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ï . The spherical sub-tended angle is the locus of the surface points of 
a sphere so that the great circles connecting them to two given points of the 

sphere make a constant angle between them. This geometric locus which is 

an extension to the sphere of the plane sub-tended angle, has assumed some 

practical importance with the development of. direction-finding by wireless. 

As a matter of fact, when a mobile wireless direction-finding station carried 

in a ship or plane, for instance, finds a fixed transmitting station of known 
position, that is to say, determines the azimuth in which this transmitting 

station is located, the observation furnishes a locus of the mobile station 

position which is nothing else but the spherical sub-tended angle of the 

measured azimuth described on the geographic pole and on the known station.

The spherical sub-tendend angle has formed the subject of various 

analytical or geometrical studies, several methods have been propounded for 

its practical application, some users, in particular, have considered it desirable 

to have some diagrams or projections available on which the sub-tended angle 
would be an easily drawn curve. Although this solution is not free from 

criticism, it should be interesting to deal with the problem which it raises, 
which is precisely the purpose of this study. As far as we know, two 

methods of plane representation have already been suggested, one by 

Mr. Lecoq⑴ a Professor of hydrography, who has conceived a new projec­

tion, the other by Civil Engineer Bourgonnier(2) who on this occasion re­

discovered Littrow’s conformai projection.

We will at first establish the existence of a small circle of the sphere in 

punctual correspondence with the spherical sub-tended angle. The conside­

ration of this auxiliary curve permits to deal in a simple manner with various 

problems relating to the spherical sub-tended angle amongst which that of 
its plane representation which is tantamount to that of a small circle. We 
will then show that the conformai spheric projection of exponent 2 and 

equatorial origin causes plane sub-tended angles of the same angle to corres­

pond to spherical sub-tended angles described on two points of the equator.

Littrow’s projection, which up to the last few years was considered as a 

curiosity without great interest and which one hardly knew how to classify

(1) Le segment capable sphérique, by G. L e c o q . {Annales Hydrographiques 1933 and 
Hydrographic Review, Vol. X ，N。2，p. 99.)

(2) Note au sujet d'une projection et d,im diagramme pour Vétude et le tracé du segment 
capable sphérique, by G. B o u r g o n n i e r .  (Annales Hydrographiques, 1933.)
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2. Circular correspondent of the spherical sub-tended angle

Let us take a spherical sub-tendend angle of the angle a described on 

two points A and B (Fig. i), let us denote by M the middle of the arc AB 

and by A，B，the symmetries of the point M in relation to the extremities of 

the base. Through one of the points A，or B，let us describe the great circle

among projections is the transverse aspect of the preceding projection ; it is 
therefore a spherical projection for the same reason as Gauss’s projection is 

a cylindrical projection ; it enjoys, w ith  respect to spherical sub-tendend angles 

whose base is borne by the zero meridian, the same property as the conformai 

spherical projection of exponent 2 in regard to segments of equatorial basis. 
By shifting on the central meridian the origin of Littrow’s projection, the 

grid of the meridians and parallels of the representation is altered, but not 
its properties, so that the use of the projection can be improved when the 

field of application is relatively distant from the equator ; particularly when 
locating the origin orr the 45th parallel or at the geographic pole, represen­

tations suitable for medium and high latitudes are obtained ; we will give 

some particulars of these various systems so as to facilitate their possible 
utilisation. Still, there are a good many other methods of representation 
likely to be employed for drawing spherical sub-tendend angles ; in general, 

they retain neither the angles nor the relative expanse of surfaces and some 
of them have the disadvantage of being suitable only for segments described 

on a definite basis, so that, when applying these latter systems one diagram 
per transm itting station under consideration must be available ; nevertheless 

these projections may be of interest in certain cases, consequently we will 

make a fairly brief study of four of them, one projection with orthogonal 
grid and one polyconic projection both deriving by homographie transforma­
tion from conformai spherical projections already considered with the same 

general application, then two projections suitable only for spherical sub­
tended angles relating to two given points, Lecoq，s polyconic projection and 

one projection with parallel and rectilinear meridians.



TC
making the angle —— 一 a with A’B’ and which cuts at C the great circle

1
perpendicular to the base in its middle.

Let us now consider the small circle of pole C and spherical radius CA’ 
which therefore passes through A ’ and B，. We maintain that there exists a 

punctual correspondance between this small circle and the sub-tended angle.

Let us assume a system of geographical coordinates admitting the great 

circle AB as equator and the great circle CM as zero meridian {Fig. 2). If 

A denotes the length of the arc AB, the longitudes of A, B, A，，B’ are res­

pectively — — 5 — , — A and A. Let us consider the pole P and any 
2 2

point S of the sub-tended angle, having as geographical coordinates L (lati­

tude) and M (longitude). We have, in the rectilateral triangles tan PSB and 
PSA, the relations :—

, ' A x A 
A tan(M---- ) A tan(M-j--- )

tan PSB =  -  _ tan PSA =  —~ — l A ： 
sin L sin L

Let us now introduce the isometric latitude I defined by :—

, I =  Log. tan (子 + — ^

and calculate the expression of a , which is equal to PSB-PSA.

There emerges, after some simple reductions :—

sh 2 / sin A
tan a

ch. 2 I cos A — cos 2 M

We can then write the equation of the sub-tended angle in the form :—

(1) cos 2 M =  ch 2 / cos A — sh 2 / sin A cot a.

Let us now try to find the equation of the small circle the latitude of 
centre of which we shall denote by L。and the spherical radius CA’ by r. 

In the spherical right-angled triangle CMA，，we have the relations :—

t .  ̂ tan A . t
tan L, =  smA cot a, tan r ==---, cos r =  cos 厶 cos L0.

sin a

The equation of the small circle :—

cos r =  sin L sin L 0 + cos L cos L0 cos M

is written w ith due regard o f the expression o f r and L 。 ：一  

cos A =  cos L cos M + sin L sin A cot a,

or else, by substituting for the geographical latitude the isometric latitude :—

(2) cos M =  ch Í cos A — sh I sin A cot a.



The comparison of equations (i) and (2) shows 

point of the sub-tended angle to a point of the small 
isometric coordinates I and M.

that we pass from a 
circle by doubling its

In other words, if we denote by V and M’ the coordinates of the point 

of the circle corresponding to the point I, M of the sub-tended angle, we have 

between these coordinates the relations :一

(3) I，== 2 I， M，=  2 M.

Auxiliary sphere :

The correspondence between the sub-tended angle and the auxiliary circle 

is not dependent on the selection of the zero meridian. Consequently, we 
can associate with the given sphere an auxiliary sphere, so that to each 

spherical sub-tended angle described on two points of the equator of the first, 

will correspond a small circle of the second. The coordinates of the corres­

ponding points of both surfaces must therefore check the relations (3).

REMARKS '

a) It is desirable to bring together the method of generation of the 

auxiliary circle with that of the circumference, plane sub-tended angle of



the angle a ，the centre of which is also obtained by drawing through an

extremity of the base ab a straight line making the angle —— — a with the
2

base and taking the intersection c of this straight line with the perpendicular 
raised in the middle of the base (Fig. j) .

b) The corresponding points on the auxiliary circle and on the sub­

tended angle are homothetic in relation 2 about the middle of the base and 

according to the loxodromie originating in this point. The •• loxodromie 
similarities ” whose preceding correspondence is a particular example can be 

utilized to give a geometrical interpretetion of the “ exponent ” of the con­
formai projections, being the coefficient of the complex element / -j- i M in 

the expression of Y + i X.

c) As Mercator projection is defined by the law :—

X =  M, Y =  I,

the transformation, in this method of representation, of the spherical segment 

of equatorial base is deduced from the transformation of the auxiliary circle

by a sim ilarity o f relation —  having for its centre the projection o f the
2

middle of the base. The spherical sub-tended angles are therefore projected 

according to the three types of curves which are distinguished in the classical 
theory of the curves of altitudes, which are images of the smal! circles of 

altitude drawn on the sphere.

It may be observed in this respect that navigators using generally circles 
of altitude as geometric loci of the ship’s position, have practically never 

pointed out the need of a projection enabling them to draw easily an image 
of thèse loci, one can therefore w'onder whether such a convenience is really 

warranted in the case of the spherical sub-tended angle.

3. Plane representation of the spherical sub-tended angle

All stereographic projections of the auxiliary sphere represent the auxi­

liary circles by circumferences. If, instead of drawing on the projection the 

grid l\ M1 of the parallels and meridians of the auxiliary sphere, one lays 
Z， M，

off the grid I — —— ， M = —— of the parallels and meridians of the 
2 3

given sphere, these circumferences will be the projections of the spherical 

sub-tended angles described on two points of the equator. The law of 
correspondence between the two spheres causing meridians to correspond to 

meridians and parallels to parallels, the grid will consist of circumferences 
like that of the stereographic projections. The projection thus defined is the

Z i i
conformai spherical projection of exponent 2 (coefficient of ------- equal

to 2). 3



The conformai spherical projection of exponent 2 has therefore the 

property of representing by、circumferences the spherical sub-tended angles 
described on two points of the equator.

This projection, however, will only solve the problem calling for atten­

tion if these circumferences are easy to draw. We know that the spherical 
segment sub-tending an angle makes at the extremities of the base with the 

basic great circle (Fig. 4) angles equal to a .. This property is retained in a
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conformai representation so that, if such a projection transforms the sub­

tended angle into a circumference and the base into a straight line, the circum­
ference will be the segment sub-tending- the angle a described on the projec- 

Hon of the base.

In the case of the conformai spherical projection, the base, being laid 
on to the equator, will have a rectilinear projection if the central point of the 
projection be located on this great circle. In consequence, the conformai 
spherical projection of exponent 2 and of equatorial central point represents 

the spherical sub-tended angles described on two points of the equator by 
plane segments sub-tending the same angle and constructed on the projections 

of the two points.

