THE ANALYSIS OF TIDAL OBSERVATIONS FOR 29 DAYS

by A.T. Doodson, D.Sc., F.R.S., Hon.F.R.S.E. (Liverpool Observatory and Tidal Institute)

It is generally recognised that the harmonic analysis of tidal observations is best effected from a set of hourly heights of tide for a span of time nearly equal to a solar year. The reason for this is that certain groups of constituents are such that the component constituents may require a span of a whole year for their phases to become separated by 360°. Unless such a phase separation can be obtained it is not easy to analyse the observations so as to obtain the harmonic constants for all the constituents. If shorter intervals of time are taken for the observations special assumptions have to be made so as to obtain usable results. Under certain circumstances it is necessary to use only a month's observations, as would be the case when a survey is being made of a coastal region remote from a standard port, or which might be obtained by an expedition, say, into Arctic waters, or, again, which might be made during the summer months in harbours which are ice-bound in winter. Other reasons for monthly analyses may occur to the reader, but one of special importance arises where observations, even in a harbour, are intermittent for one reason or another, so that while sundry sets of monthly observations may be obtainable from the records there are no continuous records which can be submitted to the standard method of analysis. In this latter case it is sometimes very important to obtain the maximum of accuracy in the monthly analyses so as to facilitate the combination of the results for one month with the results for other months.

The word " accuracy " may be used in two senses, and is it desirable to examine both senses. It is obvious that the fewer the number of observations the greater will be the error due to casual, or non-tidal, causes. The most elaborate method which may be utilised will not in any way reduce this casual error beyond a certain point, which depends upon the degree of error in the individual observations and upon the number of the observations. There are well-established rules for estimating the « standard error » in the results of analysis. It might be argued that in such circumstances there is no valid argument for using an elaborate method which will nominally give results far more accurately than is warranted by the known or estimated errors. That may be so for analytical results which are not likely to be combined with other results, but when a number of months of analysis have been done, then the question arises as to whether the combination will free the results from systematic error. Thus in a monthly analysis a constituent nominally obtained may be perturbed by another constituent. When results are combined for the purpose of increasing the real accuracy, the casual errors are diminished, but the systematic ones may remain with but little diminution. is therefore regarded as a principle that all systematic perturbations of analytical results should be removed as far as is possible in each analysis.

There are in existence many methods of analysis for a month's observations of tides, and the present author has in his time devised many methods, but he has found that the simpler methods which were considered to be sufficient at one time

have had to be revised repeatedly to include more constituents or to achieve more nominal accuracy.

There comes a time when the analyst must decide whether the extra work which may be involved in extending his processes is likely to yield results at all commensurate with the work done. An interesting example of this is found in the Admiralty Method of Analysis of Tides, which was devised by the present writer. As this was intended for use at sea computation had to be reduced to a minimum, and the method has found favour throughout the world, not only in connexion with ordinary tidal observations, but also for the purpose of reducing oceanographical observations and observations of ground tilt under the influence of tidal loads and forces. The results are well balanced in real accuracy with the span of observations available. But if tidal predictions are required it is often found necessary to extend the analyses when they come into the hands of the predicting authorities. Part of this paper will be devoted to this problem.

2. Fundamental principles and formulae.

The method of analysis here described is a revised version of one that has been extensively used at the Tidal Institute for over 25 years. The general principles of this and all other analyses devised by the author are to be found in his large memoir, « The Analysis of Tidal Observations », Phil. Trans. Roy. Soc., Vol. 127, pp. 223-279, 1928. The most fundamental principle is to combine the heights of tide daily in order to isolate as far as possible all the species of tides, whether diurnal, semi-diurnal, or higher species. The species of tide will be denoted by the species-number p, which gives the number of periods per day, and the combinations of the tides according to certain rules are denoted by X and Y, with appropriate suffixes.

The daily values of X and Y are obtained by multiplying the hourly heights by the small multipliers given in table I and summing the products, which is easily effected upon a simple adding machine. The multipliers are small integers with positive and negative signs and the combinations have been chosen so as to reduce to insignificance any contributions from constituents other than those of the one species indicated by the suffix. Thus, from X_1 and Y_1 we can readily obtain the diurnal tide for the successive days.

The daily values of any function, as may be seen from the example, table 3, are subject to constant terms, terms with monthly variations, terms with semi-monthly variations, and so on. For example, the function X_2 will have constant terms, which are due to S_2 and to which also K_2 and other constituents contribute largely. The monthly oscillations are due to L_2 and associated constituents, the semi-monthly oscillations are due to M_2 and $2SM_2$, and the third-monthly oscillations are due to N_2 and associated constituents, and so on.

The next stage of analysis is therefore to combine the daily values of each function by applying the multipliers given in table II and summing the 29 products for the month. We thus obtain functions such as X_{22} and X_{2b} where the first suffix indicates that the operations have been performed upon X_2 and the second suffix indicates that the combinations denoted by D_2 or D_b have been used.

The next important principle is that for each species the constituents and the corresponding functions should be reduced to a common and central time-origin. For all the theory and details of this operation recourse should be made to the memoir already mentioned. In effect, we deal with functions given by

$$A = X + Y \qquad B = X - Y$$

each being taken with the same suffixes. The memoir gives divisors which can be applied to the functions A and B to give, nominally, R cos r and R sin r for the constituents, where R is the amplitude and r is the phase lag appropriate to the time origin.

It will be noted that we have given emphasis to the word « nominally », and the reason for this is that the functions A and B are not entirely freed from other groups of constituents of the same species. The memoir gives all the data whereby the effects of all these processes can be computed once for all time, and the advantage of the central time origin, indeed a very great advantage over other methods, is that all the functions can be readily corrected by combination of themselves, without having to use tedious methods of computing angles and amplitudes and then combining results by vectorial methods. The functions already obtained are in two groups, one of which involves only cosines and the other involves only sines. One group has no effect upon the other.

The same substantial advantage applies also to the Admiralty Method of Analysis, but that method saves labour by using simpler multipliers which, however, are not so efficient as the multipliers used in the method here described, for they do not so efficiently separate the species and groups of constituents. The methods will give the same results but the system of end corrections for the Admiralty Method is more complex than the system for the Tidal Institute Method.

Labour is saved by a further combination of functions according to the typical formulae

$$C_{12} = A_{12} + B_{15}$$
 $D_{12} = -B_{12} + A_{15}$

 $D_{1b} = -B_{1b} + A_{12} \qquad C_{1b} = A_{1b} + B_{12} \\ \text{but in actual practice it is found convenient to express the functions C and D direct in terms of the functions X and Y, and the combinations are indicated in table III.}$

Finally the functions C and D are combined so that each combination gives a result depending only on one major constituent, and the combinations for this are in table IV, yielding values of R cos r and R sin r for the constituents named, subject, however, to other corrections. These will be dealt with firstly in the manner which has been practised hitherto and later on other corrections will be described, which are new to ordinary analysis. The new corrections can thus be made to any existing analysis if desired.

Note: The tables of multipliers for X, Y, and the combinations are written out by the computer to suit his computation forms, so that the multiplier sheets may be folded to permit the column of multipliers to be placed alongside the column of figures with which it is to be used.

It was indicated in the introduction that certain constituents are so nearly equal in speed that they cannot be separated from observations covering only one month. For example, the diurnal constituents K_1 and P_1 are inseparable by direct analysis of 29 days' observations, but fortunately tidal theory permits the use of the relations indicated by the forces, and it may be assumed that both constituents have the same phase-lag g and that their amplitudes H have a constant relationship. On this basis we are able to give in table V values of factors and angles, denoted respectively by (1 + W) and w. These can be applied to the values of R and r which may have been obtained nominally for K_1 . Tables of this kind are used in all methods and full instructions for their use are found for the Admiralty

Method. Table V gives three sections for correcting apparent results for K_1 , S_2 , and N_2 , and the same tables can be applied to the shallow water tides.

The harmonic constants which are the end-results of the analysis are called H and g, and the formulae for calculating them are

$$H = R$$
 divided by $f(1+W)$
 $g = r + V + u + \Delta + w$

where V is the astronomical argument at zero hour of the central day, Δ is a correction according to the time-origin of the formulae used for X and Y for the different species, w and (1+W) have just been explained, and f and u are factors and angles which change with the longitude of the moon's node, in a period of about 19 years.

As a general rule computers will use standard tables for determining V, u, and f, but formulae for these quantities are given in tables VI and VII so that this paper may be completely furnished with all necessary data. Values of Δ come from the memoir, and are given in table VII.

When all these operations have been completed the values of H and g for the principal constituents will have been obtained, according to the methods which have hitherto been deemed sufficient, and which are sufficient for all practical purposes unless it is desirable to obtain maximum accuracy for purposes mentioned in the introduction.

3. Additional refinements.

It has been supposed that for practical purposes the constituent P_1 may be considered in the analytical processes in exactly the same way as the constituent K_1 so that correction multipliers designed for the elimination of K_1 may be supposed to be correct also for P_1 , but this is not strictly true. The functions X_1 and Y_1 have not quite the same multiples of contributions from P_1 and K_1 and the same may be said of functions such as X_{11} and Y_{11} where the second suffix is an integer, but for functions such as X_{1a} and Y_{1a} , where the second suffix is literal, the contributions of P_1 and K_1 , are opposite in sign. It follows that the combinations of functions C and D which serve to eliminate K_1 will not wholly eliminate P_1 .

Similarly, the combinations which eliminate S_2 will not wholly eliminate K_2 and T_2 , those which eliminate N_2 will not wholly eliminate p_2 , and those which eliminate p_2 will not wholly eliminate $2N_2$.

