a matter of course, that =  const, is a stream line, 
and the resultant velocity V  is given by the maximum gra­

dient of ^ , which again clearly coincides with (1), if we take 
the vertical section perpendicularly to the stream line. In prac­
ticing the numerical calculations, meter-ton (io6 g)-second 
system of unit is employed for convenience’ sake.

Fis», i
T he local difference in heigh *f)i of an isobaric surface at level z\ can also be estimat­

ed readily from (8). Since we have assumed that there is no current at level s,,, the isobaric 
surface at level z0 is horizontal. Then, for the difference in pressure between two isobaric 
surfaces, mentioned just above, we have
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Or, for a sufficient approximation,
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provided 41 *s calculated by (8). To the last term in (10), we can substitute the difference 

— ^1( for further approximation. I f  we calculate by (9), then we have
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and we can still know the relative variation in

A  remark to  the d e riva tio n  o f  W e r e n  s k i  o l d ’s fo rm u la  sh ou ld  be g iv e n  on th is o cca sio n

The relation between the inclination of iso-pycnal, tan j ,  and isobaric, tan i, surfaces can 
be derived as follows without aid of the distinctly stratified layers :—



In Fig. 2, tan *’ =  {8p /  8x) j  {8p /  8k)  and tan =  — (8p/8x)/(8p/8$-

or (8p/8x) —  tan i . (8p/8d  ( r i)

and (5p/8*) = —  tan/.(flp/&c) (12)
X
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but, by (2), ( 8 p / & d = 9 p ,  (13)

Hence, from (11), (8p/8x) —  t^n i . g p .  (14)

Differentiating (13), with respect to x  and (14) with respect to 2 and
z

Fig. 2.
equating, we get (op /ox)  =  3(p tan *)/&(. ( 15)

From (12) and (15), we obtain :—

S(p tan i)/8%. =  —  tan /.<5p,/&{). (x6)

On the other hand, we have, from (2) and (14),

2vp(x) sin 9  =  (8p/8x) =  pg  tan i. (17)

Differentiating both sides of (17) with respect to 2, and remembering (16),

20i sin y8(vp/8%) =  —  g  tan j . (8p/8l)-  ( 18)

Finally, integrating both sides of (18) from level 2 to level 20 , we obtain :—
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This is the same as (6) and is equivalent to the formula (1).