4. Conformai spherical projection of exponent 2 
and of equatorial origin

Formulae. — This projection is defined by the relation :~ ■

Y + iX  =  th (Z + iM).

The right-angled coordinates have therefore the following expressions 

in terms o f geographical coordinates :—

sin 2 M sh 2 Z

X — ch 2 / + cos 2 M’ Y — ch 2 Z + cos 2 M*

or else as a function o f geographical latitude :—

sin M cos M cos2 L sin M cos M sin L sin L (1 +tan2 L)

i sin2 M cos2 L tan2 L + cos M — 1 — sin2 M cos8 L tan2 L + cos2 M

If we denote by s and Z the length and the azimuth of transmission of the 
great circle arc joining the origin of the projection to the point of coordi­

nates we have :—



Further, the distance on the projection between the origin and the point XY 
has for its square :—

ch 2 / — cos 2 M i — cos2 M cos2 L tan2 L+sin2 M sins s

X + Y ch 2 / -f- cos 2 M i — sin2 M cos2 L tan2 L-f- cos2 M I — sin* s — sin5

The inverse formulae are the equations of the transformations of the parallels 
and meridians :■

2 Y 2 X
th 2 Z = -- , - ： ， tan 2 M

+  X2 +  Ys ▲上 一  i — X2 — Y*

Grid. (Fig. '5). — The projection rejecting to infinity (critical points)

the poles of the zero meridian points on the equator situated at a distance —
2

of the central point, it can only be used for representing the hemisphere 

having the orig in  as its pole and therefore lim ited to the meridians in long i­

tude 平 — •
2

The grid of meridians and parallels is symmetrical about the coordinate 
axes. The poles are represented by points on the Y axis of the rir 1 ordinate. 

The segment of this axis comprised between the projections of the poles 

corresponds to the meridian of origin, the parts exterior to this segment

represent the meridians in longitude 士 — . The equator is projected along 

the X axis. 2

The parallels of the chart are circumferences whose centre is on the Y

axis in ordinate ~~- or 丄 -+ 如  ^ and whose radius is equal to ~ -~  
cos2 L th 2 Z 2 sin L sh 2 Z

or -----. They cut the Y axis at the point of ordinate Y — th I for M =  0
2 sin L .I 兀

and Y =  —— for M =  rt —  The distances u v from the projection of 
th L 2

the point L M to the projection of the poles being :一

±  I / õ I 土 sin s cos Z
X* + (Y 土 i)2

ch 2 Z + cos 2 M \/ i — sin2 s sin2 Z

the parallels of the chart can be considered as the locus of the points whose 

ratio of distances to projections of the poles is constant and equal to eÿl

ortan2 ( f +9*

To the meridians correspond circumferences with their centre on the X

axis at the abscisse — cot 2 M and whose radius is equal to -- ---they
sin 2 M

cut the X  axis (equator) at the abscisse point tan M. These circumferences 

are the angles sub-tending the angle n —— 2 M, constructed on the projections

7T
of the poles. The meridians in longitude ±  —— are projected in particular
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along the circumference having the pole line as its diameter. Two right- 

angled meridians have as their projections two complementary arcs of a single 

circumference, joining at the poles.

If we denote by U (Fig. 6) the angle at the centre of the meridian and 

parallel of a point S, an angle which has the same value for both curves on 
account of the orthogonality of the grid, we have :— '

cos U =  ch 2 I — Y sh 2 I，

and therefore

U
tan th I tan M.

• TU
The bearing- of the tangent to the parallel is —  > U, that of the tangent

2
to the meridian n 一 U. The parallels admit of the tangent parallel to OY 

and the meridians a tangent parallel to OX at the coordinate points :——

X — --- Y =  —r-------—?
tan 2M th 2 /

whose locus is the equilateral hyperbola

Y2 — X 2 =  i,

being a projection of the sphere curves corresponding to U 
have therefore as their equation :—

土
TZ

which

th Z tg  M =  土  I ，
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and which are the spherical sub-tended angles of a demi-right angle described
on the pole and critical points.

The projections of the poles are single points at which the meridians cut 
one another under angles double those which they make between them on 
the globe.

- nlàn 
Ratio of similarity. ~ ： The ratio of similarity — --  is given by the

relation sphere

T ,  — 2 ch. I_________—  cos L______— y/ j — sin2 s cos2X  .

ch 2 / -f- cos 2 M i — sin2 M cos2 L i — sin2 s sin* L

We may also write in terms of the distances from the position to the pro­
jections of the poles

c h Z i i v  =  t / -  UV
uv

y i —  sm^ 

Further, we have the two relations :-

2 ch 2 / ( i + ch 2 /)
K* + 2 Y2 =

sin2 L \/ i — sina s cos2 L

i + ch 2 /

(ch 2 Z + cos 2 M)2 

as, on the other hand

X2 + Y2 + i =

+ Y2
ch 2  I +  COS 2 M

ch 2 Z

the following relation between K and the rectangular co-ordinates can be 
deduced :—

, K2 + 2 Y2

which is the equation of the curves of equal linear distortion.

T

On the X  axis (equator) the ratio of similarity is : K =
cos2M

i + X2, on the Y  axis between the projections of the poles (zero meridian) 

it is equal to cos L，or y/i —— Y2 ; when the absolute value of Y is more

than i (meridian in longitude ±  — ) its expression is. C°S ^ or Y t/y2 — i .
2 sin2 L v

The curves of linear equal distortion are symmetrical closed curves about 

the coordinate axes, when K is less than i, they are each divided into two 

curves symmetrical to each other about OX (Fig. / ) (1). These curves cut

the Y axis at the points whose ordinate is ■土^ / i + v / i  +  4 K^ —  a l s o， 

but only when K is less than the unity at 士 _  K2 . When K is more

(i) See also Fig. io, while interchanging the rectangular coordinate axes of thç diagram.



than 1，they intersect the X axis at the abcissa points ±  y/K — i . These 

curves are the projections of the sphere curves having for their equation :—

cos L V  1

cos L

which cut the meridian of origin, when K is less than 1，at the points in lati­

tude given by cos L =  K. When K is more than. I，they intersect the equator 

at the points in longitude M such as sec2 M =  K. They intersect in any case

the meridian in longitude 土 —— , at the latitude given by
cos

sin2 L

F ig .  7

»

Among the curves of equal linear distortion there is one for which the 
scale is preserved (K =  i). Its equation may be written :—

X ，=  (\/i +  Y 2 —  I )  ^ 1 +  Y 2 +  x) '

This curve is 8-shaped, symmetrical with respect to the coordinate 

axes and stretched along OY. It passes through the origin which is a

point o f inflexion and where its tangent has the bearing arc tan -A=-, or 

， • • • V 2.
— 35.0i6，； its points of intersection with the OY axis have for their ordinate

— 4 =  do 1,2720, they correspond to the points of the sphere in
V  , ^

longitude ±  900 and latitude ±  5 i050，(sin L =  cot L).

Outside the curve of the preserved scale the ratio of similarity is more 

than the unity, it becomes infinite at the critical points ; within the curve, it 

is less than 1 and becomes zero at the poles.



In the neighbourhood of the origin, K differs little from the unity and 

we have as ä first approximation :—

Y2
K =  i + X 2 ——

2
Y2

the curves of linear equal distortion are merged with the hyperbola X 2---- 二--

constant and the projection is of the hyperbolic type. 2

When K is very small, the curves of equal linear distortion are obviously 

circumferences whose centre is a point very near to the projection of the 

poles, with which they merge when K =  zero. Considering K as an infini­

tesimal of the first order, the intersections of the curves with OY  have as
, , K2 . 5 IO , K2 K4 , : .

ordinates i -f- —  — --- +  . • … and i —  —  — —  +  • • • • ; being
2 8 2 8

values very near to the unity ; the equations of the curves can also be written

neglecting the terms of the sixth order :—

X2 + Y2 + I 2 Y i +
(  K4' 

= 2 Y  i +  —

they represent a circumference whose centre is on OY at the ordinate
K2

i + —— and whose radius is equal to ——
8 2

On the contrary, when the ratio of similarity is very great, the curves of 
equal distortion are merged with circumferences whose centre is the origin 

of the coordinates and whose radius is \J K — i. Let us recollect, in this 
respect, that in the stereographic projection, the curves of equal distortion 

are strictly circumferences o f radius 2 \J K  — i centred on the origin, at a 

same distance from the origin (when it is great) the ratio of similarity is 
therefore about four times smaller than in the considered conformai spherical 

projection.

Transformations of the spherical sub-tended angles.

In the method of representation which we are considering, the spherical 

subtended angles described on two points of the equator have as projections 

the segments subtending the same angle, described on the projections of the 
two points.

When one of the extremities of the base of a segment is a critical 
point which the projection rejects to infinity (poles of the meridian of origin 

TT
L =  O, M =  ±  —— ) , the spherical subtended angle is represented by a 

2

straight line passing through the projection of the other extremity of the base 
and making with tne OX axis, being the projection of the equator an angle 
equal to that of the segment.

Conversely, every circumference of the projection intersecting the X axis 

is the image of a spherical subtended angle described on two points of the



equator. If we consider the circumference as a segment subtending an angle 

a, constructed on its two points of intersection with the X axis, the spherical 

segment subtends the same a angle.

Lastly, every straight line of the projection corresponds to a spherical

subtended angle described on two points of the equator, one of which is in —

longitude. The angle of the segment is equal to the inclination of the 

straight line on the X  axis. .、 ^

Change in the meridian of origin.

Let us at first seek the point of intersection of the X axis with the 

straight line joining the projections of the two points on a single parallel

of latitude L in the longitudes Mx M2. If X ] X 2 Y o denote the right-

angled coordinates of the two points, we have as abscissa of the point of 

intersection :—

X】Y2 — Xs Yx sin ‘1 iMj — sin 2 M2
X

Y$- Y x cos -i Mi — cos ‘1 M2
— cot (Mjj + Mt).