The constituents μ_2 and $2N_2$ require special consideration because they are not related to one another according to the theoretical indications of the tide-generating forces, except in very deep water. If $2SM_2$ has an appreciable amplitude there will be a term $2MS_2$ which has an appreciable amplitude, and this term has a speed equal to that of μ_2 . The complex terms just mentioned arise from the effects of shallow water conditions and they are associated in their generation with the sixth-diurnal constituents. Thus to the sixth-diurnal constituents whose speeds may be denoted by

$$3M_2$$
, $2M_2 + S_2$, $2S_2 + M_2$, $3S_2$

we have the corresponding semi-diurnal constituents whose speeds are denoted by

$$2M_2 - M_2$$
, $2M_2 - S_2$, $2S_2 - M_2$, $2S_2 - S_2$

which are shallow-water contributions to

$$M_2$$
, μ_2 , $2SM_2$, S_2 .

It is possible, however, to infer P_1 , K_2 , T_2 , P_2 , and $2N_2$ from theoretical relationships, so that their effects may be fully allowed for in the analysis. The method of inference from the analytical results will now be explained on the assumption that for two constituents whose speeds are very nearly equal they will take the same values of Δ and also for g. For the principal constituent we have

$$r + V + u + \Delta + w = g$$

and for the subsidiary constituent we have

$$\mathbf{r}' + \mathbf{V}' + \mathbf{u}' + \Delta = \mathbf{g}$$

whence

From this formula are obtained the results given in table VIII and from the resulting values of R cos r and R sin r the combinations in table IX will give the corrections to the values of H and g for the principal constituents.

After all corrections have been made then the values of H for the subsidiary constituents may be obtained by using the middle column of table VIII, but ignoring symbol f. The values of g may be taken as the same as those of the corresponding principal constituents. For 2N₂, however, we use the formula

$$(2g \text{ of } N_2)$$
 — $(g \text{ of } M_2)$.

In addition to the above constituents, which are sufficiently large to have an appreciable effect on other constituents there are some small diumal constituents which may be considered to have effect only on K_1 . These constituents are called π_1 , ψ_1 , φ_1 , and their relations to K_1 are given in table VIII.

It is not practicable to analyse direct for the constituent $2Q_1$ with any certainty of getting a trust-worthy result, because of the constituent σ_1 whose amplitude is theoretically greater than that of $2Q_1$. Tables of quantities such as (1+W) and w would be useless when the constituents were in opposite phases. Analytical results for $2Q_1$ are therefore only of value if they are obtained for a number of months so as to enable the contributions for σ_1 to be eliminated. No simple rules can be given for this process as usually the months are scattered fortuitously. Under such circumstances, if these constituents are required, they should be inferred from the formulae

(g of
$$\sigma_1$$
) = (g of $2Q_1$) = (2g of Q_1) — (g of O_1)
(H of σ_1) = 0.031 (H of Q_1)
(H of $2Q_1$) = 0.025 (H of O_1).

The inference of additional constituents for the shallow-water species and for special constituents of the semi-diurnal species may be effected from a consideration of the formulae given in the Admiralty Manual of Tides, para. 8.3.

With regard to the inference of harmonic constants the question is sometimes asked as to whether it is sufficiently accurate to take the same values of g for a principal and subsidiary constituent. The purist anxious for meticulous treatment of the results may use his dicretion as to how the phase-lags for constituents of the same species change with speed. If, for instance, there is a change of 24° in phase-lag for S_2 compared with M_2 then the phase-lag for K_2 will be 2° more than that for S_2 . Again, the question is sometimes asked as to whether regional differences may not be used, so that a change in phase-lag for one place may be

adopted for an adjacent place. Seeing, however, that there are always some errors in any analysis it is usually safer to use the methods outlined above, but in the event of there being very abnormal changes in phases, owing to nearness to a amphidromic point of the system, methods of inference may not be trustworthy except for constituents very close together in speed.

The long-period tides are largely influenced by meteorological perturbations of sea level, so that the results for one month are not trustworthy. The forthnightly constituents MSf and Mf are not separable by direct analysis or by inference, but for all the long-period constituents a series of monthly analyses will give results which may be satisfactorily analysed.

TABLE I: HOURLY MULTIPLIERS FOR X, Y.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
\mathbf{x}_{\odot}	1.	1	1 1	•	• 2	1	• 1	1 1	1.	1	2	•	1 1	1	• 1	2	1.	1.	2	•	2	1	1.	2 .
\mathbf{x}_{1}	•	-2 -2	:	-1 -1	:	-1 -1	•	1 -1	•	• 2	•	2	•	• 4	•	2		2		-1 1	•	-1 -1		-1 -1
Y ₁	-1 1	•	-1 -1	•	-1 -1		- 2 - 2	•	-1 -1	•	-1 -1	•	1 -1	•	2	•	2	•	4	•	2	•	2	
\mathbf{x}_2	1 1	•	2 2		1 1	•	- 2		-4 •	•	- 2	•	2		4	•	2	•	- 2	•	-4 •	•	- 2	•
ч2	•	-2	•	1 1	•	2 2		1 1	•	-2 •		-4 ·		- 2	•	2		4	•	2	•	- 2	•	-4 •
Х3	1 1 •	2	1 1	•	-1 -1 ·	-2 •	-2 ·	•	1 1	1 1	· 2		-2 •	-1 -1	-2 •		2 .	1 1	1 1	•	- 2	-2 •	-1 -1 •	
x_4	•	1 1			-1 -1	:	•	2	•	•	- 2	•	•	2		•	- 2	•	•	2	•	•	- 2	:
Y ₄	-2	; ~		1 1		:	-1 -1		•	2	:	•	- 2	·.		2	•	•	-2 •	•	•	2	•	•
х ₆	1 2		-1 -2		2 1		-2 -1		3		- 3		3		- 3		3		- 3		3	•	- 3	•

The stencil hole for the date must appear on the same line as the symbol X,Y. Enter multipliers with negative sign in red ink.

TABLE II: DAILY MULTIPLIERS

L	d_0	d ₁	\mathbf{d}_2	\mathbf{d}_3	${\tt d}_4$	d ₅	d ₆	^d 7	đ	a c	L _b d	c d	d _e	$\mathtt{d}_{\mathbf{f}^{\bullet}}$	$^{ m d}_{ m g}$
-14	1	-2	2	- 2	2	-2	1	-1	0	-1	. 1	-1	1	- 2	
-13	1	-2	2	-1	1	0 2	-1		1	-1	. 2	-1	1 2	-1	1
-12	1	- 2	1	0	- 2	2	-1 - 2	1 1	1	-2	2	<u>-</u> 2	1	1	<u>-1</u>
-11	1	-1	0	1	-2	1	0	-1	1	-2	2 2 1	ō	-1	1 2	<u>-1</u>
<u>-</u> 10	1	- 1	-1	2	-1	0	0 2 1	- 2	1 2	-2 -2	0	-2 0 1	-2	Ō	1
- 9	1	-1	-2	2	0	- 2	1	1	2			2	-1	-2	2
- 8	1	0	-2 -2 -2 -1	1	0 2 2 1	-1	-1	2	2	-1 -1 1	-2	2 1 0	1 2	-1	2 1 -1 -1 2 -1
- 7	1	0	- 2	-1	2	1	-2 1 2 1 -2	- 1	2	1	-2	0	2	1	-2
- 6 - 5	1	1 1	- 2	-1	1	2 1	1	- 2	2	1		-2	0	2	1
- 5 - 4	1	1	-1	-2	-1	1	2	1 2 0	2	2	-1	-2	-2	0	1 2 -1
	1	1	0 1 1	-2	- 2	-1	1	2	1	2	1	-1	- 2	- 2	-1
- 3 - 2	1	1 2	1	-1	- 2	-2			1	2 1	2	1 2 2	0	-1	- 2
- 4	1	2 2	1	1	0	-1	- 2	- 2	1	1	2	2	2	1	0
- 1 0	1 1	2	2 2	$\frac{2}{2}$	1	1 2	-2 1 2 1 -2	0	1 1 0	1 0	1	2	2	2	0 2 0
			2		2	2	2	2				0	0	0	0
1 2 3	1	2	2	2	1 0	1 -1	1	0 -2	-1	-1		- 2	- 2	- 2	- 2
2	1 1	2	1	1					-1	-1		- 2	- 2	-1	0
4	1	1	0	-1 -2	- 2	-2	-2	0	-1	- 2		-1	0	1	2
'T	1	1	<u>-</u> 1	-2 -2	-2 -1	-1	-2 1 2 1 -2	2 1 -2	-1	-2		1	2	2	0 2 1 -2 -1 2 1
5 6	1	1	-1 -2	-2 -1	<u>-1</u>	1	2	1	- 2	-2		2 2 0 -1	2	0	- 2
7	1	0	-2 -2	-1 -1	2	2 1	Ţ	-2 -1	-2 -2	-1	1	2	0	-2	-1
7 8 9	1	Ö	-2 -2	1	2	-1	-2 -1	- 1	- 2	-1 1	2 2	1	-2 -1	-1	2
9	1	-1	-2	2	Õ	- 2	1	1	-2 -2	1	1	-1 -2	1	1 2	1
10	1	- 1	-1	2	-1	Ö	2	2 1 -2	-2	2		<u>-</u> 2 -1	2	0	- 2
11	1	-1	ō	1	- 2	1	Õ	-1	-1	2	-1	0	1	-2	-1
12	1	- 2	1	ō	-2	2	- 2	1	-1	2	- 2	2	-1	-2 -1	1 1
13	1	- 2	2	-1		Ō	-1	1	-1	1	-2 -2	1	-1 -2	-1 1	<u>-1</u>
14	1	- 2	2	-2	1 2	-2	1	-1	Ō	1	-1	1	-1	2	-1 -2
								-	-	-	_	-	-	-	-2

TABLE 111: COMBINATIONS OF X AND Y FOR C AND D.

	c_{po}	c_{p1}	$\mathtt{D}_{\mathtt{pa}}$	D_{po}	D_{p1}	$\mathtt{c}_{\mathtt{pa}}$
x_{po} , y_{po}	1,0	0 0 0		0,1	•••	•••
X _{p1} , Y _{p1} X _{pa} , Y _{pa}	•••	1 , 1 1 ,-1	1 , 1 -1 , 1	•••	-1 , 1 1 , 1	1 ,-1 1 , 1

Interpretation: $C_{po} = X_{po}$. $C_{p1} = X_{p1} + Y_{p1} + X_{pa} - Y_{pa}$.