Let us now consider two conformai spherical projections having as a 

central meridian the first:— the meridian of origin of the longitudes, the 
second :—  the meridian in longitude M 。and let us superimpose the coor­

dinate axes of these projections (Fig. 8). Let and M 2 be the projections 

of a single point M of the geographic coordinates L and M ; the points M x 
and M2 are on the circumference representing the parallel in latitude L, which 

is common to both systems.

Let us denote by M，2 the symmetric of with respect to OY in the 

second projection this point represents the point of the sphere of the geo-



graphic coordinates L and M。一  (M-M。) or 2Mo-M; in the first it corres­

ponds to the point L, M o-M. According to the above demonstrated propo­

sition, the point C where the straight line M’2 meets the axis OK has 

therefore as abscissa 一 cot M。，it is the projection of the point of the equator

in longitude Mo— ~  , a critical point of the second system, it is also inde-
2

pendent of the considered point M on the sphere.

On the other hand the product CMX, CM，2 is equal to the power of the 
point C with respect to the circumference which is a projection of the 
parallel, or :—

CMl CM'2 = cotg2 1 + cot^ MQ =  ^ ：= 茂2.

This product is therefore also independent of the point M. Consequently 

we pass from the first projection to the second through an inversion of the

centre C and constant ~ ^— ，then through a symmetric with respect to OY. 
sin* M0

We obtain JVT2 geometrically by taking the intersection of CMj with the 

circumference passing through Mj_ and tangent to CP at P, a cireum'ference 
whose centre is on the straight line PH wjhich is perpendicular to CP at P 

and has consequently u — Mo as a bearing. It should be noted that C is 

symmetrical w ith  respect to O Y  o f the point C ,  a projection in the second 

system of the critical point of the first.

%

5. Transverse projections

In practice, in most cases, the angle of the spherical subtended angle is 

an azimuth, the pole is therefore one of the extremities of the base and this, 

is orientated along a meridian. It is therefore necessary to use the transverse 

form of the conformai spherical projection, i.e. to adopt as a point of repre­

sentation the pole of the meridian bearing the base of the segment.

For the representation of spherical subtended angles, the meridian of 

origin of the projection thus obtained enjoys the same properties as the 

equator of the spherical projection from which it is derived. As regards 

the ratio of similarity and linear distortions, the results are identical for both 

projections, when expressed in plane coordinates and due account is taken 

of the difference of orientation of the coordinate axes of both systems which 

is equal to a right angle.

On the other hand the grid of meridians and parallels is very different 

in both methods of representation and the transverse projection, in particular, 
no longer shows the simplicity of definition and drawing which characterises 

spherical projection.
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Let O be the central point of the part affected by the projection and L。 
the latitude of this point {Fig. p). Let the coordinate bear the index 1 when

referred to the point of the equator in longitude一  with respect to the
2

Pale

Pi  Vot
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meridian of the point O. The Y axis being orientated along this meridian 

and the X axis along the great circle perpendicular to this meridian at O, the 
formula of the conformai spherical projection is :—

X — i Y  =  th (/x + i M J .

Let us consider on the other hand the rectilateral triangle formed by the pole, 
the pivot and any point S of the coordinates L  and M ; the change of coordi­

nates is defined by the following relations :—

sin M i shiM
sin Li =  cos L sin M. or : th lx — ~ r—r =  --r—r

ch l i ch I
cos M sh lo — sh I

cot (Lo — Mj) =  cot L cos M, and tan Mi = ---r r~ , ;—■:—~rr
、 7 cos M + sh l0 sh I

i sh / — sh Z0 ch i M

thiMl 二 

By substitution there emerges :—

sh (/ +  i M) — sh U
Y +

— i + sh l0 sh (Z + i M)

From which are deduced for the right-angled coordinates :- 

ch2 lo ch / sin M

(sh21 + sin2 M) sh2 Z0.+ 2 sh Z0 sh Z cos M + 1
sin M cos

— (sin L cos Lo — sin L0 cos L cos M)



(i — sh lo f sh Z cos M +  sh l0 (sh21 — cos2M) 1

Y — (sh21 +  sin2 M) sh2 Z0 +  2 sh l0 sh / cos M +  1

_  u cos 2 L0 sin 2 L cos M +  sin ‘2 L0 (sin2 L — cos* L cos8 M)
_■二 / g --------------------------------------- -̂---------- —---- - ——---- —

i — (sin L cos L0 — sin L0 cos L cos M)2

These expressions could also be obtained from the formulae in s and Z of 

the spherical projection, in which — Y should be substituted for X, X for Y

and Z —— —— for Z ; which gives :— 
u

sin s sin Z sin s cos s cos Z

X — i — sin2 s cos2 Z’ Y — i — sin2 s cos2 Z 

We have, further :—

丄 r  - 丄• ， ，Y  . (sh21 +  sin2 M ) —  2 sh “  sh 1 cos M +  sh2 “
Y + X  二 、Y +  lX) (Y- lX ^ ^ / ：：+sh^M)sh^0+  ,sh /；shicoSM + i

i — (sin L sin L0 +  cos L cos L0 cos M)2 sin2 s
-二■二 ' ' ' : -.- ---------- ------•

i — (sin L cos Lo — sin L0 cos L cos M)2 1 — sin2 s cos2 Z

The poles of the meridian of origin, being pivots of the spherical pro­
jection, are singular points Where the angles are doubled; these points are 

projected on the Y axis at abscissae 土 i. The distances uv from the point 

of the coordinate LM  to these points are expressed by :—

t ---- v .丄_ — ______________ ch h (ch I ±  sin M)__________  .
Y + (X — i) 一  沖21 _j_ s-nî 构 s{̂  /0 -j_ 2 sh l0 sh i cos M + 1

i ±  sin s sin Z 

\/ i — sin2 s cos2 Z

Grid.. —  If  we substitute —  L for L and 7： —  M for M, the expressions 

of the right-angled coordinates do not change. Consequently, any point of 

the projection represents two points o f the globe, but there is no overlapping 

if we confine ourselves to the representation of one hemisphere ; the projection 

of the great circle lim iting  this surface is thus a discontinuity line o f the 

representation ; when it is crossed over itvis necessary to change the sign of 

the latitude of the parallels and replace the longitude of the meridians by its 
supplement. ,

The grid of meridians and parallels admits the axis OY as the axis of 

symmetry. The X axis, as regards the part comprised between the singular 
points is the projection of the great circle passing through the origin and the 

poles of the meridian of origin :—  in this case we have :—

sh / — sh lo cos M,

and therefore :一

sin M '
X =  "^~y" =  sin M cotg L.

The part outside the K axis represents the great circle whose origin is the 

pole ; it corresponds to the relations :—



cos M ch I I
sh I U 7 ， X  —̂  ~ 77 ^  '  丨 T •

sh /0 sin M sin M cos L

The Y axis is the projection of the meridian of origin ; its graduation in 
latitude follows the law :—

sh I — sh l0 
Y =  i + sh / sh /o =  tan (L — L0).

it is also the projection of the meridian of longitude 7T , it is necessary in 

this case to change the sign of L. We have then :—

Y =  — tan (L + Lo)

The poles are projected on the Y axis at the point whose ordinate is :—

-,1 , =  cot Lo. The equator and meridians of longitude being right- 
sh 2

angled meridians of the spherical projection are represented by two comple­

mentary axes of a single circumference, being arcs joining at the singular 

points of the axis OX. This circumference which delimits the representation 

of one quarter of the surface of the globe has its centre on OY at the

ordinate 2L。，its radius is ■ 1 T is cuts the OY axis at the points cot L
sin 2 L0 r o

and — tarr L 。，the first of which is the projection of the pole.

The projection rejects to infinity the point in latitude L。— 上  of the
0 'j.

meridian of origin and its antipode. The parallels of these two critical 

points have the same projection. For the first of these points for instance 
we have :—

sh I
sh /0

and its parallel has consequently for its

ch I

vs 7 M 
ch3 l0 cot

X
2 sh /0 . , ,  7 , M

i + sh* U cos2 ——

th h

parametric projection

i i + sh2 lo cos M
"Y"—

sh I + sh2 l0 cos5 —

This curve cuts the Y axis at the point whose ordinate is cot 2L。，wihich is 

the centre of the circumference bearing the projection of the equator. It

admits as asymptote the straight line Y =  — ^—— = which is half-
2 sh l0 a

way between the projection of the pole and the X axis.

The other parallels of the globe are represented by closed curves. Those 

that are comprised between the critical points surround the two singular points 

of the X  axis which they cut outside the segment + 1，一 1 at the abscissa 
points :—



The parallels comprised between the poles and the critical points are 
projected according to closed curves surrounding the projection of the pole 
and leaving outside the singular points on the axis OX.

The parallels situated between the parallel of the origin and the sym­

metric parallel include only curves of the first of the two preceding categories

si L. <  —  ; in the opposite case, they include all those of the first category 
4

and a portion of those of the second. All the corresponding curves cut 
the X axis at 2 points located between the singular points and having as 

abscissa :—

The parallel of the origin

ch3 /0 sin M 
X =  m

ch‘ h — ą sh2 Zo sin4—

offers no essential peculiarity.

The meridians are represented by 8-shaped closed curves, which are 

symmetrical with respect to OY, whose point of intersection is the projection 

of the pole; at this point the angles are preserved and the branches of the 

curve make with the axis OY angles equal to the longitude of the meridian 

and to its supplement. Further, each loop of the curve surround a singular 

point w ith abscissae :—

X -  ,  - 1^

V i +1 ^ l7

Ratio of similarity.

As a function of the geographic co-ordinates, the ratio of similarity 

is expressed by :—
sphere

__ ch2 l0 ch l\j ch2 I — sin2 M

(sh2 I + sin2 M; sh2 l0 + 2 sh I sh U cos M + 1________

— _______________________y/ i — sin2 M cos8 L_________________________

— i — (sin L cos L. — sin L0 cos L cos M尸

We have also :—

\Ji —  sin2 s sin2 Ź —  / uv —  u-v.. -.