Similar combinations are taken for functions where the second suffixes are changed to 2, b or 3, c, etc.

TABLE 1V: COMBINATIONS TO GIVE R $\cos r$ and R $\sin r$ COMBINATIONS for 10^6 R $\cos r$.

COMBINATIONS for 10^6 R $\sin r$.

X00. 01. 02.	1150	Mm 1156 -4	-78				X0a. Ob.	Mm 1175 5	•				
	Q,	0,	M,	K,	J,	00,		Q,	0,	M,	K,	$\overline{\tau_i}$	00,
C10. 11. 12. 13. 14. D1a. 1b.	31 11 -49 583 65 -58	-43 -15 594 104 -14 26	82 643 41 -31 -7 -90	1150 -23 -6 16 -18 84	-95 -87 -8 -31 11 686	86 21 -173 35 -33	D10. 11. 12. 13.	57 1 -45 595 65	-60 -5 585 102 -8	113 634 49 -26 -11	1493 3 -19 14 -15	-118 124 39 -28 12	102 -26 92 27 -31
_	μ_2	N_2	M2	Lz	Sz	25M2		μ	N ₂	ML	Lz	Sz	25M2
24.	28 5 -21 495 3 -1 <i>MO</i> ₃	-13 0 493 -34 -9 2	25 476 49 31	510 -2 -11 -34 0 -3	1016 -49 9 5 14	-12 -22 6 9	D20. 21.	28 5 -22 497 -3 -2	-13 0 493 -31 9 4	26 476 48 30 22 33	509	9 4 12	-11 4 4 7 -495
33. 34.	1012		24 22 SN .	MS,,			3c. 3d.	1103	57	45 36 . sn	. MS ₄		
C42.	3 6		1	755			D42.			- 5		-	
4 3.	- 66	-31	793	77			43.	- 55			79		
44. 45.	6 812	803 - 53	-43 -48	51 - 6			44. 45.		789 - 16		52 ~7		
			MSNL	2MS6	25M6			2MN6	M	MSM	•	25M6	
X62.	12	71	65	23	905		Х6ь.	104				935	
64. 65.	7 89	-20	-23	936	77			62			1009	57	
66.		1018		58 46	-29 78		6e. 6f.	7 22	1065	-160	-159 44		
67•	1108		34	40				1058				1	

	S2, MS	4,2MS6	К.,	MK3	Nz, MI	V4, 2MN6	
Angle	w/f	W/f	wſ	ΜŢ	w	1 + W	Angle
000°	0.7	-0.214	0.0	0•331	0.0	1.184	000°
010	-6.6	-0.192	-2.5	0•327	1.6	1.182	010
020	-12.3	-0.131	-4.9	0•316	3.1	1.174	020
030	-15.5	-0.046	-7.3	0•297	4.6	1.163	030
040	-16.5	0.047	-9.6	0•271	5.9	1.147	040
050	-15·6	0•134	-11·8	0.239	7·2	1.127	050
060	-13·4	0•207	-13·8	0.201	8·3	1.104	060
070	-10·3	0•258	-15·6	0.157	9·2	1.077	070
080	-6·6	0•284	-17·1	0.107	9·9	1.048	080
090	-2·6	0•284	-18·3	0.053	10·4	1.017	090
100	1.6	0.256	-19·1	-0.003	10.6	0•984	100
110	5.6	0.204	-19·3	-0.060	10.4	0•953	110
120	9.2	0.131	-19·0	-0.118	10.0	0•922	120
130	12.0	0.041	-17·8	-0.173	9.1	0•893	130
140	13.7	-0.058	-15·9	-0.224	7.8	0•867	140
150	13.6	-0·157	-13·1	-0.268	6•2	0.846	150
160	11.2	-0·245	-9·3	-0.302	4•3	0.830	160
170	6.0	-0·307	-4·9	-0.323	2•2	0.819	170
180	-0.9	-0·330	0·0	-0.331	0•0	0.816	180
190	-7.8	-0·308	4·9	-0.323	-0•2	0.819	190
200	-12.6	-0.247	9·3	-0.302	-4·3	0.830	200
210	-14.9	-0.163	13·1	-0.268	-6·2	0.846	210
220	-14.8	-0.067	15·9	-0.224	-7·8	0.867	220
230	-13.0	0.029	17·8	-0.173	-9·1	0.893	230
240	-9.8	0.115	19·0	-0.118	-10·0	0.922	240
250	-6.0	0.186	19·3	-0.060	-10·4	0.953	250
260	-1.8	0.236	19·1	-0.003	-10·6	0.984	260
270	2.6	0.263	18·3	0.053	-10·4	1.017	270
280	6.9	0.265	17·1	0.107	-9·9	1.048	280
290	10.8	0.241	15·6	0.157	-9·2	1.077	290
300	14·1	0·192	13.8	0.201	-8·3	1•104	300
310	16·5	0·124	11.8	0.239	-7·2	1•127	310
320	17·5	0·039	9.6	0.271	-5·9	1•147	320
330	16·8	-0·051	7.3	0.297	-4·6	1•163	330
340	13·7	-0·133	4.9	0.316	-3·1	1•174	340
350	8•0	-0·193	2•5	0•327	-1•6	1•182	350
360	0•7	-0·214	0•0	0•331	0•0	1•184	360
	Angle for K		Angle for K		(3V fo		

do.19

-0.19

-0.57

-0.04

TABLE VI: ASTRONOMICAL DATA, f and u.

s, h, p, N are the mean longitudes of the moon, sun, moon's perigee, and moon's ascending node. respectively.

` = the integral part of $\frac{1}{4}$ (Y - 1901), equal to the number of leap years between 1900 and Y = the year. D = the number of days elapsed since January 1 in the year Y. L = the integral part of $\frac{1}{4}(-Y-1901)$, equal to the number of excluding Y as the leap day in this year is counted in D.

day D, G.M.T. at zero hour Jo $277^{\circ} \cdot 025 + 129^{\circ} \cdot 58481 \text{ (Y - 1900)} + 15^{\circ} \cdot 17640 \text{ (D + L)}$ $334 \cdot 385 + 40 \cdot 66249$ (Y - 1900) + 0 · 11140 (D + L) $259 \cdot 157 - 19 \cdot 32818 \text{ (Y} - 1900) - 0 \cdot 05295 \text{ (D} + \text{L)}$ 280·190 - 0·23872 (Y - 1900) + 0·98565 (D + L) H IJ B 11 Z A P

u: series of multiples of sin 2N sin N 3NCOS series of multiples of cos 2N cos N Į:

0.68 1.34 4.02 0.68 -10.34 • 100.80 -8.86 -12.94 -36.68 -2.14-17.74 : 0.0014 90000.0 0.0016 -0.0014-0.0015 : 0.0013 -0.0147 -0.0088 -0.0170 0.0317 0.0002 0.0083 -0.1300 0.1150 -0.0373 0.2863 0.1871 0.1676 0.6504 ν₂, N₂, M₂: 1·0004 K₂ : 1·0241 1.0000 1.0089 1.0060 1.0129 1.1027 K41, 01.:

L₂: f cos u = 1 - 0.2505 cos 2p - 0.1102 cos (2p - N) - 0.0156 cos (2p - 2N) - 0.0370 cos N. f sin u = -0.2505 sin 2p - 0.1102 sin (2p - N) - 0.0156 sin (2p - 2N) - 0.0370 sin N.

 M_1 : f cos u = 2 cos p + 0.4 cos (p - N) . f sin u = sin p + 0.2 sin (p - N)

$$M_3$$
: $f = 1 + 1.5$ ($f - 1$ of M_2) = -0.5 + 1.5 (f of M_2) u = 1.5 (u of M_2)

TABLE V11: VALUES OF V AND \triangle , f AND u.

		\	/		Δ			
	s	h	p	0	0		V	Δ
M m	1	0	-1	• • •	10•3	Msf	$S_2 - M_2$	19•3
Q_1	- 3	1	1	270	207•7	$2SM_2$	2S ₂ - M ₂	120.8
$\tilde{o_1}$	-2	1	0	27C	216•1			
M_1^-	-1	1	0	90	224 • 6	моз	$M_2 - O_1$	353•2
K_1	0	1	0	90	233•1	мкз	$M_2 + K_1$	20•6
$\overline{J_1}$	1	1	-1	90	241.6			
$o\overline{o}_1$	2	1	0	90	250•2	MN4	$M_2 + N_2$	80•1
_						M_4	$^{2}\mathrm{M}_{2}$	88•5
μ_2	-4	4	0	• • •	73•5	$\tilde{\text{SN}}_4$	$S_2 + N_2$	95•8
N_2	-3	2	1		80•8	MS4	$M_2 + S_2$	104.2
M_2	- 2	2	0		89•2	-	2 0	
$\bar{\mathtt{L}_{2}}$	-1	2	-1	180	97•7	$2MN_6$	$2M_2 + N_2$	306•1
s_2^-	0:	0	0	• • •	105.0	M_6	້3M ₂ ້	314.3
_						\mathtt{MSN}_6	$M_2 + S_2^2 + N_2$	$321 \cdot 4$
M_3	- 3	3	0	180	6 • 9	2MS ₆	2M ₂ + N ₂	329•5
, ,	•					$25M_{\widetilde{6}}$	$2S_2 + M_2$	344.8

The values of u for the constituents on the left are given by table V1 or are zero.