= i — sin2 s cos2 Z V  i — sin2 s cos2 Z —  1 —  sin2 s sin2 Z

The ratio of similarity, equal to 1 at the origin is cancelled out at the 

singular points of the axis OX and become infinite at the critical points, at 

the pole, it is equal to 1 +  cot2 L 。.

which has as its parametric representation 

Y =

sh L sin2 —  / ch2 l0 — 1 sin2 —

M
ch4 h — 4 sh2 lo sin4——



CURVES OF EQUAL LINEAR DISTORTION

80.
95,
05.

76.9 
72.1 
66.0
57.9 
47.0 
14.5

0
0
0
0
0
0

0.0 70.7
10.0 70.4
20.0 69.3
30.0 67.4
40.0 64.6
50.0 60.8
60.0 55.6
70.0 48.5
80.0 38.5
90.0 21.5 
94.4 0.0

at the both

0.0 35.4 0.0 50.0
10.0 35.3 10.0 49.7
20.0 35.2 20.0 48.9
30.0 34.6 30.0 47.4 
4Û.0 33.0 40.0 45.0
50.0 29.9 50.0 41.3
60.0 24.0 60.0 35.7
70.0 10.4 70.0 26.7 
72.S 0.0 75.0 Í9 .4

80.0 1.4
80.1 0 . 0

(Continue

0.0
3.5 
6.9 
0.0 
2.8
5.2
7.0
8.2 
8.7
8.5 
7.4
5.0 
0.5 
0,0

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0 
63.6

43.3 0.0
45.0 4.0
47.5 5.4
50.0 5.6
52.5 4.6 
54.9 0.0



The relation between K and the right-angled coordinates is obtained by 
a permutation of X2 and Y2, in the analogous formula relative to the con­
formai spherical projection. We have therefore :一

十 十 V  K 2 +  X 2

The grid of curves of equal linear distortion is deduced from that of 
the spherical projection by a rotation equal to a right angle. (Fig. 10.)

Relations between the various transverse projections.

When considering two transverse projections (Fig. u )  whose origins 
are located on a single meridian in latitudes Li and L2, we pass from one to 
the other through an inversion and a symmetric as when we effect a change 
of meridian of origin in the conformai spherical projection. The centre of 

inversion is the point C located on the axis OY at the ordinate cot (Li — L2), 
a projection in the first system of the critical point of the second. The cons- 

t.ant of inversion is 1 + cot2 (Li — L2). From a point Mi of the first pro­
jection, we obtain a point M，2 by taking the intersection of CMl with the 
circumference passing through Mi and tangent to CS at S, S being a singular 

point of the projection. The point M2 which in the second system represents 
the same point of the sphere as Mi in the first is symmetrical to M，2 
about OX.

Transformations of the spherical subtended angles.

In this system, the spherical subtended angles described on two points 
of the meridian of origin are represented by the segments subtending the 

same angle described on the projections of the two points.

If one of the points is a critical point, the projection of the subtended 

angle is a straight line passing through the projection of the other point and 

making with the axis OY an angle equal to the angle of the segment.

The diagram  m ust be symmtetrical about OX.



Various transverse projections.

These projections give a fairly satisfactory representation of the parts 
in the vicinity of the origin. But they involve important distortions when 

receding from this point and particularly along the central meridian. So that 

if a fairly large scale is desired at the origin, the projection cannot be 

expanded to a great extent in latitude. If on a Mercator’s chart, we adopt 
for example 6 millimeters as the length of a degree of the equator, the 45th 

and 75th parallels are located respectively at 301 and 695 millimeters from 
the projection of the equator ; whilst on a transverse projection of equatorial 

origin with the same scale at the central point, these parallels intersect the Y 
axis at 344 and 1.283 millimeters from the origin.

It is therefore necessary, in practice, to restrict the field of application 

of these projections, but it seems sufficient for current needs to consider 
three projections with their origin at 0,45 and 90 degrees of latitude and 

respectively suitable for low, medium and high latitudes.

y

、
、

X

1/ij

Fig：

6. Transverse projection of equatorial origin

(Littrow's projection)

The transverse projection of equatorial origin is known under the name 

of Littroufs projection; for a long time, it was considered as “ more curious 

than useful ” ⑴.

This projection for which Lo =  O complies with the formula :—

Y + i X  =  sh (/ + i M)，

(I) D rxencourt et Laborde, Traité des Projections des cartes géographiques, fascicule I, 
page 224. —  See also : Hydrographic Review, Vol. V，N 。2，p. 49; Vol. X, N 。2，p. 98; 
Vol. X IV , N° I, p. 61.



gives the X , the second gives the values of Y. 
positive.

prolonged by  the m erid ian o f 90° is b o rm  by  the X  axis, 
s and parallels intersect at r ig h t angles.
Djection to the frame : X  =  0,. X  =  90, Y  =  0, Y =  90.

c o m p l e m e n t a r y  p o in t s

Medirians X  Y  X
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Longit.

L IT T RO W ，S PROJECTION ^

GRID  OF MERIDIANS AND PARALLELS

LATITUDES

20 30 40 50 60 70

0.0
86.6
17.4
85.3
34.2
81.4
50.0
75.0
64.3 
'66.3
76.6
55.7 
86.6
43.3
94.0 
29.6

0.0
59.6
13.5
58.7 
2ß.6
56.0 
38.9
51.6
50.0
45.6
59.6
38.3
67.4
29.8
73.1
20.4
76.6 
10.3
77.8 
0.0

0.0
42.0 
11.4
41.3
22.3
39.4 
32.6 
36.3
42.0
32.2
50.0
27.0
56.5
21.0
61.3
14.3
64.3 

7.3
65.3 
0.0

28.9 10.0
28.4
49.7 
27.1
28.9
25.0
37.1
22.1
44.2 
18.6 
50.0
14.4
54.3 
9.9

56.9 
5.0

57.7 
0.0

0.0
18.2
9.2

47.9
18.2
17.1 
26.6
15.8
34.2
13.9 
40.8 
11.7
46.1

9.1 
50.0
6.2 

52.4
3.2

53.2 
0.0

7
0
4
7 
0 
0
5
8 
0

90.0 
90.Ü
90.0
90.0
68.3 
45.6 
27.9
13.3

18.1
37.0 
57.7
82.1
90.0
90.0
90.0
90.0

3 
1 
8 
7 
9 
7
4 
3

15.1
29.8 
43.6 
56.0
66.8 
75.5 
81.9 
85.8

10
20
30
40
50
60
70
80

0.0
0.0
8.7
0.0

17.1
0.0

25.0 
0.0

32.1 
0.0

38.3 
0.0

43.3 
0.0

47.0 
0.0

49.1 
0.0

50.0
0.0

The first line 
X  and Y are 
The equator, 
The m erid ian 
L im it the pr(



from which is deduced :—

X =  sin M ch / =  sin M sec L, Y =  cos M sh Z =  cos M tan L, 

X 2 + Y2 =  tan2 L + sin2 M.

The grid of this projection (Fig. 12) is symmetrical about the axis OY. 

Further there is symmetry about OX, for the points on the same parallel with 

supplementary longitudes or for those of a single meridian with symmetrical 

latitudes. The poles are rejected to infinity. The segment of the X axis 

comprised between the abscissa points 土 i corresponds to the equator, the

remainder of the axis to the meridians in longitude dt — . The meridians of
2

longitude O and 7： are projected in the direction of the Y axis.

The parallels are represented by homofocal ellipses of equation

X* Y2 

ch: I +  sh2 I =  1

with foci at the singular points on the axis OX and whose axes have the half 

lengths ch I along oX and sh I along OY. The dimensions of these, ellipses 

increase with latitude. The transformation of the meridians is a branch of 
the homofocal hyperbolae of equation

X* Y2 

sin2M — cossM =  U

These conics admit the same foci as the ellipses representing the parallels ; 
the length of their half-axes is sin M and cos M; their asymptotes pass 

through the origin of the coordinates and have as a bearing 土 M, the angle 

of the asymptotes, equal to tt — 2M diminishes therefore from tc to O from

七he meridian of origin to the meridians of longitude ± —— •
2

The bearings vp and vm of the; tangents at a point on a parallel and at 
a point oh a meridian are given by :—

i i
tan Vp — —-r-7~ —77 =  — -t~z---—> tan vm — th / tan M =  sin L tan M.

p th I tan M sin L tan M m

If, as in the case of the conformai spherical projection, we denote by U 
the auxiliary angle defined by

U
= th / tan M,tan-

we have :—

U u
---1---

whilst in the conformai spherical projections :—



The ratio of similarly is expressed by

K =  ch Z \/ ch2 I — sin8 M — ^  cos2 M.

The pole being a critical point, the spherical subtended angle relative 
to an azimuth bearing, taken on a point of the meridian of origin is repre­

sented by a bearing straight line a passing through the projection of this 

point. This property renders Littrow’s projection particularly useful for 

drawing radiogoniométrie bearings.

On the other hand, as the points of the sphere in the same longitude and 

symmetrical latitudes are projected symmetrically about OX the grid of this 

projection and that of any transverse projection are inverse to each other. 

If Li is the latitude of the origin of the second projection, the centre of 
inversion is the point on the Y  axis whose ordinate is — cot Li and the 

constant of inversion has the value i + cot2 Li.

Remark- i. — Of course, we can reach Littrow，s projection in a more 

simple way, by endeavouring to find a plane representation through which 

a śtraight line shall correspond to a spherical subtended angle described on 

the pole and a point of the zero meridian.

If the latitude of this point be denoted by Li and the observed azimuth by 

a, the geometrical locus equation will be :—

sin M
tan Lcos M — ----— cot a  =  tan U .

cos L

The locús will be represented by the straight line

Y — X cot a =  tan Li 

and if we adopt a projection defined by :—

sinM
X = ---Y =  cos M tan L.

cos L

The straight line bearing is a and passes through the point whose 

coordinates are X =  O, Y =  tan Li being the projection of the point whose 

bearing has been taken.