For the compound constituents in the right half of the table the angles are given in terms of those of the generating constituents, and the same applies to u. The values of f are the products of the values of f for the generating constituents. In full, therefore, for example:

TABLE VIII: VALUES OF R and r FOR SUBSIDIARY CONSTITUENTS.

Sa .	$(r + w \text{ of } S_2) - 2 (v + u \text{ of } K_1) + 180^{\circ}.$ $(r + w \text{ of } S_2) + (v \text{ of } K_1) - 12^{\circ}.$ $(r + w \text{ of } N_2) - (3v \text{ of } M_2 - 2v \text{ of } N_2).$ $2 (r + w \text{ of } N_2) - (r \text{ of } M_2).$	$(r + w + u \text{ of } K_1) + 2 \text{ (V of } K_1).$ $(r + w + u \text{ of } K_1) + 3 \text{ (V of } K_1) - 12^{\circ}.$ $(r + w + u \text{ of } K_1) - \text{ (V of } K_1) + 12^{\circ}.$ $(r + w + u \text{ of } K_1) - 2 \text{ (V of } K_1) + 180^{\circ}.$
, æ	0.272 (f of K ₂)(H of S ₂) 0.059 (H of S ₂) 0.194 (fH of N ₂) 0.133 (fH of N ₂)	0.331 (H of K ₁) 0.019 (H of K ₁) 0.008 (H of K ₁) 0.014 (H of K ₁)
Principal constituent	0 0 Z :	K K K L L L L
Subsidiary constituent	жн у м са ча	4£ 3.6

CONSTITUENTS.		25M2	0.085	-0.038	-0.043	-0.039	0.026	'00'	-0.143	:	•	•		2.5 M2	0.081	-0.036	-0.037	-0.035	-0.023		100	~0.129	:	:	:
PRINCIPAL CONSTI		જ	0.031	0.017	090.0-	-0.044	0.004	4	0.152	•	:	:		Sz	0.027	0.019	-0.055	-0.038	0.002		r,	0.145	:	:	:
TO	cos r of	42	0.137	-0.087	940.0	0.045	-0.005	Ϋ́	0.015	-1.000	-1.000	-1.000	sin r of	Ļ	0.136	-0.087	0.074	0.042	-0.004	,	Ÿ	0.023	-1.000	-1.000	-1.000
ADDITIONAL CORRECTIONS	to R	R	-0.061	0.035	-0.144	-0.065	0.056	3,	-0.153	:	•	:	Corrections to R s	٤	-0.065	0.036	-0.138	-0.059	0.055		ž	-0.161	:	:	:
ADDITION/	Corrections	χ	0.039	-0.022	0.001	0.127	0.004	Õ	0.077	•	•	:	Correct	√ 2	0.038	-0.022	000•0	0.123	900•0		ō	0.082	•	:	:
TABLE IX:	ı	<i>1</i> 3/	-0.028	0.015	0.127	-1.004	-0.00	ď	-0.055	:	•	•		/hr	-0.029	0.016	0.130	-1.004	-0.003		8	-0.076	:	:	•
	Multiple of.	1	R cos r: K2	? ∃		7 NZ: "	1 ₀		R cos r: Pi	 F	₹ 	: &_		· io ardinim	R sin r: K2	1 : T2	- - -	2N2: "	• • • • • • • • • • • • • • • • • • •			R sin r: P,	£	≯ 	e.

Note: If $\mathbf{0}_1$ has been previously allowed for in the analysis by corrections from \mathbf{C}_{12} and \mathbf{D}_{12} (see table IV) the contributions given above should be ignored.

Zone: -1.

OGIDIGBE: ESCRAVOS RIVER. Central Day: Feb. 21, 1951.

22		7.1
22		9.0
21	80000000000000000000000000000000000000	
20	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	
13		2 <
18		o [~
17		ρα
16	9000 C C C C C C C C C C C C C C C C C C	ત ના
72	% V	ન 🕁
14	$\begin{matrix} \mathbf{r}, \mathbf{o}, \mathbf{o}, \mathbf{o}, \mathbf{o}, \mathbf{o}, \mathbf{o}, \mathbf{c}, \mathbf{o}, $	7.4
13		0. 8 4
12	$\begin{array}{c} \mathbf{\hat{v}}\mathbf{\hat{v}}\mathbf{\hat{v}}\mathbf{\hat{v}}\mathbf{\hat{o}}\mathbf{\hat{o}}\mathbf{\hat{p}}\mathbf{\hat{q}}\mathbf{\hat{o}}\mathbf{\hat{q}}\mathbf{\hat{q}}\mathbf{\hat{q}}\mathbf{\hat{q}}\mathbf{\hat{p}}\mathbf{\hat{p}}\mathbf{\hat{p}}\mathbf{\hat{p}}\mathbf{\hat{q}}\mathbf{\hat{q}}\mathbf{\hat{q}}\mathbf{\hat{p}}\mathbf{\hat{p}}\mathbf{\hat{p}}\mathbf{\hat{q}}$	0.00
11		တက် တေထာက
70	ο ζ ζ φ φ φ φ φ φ φ χ ζ φ φ φ φ ζ ζ γ ω φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ	4.00 € 5.00 €
60	Θασυνουα αργγοροφονων υ 0 1 4Γαναναναναναναν το ποροπορογιστού ο 1 4Γαναναναναναν το ποροπορογιστού ο 1 4Γαναναναναν το ποροπορογιστού ο 1 4Γαναναναναν το ποροπορογιστού ο 1 4Γαναναναν το ποροπορογιστού ο 1 4Γαναναναν το ποροπορογιστού ο 1 4Γαναναν το πο	4.7
8	7.0000000000007.7.07.7.7.000.00000.0000.00	10 01 t
07	$ \begin{array}{c} @ \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	000
90	$\begin{array}{c} 0.011 \\ 0.000 \\$	440
05	011 000 000 000 000 000 000 000	000
2	99999777779999999977777999999999999999	404
03	9990 r. r. q. q. r. r. r. q. q.	00
02	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
70		
8.		
	6, 6, 60, 60, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61	ထိတ်
	Feb.	

TABLE 3: VALUES OF X_p , Y_p .

OGIDIGBE, ESCRAVOS RIVER.

Central Day: February 21, 1951.

Zone: -0100.

Day	y	$\chi_{\mathbf{o}}$	X	Y_{\parallel}	x _z	${f Z}^{ m Y}$	X 3	Х4	Y 4	X 6
Feb	7	250•1	-9•6	~1•3	-30•8	42.4	3•6	0•7	-0•7	-1•8
	8	247•7	-7•9	-0•9	-39•1	33•7	3•7	0•8	0.7	-0.2
	9	246•6	-8.0	0.4	-43•9	15.7	5.2	-1.0	0.9	-0.9
	10	245•6	~7•6	~0•6	-42•9	1.1	-0.9	-1.4	-0•4	1.5
	11	245•2	-6•0	0.1	-34•7	-8•9	-1.0	-0.9	-0.4	1.3
	12	243•5	-5•3	~1• 9	-21.7	-18•7	-0•4	-1.3	-1.1	1.2
	13	247•6	-0.1	4.6	-12•4	~18•5	~0•3	0.3	~0.7	-1.9
	14	247•0	-2•6	5.9	-4•8	-17.2	0•8	0.2	0.3	-1.3
	.15	246•5	-1•6	8•3	5•9	-9•9	0.1	0.0	~0.6	0.3
	16	245•2	~6•0	7•6	15•4	-2•9	1.4	-0•4	-0.1	-0.7
	17	243•5	-8•8	3•4	19•9	10.5	1.1	-0.6	-0•9	0.0
	18	246•1	-7•3	$4 \cdot 2$	17•0	20•9	0.9	-1.1	0•5	0.5
	19	245•0	-9•3	2•8	13.7	28•9	~2•5	0.0	~0·1.	1.7
	20	244•8	~ 7•9	0.9	8•0	3 8• 4	0.6	~0•2	0•8	~0.7
	21	249•5	-6• 8	3•6	-1.0	46•3	~1• 5	-0.2	-0.4	-1.5
	22	253•4	-7•7	3•8	-19•7	44•6	0.7	-0•4	0.0	~2•8
	23	257•0	-6•9	0•4	~ 35•0	35•8	2.0	-0.1	0•6	-1.5
	24	258•8	-4.0	0•5	-41•1	27•8	$2 \cdot 4$	-1.6	1.9	-1.1
	25	254•2	-3•6	-0•6	-4 7•3	12.8	2•7	~1· 5	0.1	2•7
	26	254•5	-0•7	$3 \cdot 4$	-46•4	1•4	2.0	~0•4	-0•8	2•1
	27	252•5	-0•1	4.8	- 34•9	-17•8	2.2	0.7	0•5	0•3
	28	252•0	-2•4	6•0	-1 9•7	-25.0	1.2	-0.2	-1.2	-1.3
Mar	1.	250•8	-0•6	6•7	-2.8	-26•6	~0•4	1•4	-0•9	0•8
	2	250•8	-3•6	8•2	$14 \cdot 2$	-17•8	~3•6	0.0	-0•9	1.6
	3	246•7	-3•9	6•6	27•5	-0•3	1.5	1.5	-1•4	-1.6
	4	252•6	-4 •3	7•2	29•3	16•9	-0•1	-1•6	0.9	~0•7
	5	253•7	-1· 6	6•2	28•1	30•7	1.9	0.0	- 3•2	0.4
	6	259•1	- 5•7	8•6	$7 \cdot 4$	41•6	0•3	1.3	-2•4	~0•5
	7	252•4	-8•0	1.5	-0•8	48•0	1.5	2•2	-0.1	0.8

TABLE 4: VALUES OF X , Y , C , D , R cos r, R sin r.