This property has for its immediate .consequence that a spherical sub­

tended angle described on any two points of the zero meridian has for its 

transformation the segment subtending the same angle constructed on the 

projection of the base. "

Remark 2. — Any homographie transformation of Littrow’s projection 

furnishes a projection in which the spherical subtended angles described on 

the pole and a point of the central meridian are represented by straight lines 

passing through the projection of the latter point.

We reach one of these projections by endeavouring to find a nomographic



solution of the problem. The equation of the subtended angle relative to 
the point whose bearing has been taken in latitude Li and at the observed 

azimuth a

tan Li cos L + cot a sin M — sin L cos M

F ig. 13

can be represented by a nomogram with aligned points (Fig. i^) com­

prising two scales tan Li and cot a ，graduated respectively in Li, and a 

together with two grids of curves (L) and (M) described by :——

A.
sin M

cos L -f- sin M

sin L cos M 

cos L + sin M

A denoting the distance of the parallel scales, Ę the distance from the point 

L, M to the scale (Li), r\ its distance to the base of the nomogram (a straight 

line passing through the zeros of the parallel scales) measured in a direction 

parallel to the scales (Li) and (a) .

If, through the given coordinate points Li and a ，we draw a straight 

line, this meets the grids (L) (M) at the points whose coordinates satisfy the 

equation*of the segment. The straight line is thus the projection of the 

subtended angle in a plane representation constituted by the two grids of 

curves, a representation which, as can easily be seen, is a homographie trans­

formation of Uttrow’s projection.

Use of an auxiliary projection by\ inversion of the grid.

The ratio of similarity of. Littrow’s projection increases rapidly when 

receding from the central point, so that it is impossible to show regions of 

high latitude on the chart, if it be desired to preserve an adequate scale in 
the neighbourhood of the origin. It is, however，, possible, in most cases, to 

obtain, in a simple manner, the projection of the circumpolar part of the 

spherical subtended angle, by means of the following expedient.



• TC
If the colatitude —- — L be denoted by X，the equation of the subtended

angle described on the pole and the point in latitude Li of the zero meridian 
is written :—

cot XŁ sin X + cot a sin M — cos X cos M

It can be noted that if longitudes and colatitudes be interchanged on the 
one hand, and the angle Xx, and a on the other hand, the equation undergoes 

no change. Let us then consider the projection obtained by inversing the 

co-latitudes and longitudes of Littrow’s projection, it has the same grid as 
the latter representation, but the parallel of latitude L becomes the meridian

in longitude—— 一 L，the meridian in longitude M becomes the parallel in
2 .

latitude —  — M. The new projection is therefore defined by :—

cos L i . T Y
x = ----— ——  y r=r cot M Sin L = ——

sin M X J X

It is therefore a homographie transformation of Littro.w，s projection, 
the spherical subtended angle therein has also a rectilinear projection, the 
straight line of equation

x tan Li — y + cot a =  o

with the bearing—  — Li, and which passes through the Y axis point whose
, 2

ordinate is cot a . It suffices to change the figuring of LittroW，s projection 

grid to obtain this auxiliary projection on which the drawing of the geo­

metrical locus is as simple as on Littrow’s projection.

In practice, the same grid can be used for both projections and the two 

transformations of the spherical subtended angle are the straight lines AC 
(OA =  tan Li) of the bearing a and BC (OB =  cot a ), of the bearing

71 • .
—— 一 Li (Fig. ią ). The straight lines intersect at the point C of right- 
2

angled coordinates

X =  x =  i 

Y  — y =  tan Li +  cot a =  OA + OB

This point represents the point on the spherical subtended angle with the 

projection in both systems, therefore the one whose longitude is equal

co: 

by

same

to its 

given

• • TU
colatitude，its geographical coordinates L c et M c = —— 一 L c are

sin* Lc cos2 Mc T .
-----= —---- tan Lj + cot a

cos Lc sin Mc

The brókert line ACB represents the spherical subtended angle between 

the point whose bearing has been taken and the pole; the segment AC corres­

ponds, in Littrow’s projection, to the arc running from the southern extremity



of the base to the point L c M c ; the segment CB represents the arc com­
prised between the point L c Mc and the pole, in the auxiliary projection.

The procedure fails when the points ABC are close to the limits of the 
chart or outside these limits, i.e. if the point whose bearing has been taken

0| 1 X

F ig. 14

is in a high latitude and if at the same time the azimuth of observation is close 
to 180 degrees, i.e. if the spherical subtended angle pnder consideration is 
very close to the polar region of the zero meridian.

We shall describe further on (paragraph 12) the auxiliary projection 
whose grid is rectangular, but which is neither conformai nor equivalent.

{Fig. 15.)

7. Transverse projection of medium origin

If we take the origin of the tranverse projection on the parallel in
• TU

latitude — ，we obtain a system which is advantageous for the plane repre-
• 4  •

sentation of spherical subtended angles concerning medium latitudes.
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As in this case sh L =  i, comes

Y + i X =  sl1 (Z 十 .1 M-) 二 1， 
sh (/ + i M) + i

from which are deduced for the right-angled coordinates

2 ch I sin M 2 cos L sin M
X

Y

ch21 + sin2 M + 2 sh Í cos M i + cos2 L sin2 M + sin 2 L cos M 

sh2 I — cos2 M sin2 L — cos2 M cos2 L

ch21 + sin2 M 4- 2 sh / cos M 1 + cos2 L sin2 M + sin 2 L cos M 

further

ch2 I + sin 2 M — 2 sh / cos MV2 i y2 _  ------!---- ;--------------
ch2 / + sin2 M + 2 sh / cos M

i + cos2 L sin2 M — sin 2 L cos M 

— i + cos2 L sin2 M + sin 2 L cos M

The grid of the meridians and parallels {Fig. 16) is symmetrical about 
OY. The segment of the OX axis comprised between the abscissae + 1 
and 一  i represents the great circle passing through the origin normally to 

the meridian of this point ; the great circle having the origin as its pole is 

projected along the part of the X axis which is outside the singular points. 

The Y axis corresponds to the meridian of longitude 0  and tu ; the projection 
of the pole is on this axis at the ordinate 1. The circumference of radius 1 

having the origin as its centre represents the equator (demi-circumference
t -jr

located on the side of the negative Y，s) and the meridians in longitude 士一

i
(demi-circumference located on the side of the positive Y，s); the point of the

TT TT
equator in longitude M and the point of the meridian —— in latitude 一 一 M 
have projections symmetrical about OX. 2 2

The projection rejects to infinity the points of geographical co-ordinates

r

transformation the cubic

" O and —  , k ; the parallels of these critical points have as their

which passes through 
{Fig. if ) ;  this curve is

the origin and admits of the asymptote Y 二 
also the projection of the parallel of the origin.

The parallels and 
equation :——

meridians are projected according to the curves of 

X2-h(i— Y)2= ^ y ^ [ i  — 2 Y + v 士 V 1— V v/(i _ _ a Y)* — v]



in which the parameter v must be taken as equal to cos 2 L for the parallels, 

to i + 2 cot2 M for the meridians. The circumference X 2 + .Y2 =  1 which

represents the equator and the meridians in longitude ±  -̂ L corresponds to
2

the borderline case between the two series of curves, for which v =  1.

The parallels of latitude less than ~  are represented by closed curves

surrounding the two singular points of the X axis which they intersect at

the abscissa points i/Cos 2 L and 7-— -~  ; the projection of the other
V cos 2 L

parallels consists of closed curves surrounding the projection of the pole. All

these curves meet the Y axis at the ordinate points tan (L — )•
4

The projections of the meridians are 8-shaped closed curves intersecting 

at the pole and whose every loop surrounds a singular point ; their points of

intersection with OX have as abscissae -,- -- - ■ and 1/1 -j- 2 cot2 M
v ï +  2 cot2 M v 1

The bearing V of the tangent to a curve of the grid is given by :—

tan V
X 2 X v L y (1 — -j y)2 —

These curves admit therefore of the tangents parallel to OX for X =  O 
(M =  O or 71)，which is obvious on account of the conformity of the pro­

jection, and also for 1~  2 Y =  y/ v； the abscissa of the contact point 
is then given by

4 -2 y  v

As regards the meridians, there are always two tangents parallel to OX whose 

ordinates are Y =  - ( 1 土 y/ i -f- a cotg2 M ). For the parallels, the
 ̂ . TT

point of contact is real only when their latitude is less than —— ; the ordinate
4

of the point of contact is

Y  = ~  (1 —  \/cos 2 L).

The locus of the contact points of tangents parallel to OX is 
substituting ( I —— 2Y)2 for v, in the equation of the meridian 

transformations. A cubic with three hyperbolical branches the 
which is :—

(… Y ) ( i — Y + 2 Y”

—  i — 2 Y

obtained by 

and parallel 
equation of
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which admits the asymptotes Y =  一  (like the parallel of the origin) and
i u

Y ± X  =  —  (Fig. /7).
2

This curve is the projection of the curves of the sphere 

tan3 L + tan L cos2 M + 2 cos M .= 0 

for the arc relative to the points of contact of the parallels, and .

cos3 M + cos M tan2 L + 2 tan L =  0 

for the arc concerning the meridians.

As the projection is conformai, the points of contact of the tangents 
parallel to OY for a series of curves are those of the tangents parallel to OX 

of the other series ; but the right angled co-ordinates of these points are not 

so easily expressed as a function or L or M as in the case of the tangents 

parallel to O X (1).