-0100.	R sin r	-0.027 0.057 -0.012 0.377 0.019	0.024 -0.248 1.022 0.009 0.653 -0.003	0.011 -0.035 0.009 0.003
Zone: -(R cos r	0.004 -0.141 -0.014 -0.052 0.010	-0.008 0.068 0.963 0.054 0.055	-0.013 0.027 -0.009 0.029
	۶ų	00. 00.	77, N2 M2 L2 S2 SSM2	MN4 M4 SN4 MS4
	·R sin	-0.158 -0.027	-0.012 -0.002 -0.025	-0.001 0.023 0.004 0.025 -0.003
	R cos r	8•330 -0.004 0•053	-0.014 -0.047 0.025	0.004 0.011 -0.012 -0.021 -0.014
VER.		So Mm Msf	MO ₃ M ₃ MK ₃	ZMIN B M SIN B ZMSK ZMSK ZMSK ZMSK ZMSK ZMSK ZMSK ZMSK
ESCRAVOS RIVER.		248.3 -78.7 127.1 -47.6 -84.7 48.9	626.5 17.0 2188.1 -503.9 3.2 15.5 127.1	5.00 1.00 2.00 4.00 4.00
ESCE		D10. 11. 12. 13. 14. C1a.	D20. 21. 22. 23. 24. C2b. D12.	042 443.
OGIDIGEE,		-47.5 -245.7 -17.8 79.8 14.5 -56.5	41.3 113.0 2021.5 140.5 -37.2 60.7	23.5 5.05. 118.4
ŏ		C10. 11. 12. 13. 14. D1a.	C20. 21. 22. 23. 24. D2b.	04 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1951.	⊱1,	10004 6.0 6.0 1.58.1 -56.0 91.3 -1.7 -21.4	333.9 34.4 -41.0 1063.7 60.7 -73.7 -137.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ruary 21,	×	-147.9 3.0 -45.6 -95.1 -3.3 -6.2 -31.0 15.9	-292.6 7.0 30.6 -22.6 1041.1 184.4 -108.0 -17.0	224 284 4.1 2.0 2.0 2.0
Feb		11	022 022 022 045 045	44 44 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Central Day: February	×	7242.4 -2.9 -134.1 48.2 -41.6	23.6 45.8 45.8 11.1 11.8	441 441 6.442 6.01 6.01 7.02 7.03 7
Cent		00. 01. 02.	32. 33. 4.	62. 64. 65. 66. 67.

TABLE 5: COMPUTATION OF H, g.

OGIDIGBE, ESCRAVOS RIVER. 5°34' N, 5°11' E.

Zone: -0100.

Central Day: 21 February, 1951.

٠	CIIOI	ar Day:	2,110	oruary,	1001.						20
		్క	Mm	Msf	Q,	0,	M,	K,	7,	00,	S_2 , MS_4 , Msf , $2MS_6$, K_1 $V + u = 61° • 4$
ĺ .	V	• • • •	250•6	351.3	58•0	308•6	274 • 4	60•1	310.7	351.6	w/f = -13.0
ŀ	u	• • •	• • • •	-0•4	-1.5	-1•5	244•5	1.3	1.8	5•0	W/f = 0.214
l		•••	10•3	19•3	207•7	216•1	224•6	233•1	241.6	250•2	
	w	• • • •	• • •	-17•1	6•2	• • • •		-16•9	-6.2	• • • •	$w = -17 \cdot 1$
	r	• • • •	268•7	333 • 0	278•4	158•0	220•6	97•9	62•4	230•6	W = 0.281
		i							i	l	K_1 , MK_3
1	f	• • •	0.873	0.964	1.181	1•181	1.013	1.112	1.163	1.772	$K_1 2V + u = 121.5$
1	+ W		• • •	1.281	0.846			0.859	0.846		wf = -18.8
	R	8 • 330	0.158	0.059	0.027	0.152	0.018	0.379	0.021	0.014	Wf = -0.127
											f = 1.112
	Н	8 • 330	0.181	0.048	0.027	0.129	0.018	0.397	0.021	0.008	w = -16•9
	g	• • •	169•6	326•1	188•8	321.2	244•1	15.5	250•3	117•4	W = -0·141
_		M03	. M ₃	MK3	µ2	Nz	Mz	L ₂	S ₂	25ML	N_2 , MN_4 , $2MN_6$ M_2 $3V = 26 \cdot 1$
\vdash	V	317.2	13.0	68•8	17.4	118•1	8.7	79•3	0.0	351.3	$N_2 = 2V = 236 \cdot 2$
	u	-1.1	0.6	1.7	0.4	0.4	0.4	-6.9	0.0	-0.4	difference = 149.9
	~	353.2	6•9	20.6	73+5	80•8	89.2	97.7	105.0	120.8	
	w			-16.9	•••	6.2			-17.1	-34.2	
	r	220.6	182 • 4	315.0	*	285 4	46.6	9.5	85 • 2	189.0	
	_		102 1	010 0		200 -	1	[""	"""	2SM ₂ , 2SM ₆
	f	1.138	0.946	1.072	0.964	0.964	0.964	1.308	1.000	0.964	$W = 2w(S_2)$
۱,		1	•••	0.859	•••	0.846		1	1.281	1.562	$W = 2W(S_2)$
_	R "	0.018	0.047	0.035	*	0.256	1.401	0.055	0.658	0.019	= 5(52)
	11	010	0 01	0 000		0 200	1 102	0000			
	Н	0.016	0.050	0.038	*	0.314	1.453	0.042	0.514	0.013	
	g	169.9	202.9	29•2	*	130.5	144.9	179.6	173•1	266.5	
_	8	103.3	202.0	20-2							SN4, MSN6
ŀ		MN4	M_{4}	SW4	MS4	2MN6	Mc	MSNL	2MS.	25M6	, o
	V	126.8	17•4	118•1	8.7	135.4	26.0	126.8	17•4	8•7	
	u	0.7	0.7	0.4	0•4	1.1	1.1	0.7	0.7	0.4	$1+W = W(S_2) + 1+w(N_2)$
	-	80•1	88•5	95•8	104.2	306 • 1	314 • 3	321.4	329•5	344 • 8	
	w	6.2	•••	-10.9	-17•1	6•2		-10.9	-17.1	-34.2	
	r	139.8	307•6	135.0	5.9	346.0	64.5	161.5	130.0	192•1	J ₁ as N ₂ with w
	-							1			changed in sign.
ŀ	f	0.929	0.929	0.964	0.964	0.896	0.896	0.929	0.929	0.964	
1		0.846	•••	1.127	1.281	0.846	• • • •	1.127	1.281	1.562	
-	R "	0.017	0.044	0.013	0.029	0.004	0.025	0.012	0.033	0.014	Q ₁ as N ₂
	٠.	01/	0 014	0.10							_ ~ ~
ł	Н	0.022	0.047	0.012	0.023	0.005	0.028	0.011	0.028	0.009	
		353.6	54.2	338•4	102.1	74•8	45.9	239•5	100.5	151.8	
Ì	g	000.0	94.2	330.4	102-1	/4-0	40.0	1 200 0	1	1 -0- 0	

cannot be determined unless a correction is made for 2N2; see tables IX and 6.

TABLE 6: CALCULATION OF R cos r AND R sin r FOR SUBSIDIARY CONSTITUENTS.

	ξ	74	3,	2N2	6-	£	Å,	Đ,		R cos r	R sin r
ratio	0.272	0.059	0.194	0.133	0.331	0.019	0.008	0.014	K2	-0.106	0.149
f factor	1.314	:	0.964	0.964	:	:	:	:	1 2	-0.013	0.027
H factor	0.514	0.514	0.314	0.314	0.397	0.397	0.397	0.397	ス	-0.046	0.036
R = product =	0.183	0.030	0.059	0.040	0.132	0.008	0.003	900.0	ZN2	-0.040	0.002
1									ਂ	*	*
term with r	680.1	680.1	2910.6	2230.2	820.3	850.3	820.3	820.3	•		
Λ	-122.8	60.1	-149.9	-46.6	120.2	180.3	~60•1	-120.2	<u>α</u> ,	-0.122	-0.050
constant	180.0	-12.0	:	:	:	-12.0	12.0	180.0	£	-0.003	-0.008
ı = sum	125.3	116.2	141.7	176.6	202.5	250.6	34.2	142.1	ě	0.003	0.002
									θ.	-0.005	0.004
									*	already	included.

TABLE 7: CORRECTED VALUES OF R AND r FOR SUBSIDIARY CONSTITUENTS.

				The remainder of the	work is similar to	that in table 5.											
25M2	-0.005	0.010	-0.019	-0.003	-0.024	0.007	0.025	163.7	00'	0.017	900•0	600•0~	-0.011	0.008	-0.005	600•0	328.0
જ્	0.001	0.002	0.055	0.653	0.056	0.655	0.657	85.1	۲	-0.019	-0.007	0.010	0.019	600.0-	0.012	0.015	127.0
77	-0.019	0.021	0.054	600.0	0.035	0.030	0.046	40.6	Ā,	0.003	0.001	-0.052	0.377	-0.049	0.378	0.382	97.4
M	0.015	-0.014	0.963	1.022	0.978	1.008	1.404	45.9	M	0.019	0.008	-0.014	-0.012	0.005	-0.004	900.0	321-4
չ	600.0-	0.005	0.068	-0.248	0.059	-0.243	0.249	283•7	õ	600.0-	-0.004	-0.141	0.057	-0.150	0.053	0.159	160.5
な	0.037	-0.001	-0.008	0.024	0.029	0.023	0.037	38.5	Ø,	0.007	0.004	0.004	-0.027	0.011	-0.023	0.025	295 - 5
	R cos r	R sin r	cos	R sin r	R cos r	R sin r	柘	អ		R cos r	R sin r	R cos r	R sin r	30.8	R sin r	띺	H
	Corrections to:	=	.Table 4:	=	prrected values:	# # R	=======================================	=		Corrections to:	=	Table 4:	*	Corrected values: R	=	=	=
	Corre		Table	=	Corre					Corre		Table	£	Corre			

4. Extension of the Admiralty Method.

The Admiralty Method of Analysis of Tides for 29 days' observations is similar in principle to the Tidal Institute Method, except that it uses multipliers 1, —1, 0 instead of the multipliers given in tables I and II. The tables of multipliers used in the Admiralty Method and in the extension are given in tables IA and IIA. The original method was devised for use by officers who had not got access to computing machines, and it was found to be convenient to avoid the possibility of products with signs alternating unsystematically, as may happen when the range of any X and Y is small. This was effected by adding temporary datums to X or Y so that only positive quantities were to be treated by the multipliers, and provision was made for the effects of the multipliers on the datums. With the increasing use of computing machines it is not necessary for these datums to be used, and the tables given here make no provision for the use of such datums. (Of course the datum of the observations, is not removed from the observations).