At the points of intersection with the X axis, the grid curves have bear­

ings symmetrical about OY. At these points, we have as for the meridians :—

t r

When X is greater than 1 : tan

When X is less than 1 : tan V

Likewise for the parallels :—

for X >  i ; tan Vp =  — X =  — .....,  1 — ，
y cos a L

tor X  <  i : tan Vp — — --=2
X y cos 2 L

(i) If  we put z =  i — 2 Y, the condition tan V  =  o is written :—

VZ3 — (2  + V) Z2 + (I + 2 V) -Z — 1 = 0 , 

equation of the third degree in z.

o (i — Y) (i — Y  + 2 Y2)
As the points of contact are on the cubic X 2 =  ------------- —---------，X  is

i — 2 Y

obtained by this expression or by X 2 =  -~ ~ — ----- ——— -■ In order to obtain the
4 z -

relation between X  and v, z should be eliminated between the latter formula and the equation

of the third degree in z.

We could also obtain the points of contact, by using the orthogonal curve whose tangent 

is then parallel to OX and for which we have, if we denote by v，the corresponding value of

»--  V I I •
the parameter v: z = 、/ v，X 2 =  ------  + ----1~ . The parameter v’ is obtained as

v ， 4 2 \/v

a function of v by the equation of the third degree t3 + p2 t + 2,p =  o, in Which t represents

f i — V’ i — v
士 一̂ —— r- and p = 平 ---；--- •

i +  v ， 十 i  +  v



If we consider the intersections with the parallel to OX’ drawn through
V2—  I

the projection of the pole (Y =  i), they are given by X2 =  ---  : at these
„ 丄 T V

points, we have also : tan2 V =
V [ V  —

We have therefore for the parallels X 2 =

and for the meridians X2 =  4 cos ;
i — cos M

siß2 2 L tgv p— cotg -L

tg V

cos a L y — cos a L

tg  M

The ratio of similarly is described by the

K — a ch I y/ch21 — sin2 M = _______________________________
— ch21 + sin2 M + 2 sh Z cos M i +  cos2 L sin2 M +  sin 3 L cos M

\J i + cos2 M 

expression :—

\J i — sin2 M cos2 L

The grid of the projection can be obtained by inversion from that of 

Littrow’s projection; the centre of inversion is the point of ordinate + i of 

the Y axis and the constant of inversion is equal to 2.

Transyerse projection of polar origin (Fig. 18) (i)

By placing the central point of the projection at the pole, we obtain a 

representation which is easily available for high latitudes.

For L。=  — , sh l0 is infinite and the projection formula is written 
2

Y + i X =  r
sh (/ +  i M)

We see at once that its grid is inverse to that of Littrow’s projection 

with respect to the origin of the coordinates, subject to the changing of the 

sign of the latitude of points obtained by inversion. The right angled coor­

dinates are :—

ch I sin M cos L sin M
A.

ch2 I — cos2 M 】一 cos2 L cos2 M

Y ,— sh I cos M — sin L cos L cos M 

ch21 — cos2 M i — cos2 L cos2 M

Further,

X2 + Y2 二 ----- Î------= ----- ------
ch2 I — cosz M tg2 L + sin2 M

The grid of the meridians and parallels is symmetrical about OY but, in 

addition, the points in the same longitude and in symmetrical latitudes are 

themselves symmetrical about OX, likewise those of the same parallel with 

additional longitudes.

(i) See : Hydrographic Review, Vol. IX ，ri° I, p. 251.
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The segment of the X axis comprised between the singular points repre-

sents the meridians in longitude 土 一 ，the remainder of the axis is the
2

projection of the equator. The Y axis corresponds to the meridians in 

longitude O and tz.

The meridians and parallels are represented by the curves of the fourth 

degree :一
V2 Y 2 Y2 V2

(X2 + Y2)2, +  —  =  (X2 + Y2)2.
sin2M cos*M ch2 I sh2

The projections of the parallels are closed curves surrounding the pole 

and leaving outside the singular points on the axis OX. They intersect the Y 

axis at the points whose ordinate is 土 cot L and the X axis at the abscissae 

士 cos L.

The meridians are 8-shaped curves, admitting of the origin as a centre 

of symmetry and including a singular point in each loop; their intersection
r

with OX have for abscissae 士
sin M'

The bearings V m and V p of the tangents to the projections of the 

meridians and parallels are expressed by :—

w w u ; Afch2Z +  cos2M
tan Vm =  — cot Vp — — th / tan M ——--- — —

sh21 — sin  ̂M

• r „ 1 + cos2 L cos2 M ==— sin L tan M -----------------
sin2 L — cos2 L sin2 M

If we denote again by U the angle at the centre of the conformai 

spherical projection such as

tan — - —  th  l tán IVÍ，
2

if we denote by 0 the bearing of the point X ，Y 

the coordinates,
A X  tanM,

t^n \j — —  — 一~ ---
Y th I

it is easy to establish that

tan Vm =  tan ( ----[ -26 ) ：

in relation to the origin of

whence

”  U
— + v p= J L  + i L + 2 6.

The bearing 

which is obvious

becomes equal to

Vm is cancelled out at the same time as th I and tan M ; 

since the projection is conformai. On the other hand V m

— and V_ null for

tan L =  d= sin M,



being the equation of the great circles of the sphere perpendicular to the
7U • t 冗 .

meridians in longitude ± —  at the points in latitude = t -- The projection
2 . 4

of these great circles is the locus of the points on the meridians where the

tangent is parallel to OX and consequently of the points on the parallels where

the tangent has a bearing equal to zero. The coordinates of the contact
points are :一

for the meridians :— X =  士 一  \/ 2 -{- cot2 M，Y 二士  —  cot M;

for the parallels X =  士 ~ Y =  士 — = 土 二 \f cot2 lT— :
i sm L 2 sm L 2

There are therefore contact points for parallels only in latitudes less

than
4

The locus of the contact points is the equilateral hyperbola :—

X 2 _  Y2 =  JL

whose asymptotes are the bissectrices of the coordinates axes.

The parallels admitting of tangents parallel to OY at the preceding points 

and at their intersection with the X axis, offer an inflection between these 

points. In order to obtain its position, it is necessary to seek the value of M
. d V .

which cancels-- - with a change of sign. Now,
d M

d Vp — cos2 Vp (ch 2 Z + cos 2 M)2 — 4 cos2 2 M 

d M ~ ~  4 th I sin2 M (ch21 + cos2 M)2 ,

as ch ^ Í is greater than 1 this is a solution only for : _

ch. 2 I + 3 cos 2 M =  o,

which is an equation defining on the sphere the segment subtending a right 

angle constructed on the points of the equator in longitude ±  54044*

(cos 2 M = -- —). The projection of this curve is the locus of the points
3 • .

of inflection. The right-angled coordinates of these points, as a function

of the latitude of the parallel, are expressed by :—

2 ch. 2 I v 2 ( i + sin2 L) 2 ch 2 / v 2 (1 4-sin2L)

At these points, the bearing of the tangent to the parallel is expressed by :—

i ( 入— ch 2 Z\1 i / 1 — tan2L\®.
tan Vn

th Z\3 ch. 2 1/ sinL \2

The equation of the locus of the points of inflection is :—

4 (Y2 + X 2)2 + 8 (Y2 — X 2) + 3 =  0.



It is constituted by two closed curves symmetrical to each other about OY 
and admitting of OX as axis of symmetry. We have for the bearing V of 

the tangent to the curve :—

Y i +  X2 + Y2

The tangent is parallel to OY at the points of intersection with the X axis,

which have for abscissae ±  (L =  45° M =  90。) and 土
\/2

(L =  0 ，M =  S4044>) these latter points are the points of inflection of the 

projection (rectilinear) of the equator. The locus admits a tangent parallel 

to OX at the points defined by X 2 + Y2 =  1 and whose coordinates are

consequently : X  =  士  , Y  =  ±  丄  the direction of the tangent to
. 4 . . 4  i

the projection of the parallel y is given by : tan Vp =  土 ——

i.e. V p 二 2^° i/ or 156043，. 3

These points are on the meridians of longitude 60 or 1200 in latitude

26034，（tan L = 丄 )• *
2

The ratio of similarity of the projection of polar origin is :—

„  _  , \/ch2l — sh^ld =  y/? — sin2 M cos2 L 
ch2 I — cos2 M ' =  i — cos2 M cos2 L •

9. Construction of fransverse projections

In order to obtain, in the transverse projection whose origin is in 
latitude L。，the projection of the point whose geographical coordinates are 

I>M, we oan, instead of calculating the right-angled coordinates, go through 

the conformai spherical projection and construct the orthogonal circumfe­

rences representing in this system, the parallel and meridian of the point 

under consideration, whose coordinates about the pivot are the arcs Li and Mi 

defined by :—

sin L t =  cos L sin M, cot (L0 — M1 ) =  cot L cos M.

Further, the spherical projection complies with the formula :—

X — i Y =  th ( /t + i Mx)

which takes into account the orientation of the axes about the geographical 

meridian. ,

The parallel of latitude Li, has its centre on OX at the abscissa :— 

r i + sin2 Lî i + cos2 L sin2 Mr . ---- - ■ ■ ----------------------

* 2 sin L x 2 cos L  sin M

and its radius is expressed by :—

cos? Lj i — cos2 L sin2 M



If we denote by (p the auxiliary angle defined by :— 

tan =  cos L sin M,

these quantities are written :—

I  =  Pp =  cot 2 ?.
sin 2

As regards the meridian of longitude Mi its centre is on OY at the

ordinate yi =  cot 2 M x and its radius is expressed by pm = ------  the arc
sin 2 M；

Mi being considered as an auxiliary variable calculated as a function of L 
and M. As the meridians of the auxiliary spherical projection pass through 

the singular points of the X axis, it is sufficient to calculate the ordinate of 

their centre, the value of the radius is only useful for checking purposes.

If no great accuracy be desired, the co-ordinates of the circumference 

centres as well as the radii can be obtained by means of two nomograms with 

aligned points. The first, relative to parallels, is valid for all transverse 

projections, because it is not dependent on L。； it includes two parallel scales 

of L and M graduated according to the laws log cos L and log sin M ; half­

way between the two, is plotted a scale 1/2 log sin L doubly graduated as for 

^ and pp，which allows a direct reading of these quantities. The second 

nomogram, established in a similar way, is constituted by two L and M 

parallel scales of log cot L and log cos M, and by a middle scale of 1/2 log 

cot (Lo — Mi) bearing a double graduation for 7] and pm.