The extended tables provide for the computation of third-diurnal and sixth-diurnal constituents, and some additional constituents in other species.

As has already been mentioned, the daily multipliers used in this method do not adequately separate the species of tides so that corrections have to be made for constituents of each species upon constituents of all other species. The formulae to combine the functions obtained after the hourly and daily processes have been completed involve much more calculation than in the original Admiralty Method, for the table of formulae increases in size with the square of the number of constituents sought. The method has been completed with the utmost degree of nominal accuracy, and the multipliers for the corrections are given in tables IIIA and IVA. It should be noted that the Admiralty Method has been followed so that the formulae give PR cos r and PR sin r, where P is given in table VA, together with the angle p, which is the contribution to V (or E) for the time origin of 11.5 hours each day.

As in the Admiralty Method

$$H = PR$$
 divided by Pf (1+W)
 $g = r + V + u + p + w$

where V, u, f, w, W are defined as in the Tidal Institute Method.

Further refinements can be made, as in the Tidal Institute Method, for the effects of K_2 , T_2 , and other constituents, and the necessary tables for these are given in table VIII (which is common to both methods) and table VIA.

It may be noticed that coefficients for the functions in tables IIIA and IVA differ from those given in the original method. The reason for this is that the new functions contain contributions of the original constituents as well as the constituents for which they have been introduced. The elimination of one of the new constituents introduces additional contributions from the older ones so that the formulae have had to be completely revised. It follows that any attempt to ignore any of the functions may lead to error, if the coefficients of those functions are rather large.

TABLE IA: HOURLY MULTIPLIERS FOR X, Y.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 X_{\cap} Y, -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X_{2} Y_2 Х4 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 1 0 -1 -1 0 1 Y_{A} X 1-1-1 1 1-1-1 1 1-1-1 1 1-1-1 1 1-1-1 1 1-1-1 1

TABLE IIA: DAILY MULTIPLIERS.

0	1	2	3	4	5	6	7	a	ъ	c	d	е	f	g
1 1 1 1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	111111111111111111111111111111111111111	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 1	1 -1 -1 -1	-1 1 1 -1	1 -1 -1 -1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	1 1 1 1	0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	1 1 1 1	0 -1 -1 -1 1 0 -1 -1 -1 1 0 -1 -1 -1 1 0 -1 -1 1	1 1 1 -1 -1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	111111111011111111111111111111111111111
1 1 1	-1 -1 1	-1 -1 -1	1 1 -1	1 1 1	-1 -1 1	1 -1 -1	1 1 -1	1 1 1	-1 -1 0	-1 -1 -1	1 1 0	-1 1 1	-1 -1 1	1 -1 -1
1 1 1	1 1 1	-1 -1 -1	-1 -1 -1	1 -1 -1	1 1 -1	1 1 1	-1 1	1 1 1	1 1 1	-1 -1	-1 -1 -1	1 -1	1 1 -1	1 1 -1
1 1 1	1 1 1	1 1 1	-1 1 1	-1 -1 1	-1 -1 1	-1 -1 1	-1 -1 1	1 1 1 1 1 1 1 1 1 0	1 1 1	-1 -1 -1 -1 -1 1 1 0 -1	1 1	-1 -1 1 1 -1 -1 -1 1 0	-1 1	-1 1
1 1 1	1 1 1	1 1 1	1 1 1	1 1 -1	1 1 -1	1 1 -1	1 1 -1	-1	0 -1 -1	0 -1 -1	0 -1 -1	0 -1	0 -1 -1	0 -1 -1
1 1 1	1 1 1	1 -1 -1	-1 -1 -1	-1 -1 -1	-1 -1 1	-1 1 1	-1 1	-1 -1	-1 -1	-1 -1	-1 1	1 1	1 1 -1	1 1
	1 1 -1	-1 -1 -1	-1 -1 1	1 1 1	1 1 -1	1 -1 -1	-1 -1 -1	-1 -1 -1	-1 0	1 1 1	1 0	-1 -1	-1 -1 -1	-1 -1 1
1 1 1	-1 -1 -1	-1 -1 1	1 1 1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	1 1 -1	1 -1 -1	-1 -1 -1	1 1 1	1 -1	-1 -1 -1	-1 1 1 -1 -1 -1 1 1	1 -1	-1 -1
1 1 1	-1 -1 -1	1 1 1	1 -1 -1	-1 1 1	1 1 -1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	1 1 -1	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1	1 1 0	-1 -1 -1 1 1 -1 -1 -1 -1	1 1 1 0	-1 -1 -1	-1 -1 1	1 -1 -1

TABLE IIIA. COMBINATIONS TO GIVE 10 PR cos r.

Mz So L 25M2 Q, 0, M_{I} J, 00, Mz N2 $\mathcal{S}_{\mathbf{Z}}$ K_{I} .••• 00X 1000 77 13 58 **-**6 -53 -5 -2 2 -9 -24 2 7 -2 2 2 28 -14 121 -125 -16 -1.06 -2 -47 -2 1 58 2 2 1 C10 -90 103 1000 35 -3 ... 5 10 -160 -9 -8 4 -7 9 -3 38 23 1000 -14 62 48 14 39 -3 78 -4 -52 1000 59 -15 **4**8 17 3 ... 1 -31 27 ~73 297 • • • 109 -3 15 .3 8 1.004 52 -1 -2 -3 4 105 -21 -37 -20 ... -23 144 -8 12 -1 4 2 D1a -4 -20 55 -130 99 1000 -81 13 -8 9 5 3 4 21 -81 ъ 8 **-**76 -152171 -66 160 1000 1 15 -6 C20 -30 ~40 -33 1000 -36 ... 4 1 ... -41 1 3 ... -5 -22 -5 -25 -2 98 -3 140 1004 -76 -11... 1 -8 -37 7 6 35 1001 2 -48 4 -8 -1 15 21 -2 1000 3 -90 -1 17 ... 3 -3 -64 -15 5 3 4 ... -11 10 1 7 5 -6 11 1003 -65 80 -23 17 30 ... 7 -13 15 1000 D2b 49 -3 6 65 -123 -3 34 8 X32 28 -77 168 -77 220 738 -34 26 -113 6 2 -102 3 . . . 60 10 -275 19 -56 -19 19 -195 7 22 -8 -4 -2 -254 2 -17 -47 ... 2 ... -5 -4 4 -14-4 -2 1 C42 ... -2 3 -6 3 -33 2 33 -1 ... 25 -9 59 5 -1 3 -1 -12 ... 18 2 -3 -14 2 2 -1 3 6 -7 2 3 7 4 -1 2 -1 • • • 86 4 ... 1 -1 1 **-**6 **-**7 5 1 1 6 15 -1 4 -1 X62 -1 -2 -8 5 -13 -40 13 -7 -3 8 -3 712 4 4 89 -55 22 27 -5 3 -12 ~B 4 . . . -1 27 5 1 -3 -1.0-24 -2 -26 -16 -81 6 30 -21 -2 -4 33 12 -2 9 71 39 -12 254 25 -20 210 6 40 -39 -121 16 7 -1 -10 14 26 -1 36 19 14 ms₊ MG MO3 MK3 MN4 Mm MSf M_3 M4 SNLL $2MN_L$ MSN6 2MS6 25ML • • • • • • • • • ... • • • • • • • • • ... X00 -3 • • • ... 1000 41 1 • • • 1 ... 1 • • • • • • -1 2 -25 • • • 1 2 -1 1000 -4 2 -1 1 ... 8 1 ... 1 -2 • • • C10 -8 ... -2 • • • • • • -25 2 ... 1 1 3 2 1 -1 1 2 6 -57 -1 ... -6 • • • 2 -2 24 ... • • • • • • • • • 1 -10 -3 30 -1 3 34 4 -1 2 -1 3 ... 1 ... 1 ... 8 38 -1 4 -3 ~8 -12 1 ~2 -3 D1a 36 -7 -2 ... 4 2 • • • • • • ... -1 -1 5 1 73 2 1 14 ••• • • • -3 -23 -1 15 h • • • • • • -2 ... 2 2 2 ... • • • • • • ... C20 ... -1 . . . 2 3 12 3 • • • ... -5 ... -2 ••• 1 -3 2 27 3 26 -1 ... -35 **-**15 2 1 1 2 ... 1 -6 -493 42 4 1 **~**5 • • • 4 -4 54 2 -2 5 -61 -4 2 -7 ~18 D2b -27 4 -30 3 -7 10 2 9 75 1 X32 -19 16 -4 1080 -6 24 -15 149 1 1 1 3 30 -5 -31 1042 -172 9 -22 207 -10 -2 -2 ... 23, 2 4 -.5 1 1000 107 36 13 267 4 17 -1 2 1 C42 . . . 14 • • • **-**6 -48 11 45 1000 • • • • • • -14 -9 -3 -2 1 -1 -2 .3 ... -73 9 99 3 1000 -69 -1 3 77 ... 4 -2 -93 96 1002 -69 ... -3 -29 -1 4 -4 • 1 ... -62 ... -34 3 5 3 13 -2 -8 1000 -95 -31 -7 38 -61 41 ~70 83 1020 X62 -1 -4 ~5 -62 2 6 -79 • • • 88 -1 4 -41 -140 -137 1000 71 4 -8 -156 -4 -50 1050 43 -104 11 -2 -4 -6 152 1 . . . -113 32 6 2 -24 6 14 13 1 11 -144 1044 62 342 -2 -11 7 -14 -7 ~9 12 9 -4 -11 1008 19 -44 -148 -5

TAPLE IVA.

			_	COMP IN	ATIONS	TO GI	VE 10.	PR sir	n r.					
		Q,	0,	M,	Kı	Τ ,	00,	m2	N ₂	Mz	- L2	د	2SM:	<u>.</u>
ХOа		-4	-13	52	1	59	-19	2	2	5	-30	5	10	
р р р		-3 12	105 - 87	24 98	-11 1005	23 - 167	103 46	-10	2	-50 -9	2 9	-1 -7	- 60	
1		44	29	1009	-20	7	51	12	•••	5	38	-2	-8 -6	
2		- 55	1002	45	-13	35	-88	4	• • •	83	-7	6	41	
3 4		1000 127	34 -30	-19 -38	54 -25	297 3	. 2 - 28	4 146	110 -18	-9 17	-16 -2	- 1 9	-3 12	
C1a		27	-52	76		- 1012	89	-16	4	-8	26	-10	<u>-</u> 9	
g.		48	34	-171	62		-1019	-6	14	41 .		12	95	
D20 1		4 -5	3 -2	1 -28	3	-1 26	-3 -1	-41 99	-30 -2	- 41 140	-34 1000	1000 -77	-34 -13	
2		3	~ 52	3	-1	3	40	6	35	1000	1000	14	-13 -37	
3		-90	- 5	-16	-2	5	-3	3	1001	-62	8	3	2	
4 C2b		- 20 -16	3 52	7 - 5	2	-7 -1	6 - 38	1000 -66	-58 123	82 -21	- 27 6	19 -15	34 -1000	
Х3ъ		-45	63	-89	63	-186	-731	15	-41	-86	-30	11	114	
C		102	5	255	-12	20	•••	-31	-181	-4	- 12	-3	-2	
d D42		74 2	5 -3	-4 7 5	1 -3	6 8	7 3 3	-271 1	. 33 2	-16 32	3 1	-5 -1	9 25	
3		- 15	-1	-18	•••	•••	1	-1	60	•••	17	-1	-1	
4 5		-9 -1	-1	2	1	-2	•••	83	-1	5	-2	1	2	
х6ь		-1 5	-1 -4	6	4	-2 12	44	14 1	-1 -3	5 7	14 1	-1 -2	-713	
đ		-35	-2	-1	1	-3	6	48	56	27	-29	15	30	
e f		-4 · 1	-2 -46	-20 14	2 -4	13 3	2	86	-1 5	- 8	•••	- 3	-19	
		٠.	-40	7.4	-4	J	73	-68	27	252	-14	16	203	
g		5	10	-16	3	24	-13	-4	-38	20	114	-14	13	
g	Mm	ms _f	10 M0 ₃	-16 M ₃	3 MK ₃	24 MN ₄	-13 M ₊	-4 SN ₄	-38 MS4	20 2MN6	114 M6	-14 MSN.	13 2MS	25M6
XOa	-1083	MSf 146	M03	M ₃	MK3	MN ₄	M ₊	SN ₄	MS4 5			·		25MG
X0a b	-1083 -3	MSf 146 -1017	M03	M ₃	MK₃ ••• •4	MN₄ 1 -2	M ₄ 2 2	SN ₄ 1 -4	ms. ₄ 5 -26		M6	·		25M6
XOa	-1083	MSf 146	M03	M ₃	MK3	MN ₄	M ₊	SN ₄	MS4 5		M6	·		•••
X0a b D10 1 2	-1083 -3 -1 31	MSf 146 -1017 -3 1 50	M0 ₃ 1 -1	M ₃ 2	<i>Μ</i> Κ ₃ ••• •4 0	MN ₄ 1 -2 -2 1 3	M ₊ 2 2 -3 2	SN ₄ 1 -4 -1 3	MS4 5 -26 -4 -1 27		M6	·		•••
X0a b D10 1 2	-1083 -3 -1 31 	MSf 146 -1017 -3 1 50 -1	M0 ₃ 1 -1	M ₃	ΜK ₃ -4 0 -1	MN ₄ 1 -2 -2 1 3 -2	M ₊ 2 2 -3 2 3	SN ₄ 1 -4 -1 3 32	75 -26 -4 -1 27 -3		M6	·	2MS6	1
X0a b D10 1 2 3 4 C1a	-1083 -3 -1 31 ··· 37 3 -26	MSf 146 -1017 -3 1 50 -1 -3 1	M0 ₃ 1 -1	M ₃ 29	ΜK ₃ -4 0 -1	MN ₄ 1 -2 -2 1 3	M ₊ 2 2 -3 2	SN ₄ 1 -4 -1 3	MS4 5 -26 -4 -1 27		M6	·		1
X0a b D10 1 2 3 4 C1a b	-1083 -3 -1 31 37 3 -26 -11	MSf 146 -1017 -3 1 50 -1 -3 1 -53	M0 ₃ 1 -1 -1 -1 -13 1	M ₃ 29 4	MK ₃ -4 0 -1 -5 -1	MN ₄ 1 -2 -2 1 3 -2 18 -3 2	M ₊ 2 2 -3 2 3 8 -5 -3	SN ₄ 1 -4 -1 3 32 -7 -1	ms ₄ 5 -26 -4 -1 27 -3 6 -4 24		M6	·	2MS6	1
X0a b D10 1 2 3 4 C1a	-1083 -3 -1 31 ··· 37 3 -26	MSf 146 -1017 -3 1 50 -1 -3 1	M0 ₃ 1 -1 -1 -13	M ₃ 291 4 -1	MK ₃ -4 0 -1 -5 12 -2	MN ₄ , 1 -2 -2 1 3 -2 18 -3 2 1	M ₊ 2 2 -3 2 3 8 -5 -3 2	SN ₄ 1 -4 -1 3 32 -7	75.4 5 -26 -4 -1 27 -3 6 -4 24 1		M6	·	2MS6	1 1
X0a b D10 1 2 3 4 C1a b D20	-1083 -3 -1 31 37 3 -26 -11 1 -14	MSf 146 -1017 -3 1 50 -1 -3 1 -53 2	M03	M ₃ 29 4 -1 1 4	MK ₃ 4 0 -1 -5 12 -2 1 25	1 -2 -2 1 3 -2 18 -3 2 1 -1 -1	M+ 2 2 -3 2 -3 3 8 -5 -3 2 -4	SN4 1 -4 -1 3 32 -7 12 1	ms ₄ 5 -26 -4 -1 27 -3 6 -4 24		M6	·	2MS6	1 1
X0a b D10 1 2 3 4 C1a b D20 1 2	-1083 -3 -1 31 37 3 -26 -11 1 -14 	MSf 146 -1017 -3 1 50 -1 -3 1 -53 2 	M03 1 -1 -1 -13 12 4 3	M ₃ 291 4 -1 1 4 41	MK ₃ 4 0 -1 -5 12 -2 1 25 -4	MM4, 1 -2 -2 1 3 -2 18 -3 2 1 -1 -1 1	M ₊ 2 2 -3 2 -3 3 8 -5 -3 2 -4 -1	SN4 1 -4 -1 3 32 -7 12 1 	MS4 5 -26 -4 -1 27 -3 6 -4 24 1 -3 -36 3		M6	·	2MS6	1 1 -2
X0a b D10 1 2 3 4 C1a b D20	-1083 -3 -1 31 37 3 -26 -11 1 -14	MSf 146 -1017 -3 1 50 -1 -3 1 -53 2	M03	M ₃ 29 4 -1 1 4	MK ₃ 4 0 -1 -5 12 -2 1 25	1 -2 -2 1 3 -2 18 -3 2 1 -1 -1	M ₊ 2 2 2 -3 3 38 -5 -3 2 -4 -1 -62	SN4 1 -4 -1 3 32 -7 12 1 -4 -49 5	MS ₄ , 5 -26 -4 -1 27 -3 6 -4 24 1 -3 -36 3 -1		M6	MSN,	2MS6	1 123
X0a b D10 1 2 3 4 C1a b D20 1 2 2 3 4 C2b X3b	-1083 -3 -1 31 37 3 -26 -11 1 -14 -17 1 -2 -5	MSf 146 -1017 -3 1 50 -1 -3 1 -53 226 1 27	M0, 1 -1 -13 1 -2 4 3 54 -3 -55	M ₃ 291 4 -1 1 4 41 1 2 265	MK ₃ 4 0 -1 -5 12 -2 1 25 -4 2 -30 1000	MM4 1 -2 -2 1 3 -2 18 -3 2 1 -1 1 -6 -2	M ₊ 2 2 -3 2 -3 3 8 -5 -3 2 -4 -1 -62 7 -18	SN4 1 -4 -1 3 32 -7 12 1 -4 -49 5 -10 50	MS., 5 -26 -4 -1 27 -3 6 -4 24 1 -3 -36 3 -1 -16 147		M6	msw,	2MS6 1 	1 1 -2
X0a b D10 1 2 3 4 C1a b D20 1 2 2 3 4 C2b X3b c	-1083 -3 -1 31 37 3 -26 -11 -1417 1 -2 -5 31	MSf 146 -1017 -3 1 50 -1 -3 1 -53 226 1 27 1 -1	M0, 1 -1 -13 1 -2 4 3 54 -3 -55 152	M ₃ 291 4 -1 1 4 41 1 2 265 1000	MK ₃ 4 0 -1 -5 12 -2 1 25 -4 2 -30 1000 -117	1 -2 -2 1 3 -2 18 -3 2 1 -1 -1 1 -6 -2	M ₊ 2 2 -3 2 -3 3 8 -5 -3 2 -4 -1 -62 7 -18 30	5N4 1 -4 -1 3 32 -7 12 1 -4 -49 5 -10 50 193	MS., 5 -26 -4 -1 27 -3 6 -4 24 1 -3 -36 3 -1 -16 147 1	2MN ₆	M ₆	msw,	2MS6 1 -4 	1 123 4 11 1
X0a b D10 1 2 3 4 C1a b D20 1 2 2 3 4 C2b X3b	-1083 -3 -1 31 37 3 -26 -11 1 -14 -17 1 -2 -5	MSf 146 -1017 -3 1 50 -1 -3 1 -53 226 1 27	M0, 1 -1 -13 1 -2 4 3 54 -3 -55	M ₃ 291 4 -1 1 4 41 1 2 265	MK ₃ 4 0 -1 -5 12 -2 1 25 -4 2 -30 1000	MM4 1 -2 -2 1 3 -2 18 -3 2 1 -1 1 -6 -2	M ₊ 2 2 -3 2 3 38 -5 -3 2 -4 -1 -62 7 -18 30 285	5N4 1 -4 -1 3 32 -7 12 1 -4 -49 5 -10 50 193 -39	MS.4 5 -26 -4 -1 27 -3 6 -4 24 1 -3 -36 3 -1 -16 147 1 14	2MN ₆	M ₆	msw,	2MS6 1 -4	1 123 4 11 1 1 1
X0a b D10 1 2 3 4 4 C1a b D20 1 2 3 4 4 C2b X3b c d D42 3	-1083 -3 -1 31 37 3 -26 -11 -1417 1 -2 -5 31 -212	MSf 146 -1017 -3 1 50 -1 -3 1 -53 226 1 27 1 -11 -14	M0,	M ₃ 291 4 -1 1 4 41 1 2 265 1000 -74 -6 -71	MK ₃ 4 0 -1 -5 12 -2 1 25 -4 2 -30 1000 -117 37 -45	1 -2 -2 1 3 -2 18 -3 2 1 -1 1 -6 -2 · · · · · · · · · · · · · · · · · ·	M ₊ 2 2 3 3 38 -5 -3 2 -4 -62 7 -18 30 285 13 -11	SN4 1 -4 -1 3 32 -7 12 1 -4 -49 5 -10 5 0 193 -39 23 1002	MS ₊ 5 -26 -4 -1 27 -3 6 -4 24 1 -3 -36 3 -1 -16 147 1 14 1002 -70	2MN ₆	M ₆	msw,	2MS6 1 -4 -1 1 24	1 123 4 11 1 1 1 -14
X0a b D10 1 2 3 4 4 C1a b D20 1 2 3 4 4 C2b X3b c d D42 3 4	-1083 -3 -1 31 -26 -11 -14 -17 -2 -5 31 -2 -12 -12	MSf 146 -1017 -3 1 50 -1 -3 1 -53 226 1 27 1 -11	M0, 1 -1 -13 12 4 -3 54 -3 -55 15296 -94	M ₃ 291 4 -1 1 2 265 1000 -74 -6 -71 -2	MK ₃ 4 0 -1 -5 12 -2 1 25 -4 2 -30 1000 -117 37 -45 7 -2	1 -2 -2 1 3 -2 18 -3 2 1 -1 1 -6 -2 ··· 10 34 -2 99 53	M4 2 2 2 -3 3 38 -5 -3 2 -41 -62 7 -18 30 285 13 -11 1000	SN4 1 -4 -1 3 32 -7 12 1 -4 -49 5 -10 50 193 -39 23 1002 -52	MS.+ 5 -26 -4 -1 27 -3 -6 -4 24 1 -3 -36 3 -1 -16 147 1 14 1002 -70 84	2MN ₆	M ₆	msw,	2MS,	-23 4 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X0a b D10 1 2 3 4 4 C1a b D20 1 2 3 4 4 C2b X3b c d D42 3	-1083 -3 -1 31 37 3 -26 -11 -1417 1 -2 -5 31 -212 -8 1	MSf 146 -1017 -3 1 50 -1 -3 1 -53 226 1 27 1 -11 -14	M0,1 -1 -13 12 4 3 54 -3 -55 152 10596	M ₃ 291 4 -1 1 4 41 1 2 265 1000 -74 -6 -71	MK ₃ 4 0 -1 -5 12 -2 1 25 -4 2 -30 1000 -117 37 -45	1 -2 -2 1 3 -2 18 -3 2 1 -1 1 -6 -2 · · · · · · · · · · · · · · · · · ·	M ₊ 2 2 3 3 38 -5 -3 2 -4 -62 7 -18 30 285 13 -11	SN4 1 -4 -1 3 32 -7 12 1 -4 -49 5 -10 5 0 193 -39 23 1002	MS.+ 5 -26 -4 -1 27 -3 6 -4 24 1 -3 -36 3 -1 -16 147 1 14 1002 -70	2MN ₆	M ₆	msw,	2MS6 1 -4 -1 1 24	1 123 4 11 1 1 1 -14
X0a b D10 1 2 3 4 4 C1a b D20 1 2 2 3 4 4 C2b X3b c d D42 3 4 5 5 X6b d	-1083 -3 -1 31 37 3 -26 -11 -1417 1 -2 -5 31 -2128 1 -3	MSf 146 -1017 -3 1 50 -1 -3 2 -53 2 -26 1 -1 -1 -1 -1	M0, 1 -1 -13 1 -13 1 -2 4 -3 -55 152 1059 -6 -94 -18 6 -89	M ₃ -2 -2 -3 -1 -4 -1 1 4 -1 1 2 265 1000 -74 -6 -71 -2 1 -6 -5	MK ₃ 4 0 -1 -5 12 -2 1 25 -4 2 -30 1000 -117 37 -45 7 -2 -61 -1	MM4 1 -2 -2 1 3 -2 18 -3 2 1 -1 -1 -6 -2 10 34 -2 95 3 1003 5 3003	M ₊ 2 2 -3 3 38 -5 -3 2 -4 -1 -62 7 -18 30 285 13 -11 1000 -79 -8 89	SN4 1 -4 -1 3 32 -7 12 1 -4 -49 5 -10 50 193 -39 23 1002 -52 -34 -7 2	MS., 5 -26 -4 -1 27 -3 6 -4 24 1 -3 -36 3 -1 -16 147 1 14 1002 -70 84 -65 36 2	2MN,	M ₆ 1 1 -1 -2 -1 13 55	msw,	2MS,	1 123 4 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X0a b D10 1 2 3 4 4 C1a b D20 1 2 3 4 4 C2b X3b c d D42 3 4 5 X6b	-1083 -3 -1 31 37 3 -26 -11 -1417 1 -2 -5 31 -212 -8 1	MSf 146 -1017 -3 1 50 -1 -3 226 1 27 1 -114	M0, 1 -1 -13 1 -13 1 -2 4 -3 54 -3 -55 152 1059 -6 -94 -18 6	M ₃ 291 4 -1 1 4 41 1 2 265 1000 -74 -6 -71 -2 1 -6	MK ₃ 4 0 -1 -5 12 -2 1 25 -4 2 -30 1000 -117 37 -45 7 -2 -61	MM4 1 -2 -2 1 3 -2 18 -3 2 1 -1 1 -6 -2 10 34 -2 10 35 10 35 10 10 10 10 10 10 10 10 10 10	M ₊ 2 2 3 3 38 -5 -3 2 -4 -1 -62 7 -18 30 285 13 -11 1000 -79 -8	SN4 1 -4 -1 3 32 -7 12 1 -4 -49 5 -10 50 193 -39 23 1002 -52 -34 -7	MS., 5 -26 -4 -1 27 -3 -6 -4 24 1 -3 -36 3 -1 -16 147 1 1402 -70 84 -65 36	2MN ₆	M ₆	MSN,	2MS,	-23 4 11 1 -141 1 1000