In order to obtain the point Li M, we could also avail ourselves of the 

inversion ratio existing between Littrow’s projection and the transverse pro­

jection under consideration. In particular, the straight lines of Littrow’s
X

projection X =  constant, Y =  constant, or else the straight line — =  cons­

tant and the circumference X 2 + Y2 == constant, furnish by inversion with 
respect to the point X =  O, Y  =  一  cot Lo, some orthogonal circumferences, 

two by two, and which are loci of the point Li M, but the definition of these 

loci is less simple then in the case of the conformai spherical projection.

When, however, we wish to obtain the transverse projection of medium 

origin (Lô =  some simplifications become apparent. The straight line 

passing through the origin of Littrow’s projection with the bearing 6，

X tan M
V  =  -r~ r e,
Y sin L

has for its inverse a circumference whose centre is on OX at the abscissa

— cot 9 and whose radius is equal to . As this locus passes through

the points whose ordinate is 土 1 on the Y axis, the calculation of the radius 
by means of the auxiliary angle 6 is only useful for checking purposes. On



the other hand, the circumference of Litrow’s projection, whose centre is 

the origin,

X 2 + Y2 =  tan2 L + sin2 M =  tan5 (_!L — + ),
,- 4

when denoting by (j; an other auxiliary variable, is transformed by inversion

into a circumference whose centre is on OY at the ordinate —~ -— r and
sin 2 I

whose radius has the value cot 2 These two grids of orthogonal circum­
ferences constitue a conformai spherical projection of exponent 2 relative to 

a system of isometric coordinates L2 and M2 defined by th /2 =  tan cj) and

M2= —  or else e 2 =  , cos 2M2 =  when denoting by a
2 cos L tan o1

the spherical distance from the point LiM  to the equatorial point of the zero 

meridian.

10. Use of transverse projections

Transverse projections have the property of making a simple figure 

correspond to spherical subtended angles only when the base of these is borne 
by the zero meridian. They are therefore not intended for the compilation 

of geographical maps, their object is limited to the graphic determination of 
spherical subtended angles. They will therefore be used only in the shematic 

form of a grid of meridians and parallels in which the base of the spherical 
subtended angle will always coincide with the zero meridian and where the 

subtended angle projection will be constructed graphically. The geographical 
coordinates of a few points' of the locus in the prescribed area wlill then be 
taken, it will thus be possible to plot it point by point on the navigation 

chart ; in this operation, due account must be taken of the proper longitude 

of the segment base, whose value shall be added algebraically to the longi­

tudes taken. As these representations are conformai, use may be made, in 

the plotting-, of the value of the azimuths of the locus at some of its points, 

these angles being theń preserved on projection.

These projections offering also some important linear and fairly rapidly 
variable distortions, it will be desirable to establish a fairly close grid in 

order to minimize the interpolations in taking up the positions, these inter­
polations will practically always be effected on inspection. It is however 

useless to try for great accuracy, the angle of the segment, being obtained 

in the present state of radiogoniométrie technique, only With a fair measure 

of uncertainty. It seems sufficient, for the time being to draw the grid 

curves from degree to degree or every two degrees.

From a practical stand point, Littrow’s projection seems a priori the 

more advantageous, since the radiogoniométrie subtended angle is represented 

by a straight line ; but it has the disadvantage of not being easily extensible 

to high latitudes, especially when it is desired to preserve a fairly large scale 
in the vicinity of the equator. We did show that the difficulty can be obviated



by reversing the meridians and parallels of the grid (it will be remembered 

that the projection thus obtained is no longer conformai), which makes it 

possible to represent by a second straight line the polar portion of the sphe­
rical subtended angle ; still, apart from the fact that this procedure requires 

additional attention on the part of the user, it may fail when the subtended 

angle is comprised entirely in an area far away from the equator.

This case which is fairly rare in sea navigation is likely to become more 
and more frequent in air navigation for which circumpolar regions afford 

no great difficulty and constitute a useful way through in intercontinental 

relations.

It might then be thought advisable to add to Littrow’s projection a 

transverse projection of polar origin, in which the spherical subtended angle 

is represented by a plane segment subtending the same angle. The user should 

be trained to use either of the methods of representation of the segment.

Thus, it seems to us more rational to waive the special advantage of 

Littrow’s projection (rectilinear projection of the spherical subtended angle) 
and to have recourse to the transverse projection of medium origin which 

might probably enable us to deal with most cases in practice. A projection 

covering for example 130 degrees of the zero meridian ,is more useful when 

its central point is in latitude 45 degrees than at the equator ; instead of 
running from 65° S. to 65° N.，it extends from 20° S. to 20° beyond the pole 

and consequently it enables us to solve, in addition to all problems relative to 

mediums latitudes, nearly all those affecting either the polar regions or the 

equatorial regions. The grid of the projection of medium origin not being 
symmetrical about the X axis, calculations required for its establishment take 

evidently longer than for projections of equatorial or polar origin ; the 

drawing of the plane subtended angle takes also longer than that of a straight 

line ; but this defect seems to be made good by the fact that this method of 

resolution is the only one for all cases, which must in all probability do away 

with misgivings and errors on the part of the operator.

1 ]. Other Methods of represenf-ation of spherical subtended angles

Apart from the preceding conformai representations through which a 

plane subtended angle corresponds to spherical subtended angles, described 
on two points of the equator or two points of the zero meridian, there exist 

other methods of representation, aphylactic, this time, which are capable of 

being utilized for drawing ąpherical subtended angles.

These systems are of two kinds, some deriving from the conformai 

projections which we have studied, are applicable to spherical subtended 

angles Whose base is subject only to the condition of being borne by a definite 
great circle ; taking this great circle as a zero meridian, the diagram thus 

obtained can be utilized as that of Littrow’s projection ; on the contrary, as 

regards other systems, the projection grid depends on the position of the base



extremities and consequently can only be used for the drawing of the segments 
described on this base ; in this case, there must be as many diagrams available 

a§ there are transmitting stations under consideration.

Profesor Lecoq’s projection belongs to this second category and causes 

spherical subtended angles described on a definite base to correspond to plane 

segments subtending the same angle.

The most useful representations, for practical purposes, are those in 
which the geometrical locus is projected according to a straight line. Now, 
as regards all projections, whether conformai or not, in which the spherical 

subtended angle has for its transformation a plane segment subtending the 

same angle, it is possible, through a suitable choice of the point or by inver­

sion, to reject to infinity the projection of an extremity of the base; the effect 

of which is to transform the projection of the spherical segment into a straight 
line passing through the new projection of the other extremity and inclined 

on the base projection at an angle equal to the segment angle ; the new system 
gives evidently but the projection of a more or less extended arc of the 

segment in the vicinity of the base extremity.

In the case of Lecoq’s projection, we may proceed either with one or 
with the other extremity, according to the arc which it is desired to preserve. 

In the case of a conformai projection (transverse) as, in practice, the pole is 

an extremity common to all bases, it is its projection which should be at 

infinity, if it is desired that the representation may still be used with any 

meridian base; we then have LittrowJs projection; if, on the contrary, we 

chose to establish a special representation for each base, we may proceed as 
with Lecoq’s projection.

From the systems in which the spherical subtended angle has a rectilinear 

projection, it is possible, through homographie transformation, to deduce 

others possessing the same property and complying with other practical 

requirements ; we have already met with an instance of this transformation 

in connection with Littrow’s projection (auxiliary projection through inver­

sion of the grid). Those of these systems which are only suitable for a 

definite base may be the subject of another transformation which affects in 

no way the representation of the segments, but which is likely to improve the 

projection grid in the useful area ; if the point of concurrence of the straight 
lines representing the spherical segments be taken as the origin of the right- 

angled coordinates and these coordinates be multiplied by any same function 

of the geographical coordinates, the straight lines corresponding to the 
segments, are not affected, but the grid of the meridians and parallels is 

altered ; the function is chosen so as to give a special property to the repre­

sentation, generally some facility in grid construction ; we will give a simple 

instance of this transformation by radial amplification.

All the projections intended for drawing spherical subtended angles are 

used as shown in the case of transverse projections ; for those of a general



application, there can be no question of introducing geographical drawings, 

since in each case, the base of the subtended angle must have as its projection 

the central meridian of the chart ; the systems suitable only for a definite 
base might include a cartographic sketch, but its use would only be of minor» 

importance. Normally, these various projections will only be employed in 

the shape of a relatively close grid of meridians and parallels on which the 

transformation of the geometrical locus shall be drawn and on which shall 

then be plotted the geographical coordinates of a few points of this curve in 
thé useful area so as to plot it point by point on the navigation chart.

. On the other hand, these representations involve important alterations 

in the lengths, angles and surfaces ; the determination of these distortions is 

only of minor interest because these projections must not include geographical 
drawings and also because the problem which they solve leaves generally no 

choice between several solutions corresponding to different alterations.

12. Inverted Littrow#s projection

We have seen (paragraph 6) that by inverting longitudes and co-latitudes 

in Littrow，s projection grid, we obtained a new system which,- in homographie 

relation with that of Littrow, retained as a consequence, the rectilinear shape 

of the radiogoniométrie subtended angle transformations and could be utilized 

for drawing the projection of the circumpolar part of these geometric loci.

This auxiliary projection is defined by the relations :—

X =  ， Y  =  cot M sin L.
sinM

Its grid is rectangular like that of Littrow’s projection ; the Y axis is a 

singular line representing the pole ; there are on the X axis, at the abscissae 
±  i two singular points corresponding to the poles of the zero meridian, a 

great circle which the projection rejects to infinity ; the meridian of longitude 
i TT •

d t一  is projected according to the X axis comprised between these two
2

points ; the remainder of the axis corresponds to the equator.

The meridians are represented by homofocal ellipses of equation :一 

X2 sin2 M -f- Y2 tg2 M =  I, 

whose foci are the singular points of the X axis.
«

To the parallels correspond the homofocal hyperbolas :—

X2 Y2 _  t 

cos2 L sin2 L ， 

with the same foci as the preceding ellipses and whose asymptotes passing

through the origin of the coordinates and having as bearing 土 ( — L) 

make the angle 2L between thém. 2



The major axis of Tissot’s indicatrix ellipse is orientated along the

parallel and has for half-length .L土 ，• that of the minor axis is
sin M cos L

y/sin2 L + cotait M ; the ratio of the corresponding surfaces is therefore

expressed by
sin2 L + cotan2 M

sin M cos L 

distortion is given by :一

lastly the maximum to of the angular demi-

/ TT , co
t a n ---1--- sin M cos L.

In this system, any spherical subtended angle described on the pole and 
a point of the zero meridian, is projected according to a straight line passing 

through the point of the Y axis corresponding to a longitude equal to the 

segment angle and making with this axis an angle equal to the base length, 

estimated in parts of ™the radius.

The homographie relation between this projection and that of Littrow’s 

is written :—

X
x r X,

whence is deduced

X + i

y

XL +

//
y

X

F ig. 19

The points of the same right-angled coordinates of both systems are 
such that the colatitude of one is equal to the longitude of the other ; the 

straight line X =  1 representing the locus of the points of the sphere whose ' 

longitude is equal to colatitude, is common to both systems.

The points L and I {Fig. ip) representing a single point of the sphere in 

both projections, are aligned on the point C of the X axis, with abscissa — 1 ; 
further, the straight line joining one of these points to the origin of the 

coordinates is parallel to that joining the point C to the projection of the 
other point on the Y axis.



1 3. Polyconic projection

Littrow，s projection is the transverse aspect of the conformai spherical 
projection of exponent 2 and equatorial origin ; the foregoing inverted pro­

jection is the transverse aspect of a polyconic projection which we are going 

to deduce from the conformai spherical projection through the same homo­
graphie transformation which connects Littrow's projection with the inverted 

projection, while, of course, taking into account the difference of orientation 

obtaining between the axes of the direct and transverse system coordinates. 
This homographie relation is therefore written :—

whence we further deduce

Ÿ  + 1,=  y b + r

The geometric correspondence between the points of the spherical pro­
jection and polyconic representing a single point of the sphere is therefore

also given by Fig. 19，blit while causing the coordinates axes to turn by——— .
2

The right-angled coordinates of the polyconic projection are expressed 
as follows, in terms of the geographical co-ordinates :—

sin 2 M sin M cos M cos2 L ch. 2 I cos 2 M 1 — cos2 L sin2 M
— --------"：~~~ ----------------------  y Y ~ - ------------- ----------- ---' -- -

sh 2 / sin L sh 2 / sin L

The parallels are represented by the circumferences of equation :—

t h 2 / =

whose centre is on OY at the ordinate —— -~  and whose radius is equal to 
j tan 21

----；these circumferences ako represent the parallels in the conformai
sh 2 i
spherical projection, the effect of the homographie transformation is simply 

to shift the points of the projection along their parallel.

To the meridians correspond the equilateral hyperbolas of equation :—

‘ ‘ ^  2 X Ytan 2 M = ----------，
Y2 -  X 2 — i

which pass through the points of the Y axis whose ordinate is 土 1，being the 

projections of the poles, which admit as asymptotes the straight lines of the

bearing M and —  -j- M，coming from the origin.



The parallels being projected along circumferences whose centres are in 

a straight line, the representation is polyconic and characterized by the follow­

ing expressions of the quantities r, s and U (Fig. 20)-:

i i +  sin2 Lcos2 L 

2 sin L th2 I
1T M.

F ig .

In the conformai spherical projection of exponent 2, r and s have iden­

tical expressions but U is defined' by the relation :—

tan —  =  th í tan M =  sin L  tan M.

The points of both systems which have the same right-angled coordinates 

represent therefore two points of the sphere in the same latitude L and whose 

longitudes M and Mi are linked by the relation :一

cot M cot Mi =  sin L.

The straight line Y =  i which represents the sphere curve of equation 

cot2 M =  sin L is common to both systems.

The polycönic projection under consideration rejects to infinity the 

projection of the equator, the segment comprised between the projections of

• TT •
the poles corresponds to the meridians of longitude ± — ，the remainder of

2
the Y axis represents the meridians of longitude O and tz ; lastly the X axis 

is a singular line which is the projection of the zero meridian poles.

A spherical segment subtending an angle a and whose base has for 

extremities one of these poles and another point of the equator in longitude 

M。is projected along a straight line bearing M。passing through the point 

on the axis OX whose abscissa is —  cot a. This property, so far, is of no 

practical interest and the projection must be considered at present as a mere 

curiosity.



The alterations corresponding to this method of representation are 

important ; the ratios between lengths along the meridian aiid the parallel are 

expressed respectively by

cot L y/ i — sin2 M cos2 L + cos2 M cotg2 L and cot L

The right-angle formed by a meridian and a parallel is subject to the 

alteration I given by :— .

sin M cos M X
tan I = —

tg2 L + cos2 M

and therefore equal to the supplement of the straight line bearing joining the 

point under consideration to the otigin of the coordinates. The axes of the 

indicatrix ellipse have for half-lengths

cot L i/ j — cos L sin2 M ,  ̂ T /------^
------1---:-----------  and cot L w i 一  coŝ  L sin  ̂ M ;

sin L r

ÇQg2 L
the ratio between surfaces is expressed by (i — cos2 L sin2' M), that

sinJ L
is Y cotg2 L; lastly the maximum w of half the angular alteration at any 

point depends only on latitude and is given by :—

sin (o

14. Lecoqfs projection ⑴

Lecoq’s projection is based on the following projective property of the 

spherical triangle. If we consider a spherical triangle A B C,- drawn on a 

sphere with centre O (Fig. 21) and its apexes are projected in a b c on the 
sheer plan perpendicular to OB, in a direction parallel to the bissectrix OM 

of the side BOC, the angle a of the plane triangle a b c is equal to the ángle A 

of the spherical triangle.

Consequently, if the point A describes a spherical subtended angle on the 

base B C, the projection of this curve is the segment subtending the same 

angle described on the projection plane, taking as a base the projection b c 

of B C  •

. . i
With this method of representation, the parallels and meridians are

projected along ellipses whose elements are easily obtainable. In particular, 

if the extremity B of the base is at the geographical pole, the projection 

plane is the equator’s plane and the point M is the middle of the base ; the 

parallels are then projected in true size along circumferences of radius sin 

X ( X colatitude) whose centres are aligned on the straight line representing

the meridian bearing the base and are at a distance 2 sin2 —  tan —  from the
* 2 2

projection of the polar extremity of the base (denoting by X0 the colatitude

( I )  See : Hydrographic Review, Vol. X, N 2, p. IQI.



of the other extremity, that is, the length of the base). By dividing- these 

circumferences into equal parts, w'e can next easily draw point by point the 
meridian half-ellipses. The projection of the base, serving as a base for the 

plane subtending angles representing the spherical segments, has a length of

2 t a n i  ,

Lecoq’s projection which is polyconic but is neither conformai nor equi­

valent, is evidently only suitable for subtended angles described on the base 

under consideration, but this draw back is partly compensated for by an easily 

established grid; this representation like that of Littrow is used in the form 

of a diagram of meridians and parallels on which is drawn the subtended 

angle of the azimuth furnished by radiogoniometry, the useful part of the 

locus is then plotted on the navigation chart by means of geographical 
coordinates.

In order to simplify the drawing of the geometrical locus, Professor 

Lecoq proposed to replace the projection by its inverse figure in relation to 

the pole projection. This transformation, which rejects the projection of 

the pole to infinity, causes a spherical subtended angle to correspond to a 

straight line making with the projection of the base an angle equal to the 

observed azimuth ; but the grid of this new representation is less advantage­

ous ; if the circular form of the parallels is preserved, their graduation in 

longitude can no longer be effected in equal parts and requires to be calculated 

beforehand or to be constructed graphically; further, the circumpolar part 

of the subtendecf angle can no longer be represented.
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15. Projections by radial amplification

From Littrow’s projection, for instance, defined by

v  sin M  ̂ T , ,
X =  --- , Y  =  tan L cos M,

cos L ' -

can be deduced a projection peculiar to a base comprised 
and the point in latitude Li, by multiplying by a function w

between the pole 

(LiM) the right-
angled coordinates referred to the southern extremity of the base, that is

sin M T 、r T
X =  ---  Y =  tan L cos M — tan Li.

cos L

If the function cos L be taken for cp we get

X  =  sin M Y =  sin L cos M — tan Li cos L.

In this system (Fig.'' 22) the meridians are represented by straight lines 

parallel to the Y axis, the parallels by ellipses of eccentricity equal to cos L, 

so that the transformation of the pole is a circumference whose centre is the 
origin of the coordinates. The spherical subtended angles are projected 

along the radii of the circumference. The projection thus obtained is quite 

acceptable and could be put to practical use ; it has the advantage of giving a 

complete representation of the geometrical locus, from one to the other 
extremity of the base. ’ *

By adopting (p the function C°-S we obtain :—
cos M

cos L
X =  tan M, Y =  sin L — tan Li

cos M

The meridians are still represented by parallels to OY, but hyperbolas 

correspond to the geographical parallels ; the projection of the pole is the 
parallel to OX włiose ordinate is Y =  1.

We come directly to the. foregoing projections, like to Littrow’s projec­

tion, through the simple consideration of the spherical subtended angle 
equation.

sin L cos M — sin M cot a — tan Li cos L =  0.

Such would no longer be the case if radial amplification were employed 

on a different pfojection for instance, on Lecoq，s projection inversed in 

relation to the pole which also causes converging straight lines to correspond 
to the spherical subtended angles.