TABLE VA: VALUES OF P and p.

	P	p		P	p
So	696	• • •	Mm	453	6•3
Q_1	568	154•1	\mathtt{Msf}	438	11.7
\vec{o}_1	568	160•3	MO_3	284	133•7
M_1	573	166•7	Мз	298	140.0
K.	448	173.0	MK3	280	146•3
T.	550	179•2	MN4	540	300•4
K ₁ J ₁ OO ₁	521	185•6	M_4	528	306•6
M2	548	321.6	$\bar{\text{SN4}}$	555	312•1
N_2	578	327•1	MS4	540	318•3
M_2	562	333•3	$2MN_6$	280	273•7
L_2	577	339•6	M6	289	280•0
s_2	447	345.0	MSN6	309	285•4
25M ₂	548	356•7	2MS6	294	291•6
20112	0.0		2SM6	301	303•3

TABLE VIA: ADDITIONAL CORRECTIONS TO PRINCIPAL CONSTITUENTS.

Corrections to 10³ R cos r of

From													
R cos r	S _o	Q,	0,	M,	K,	J,	00,	$\mu_{\mathbf{z}}$	N2	Mz	Lz	Sz	25M2
K٤	-4	- 7	7	• • •	6	-4	6	-8	68	~69	218	41	104
T2 ソ2	2	2	-4	1	- 3	3	-3	8	-35	4Q	-134	11	-44
1/2	3	7	-7	3	- 5	7	- 5	102	2	-148	43	-41	-31
21/2	3	7	~8	- 1	-5	6	-8 -	-1000	124	-78	• • •	~28	-36
Ρ,	-10	-91	121	~ 290	3	199	-131	7	-11	7	-12	6	8
	Mm	mst	M03	M3	MK3		MN4	Mu	SNu	MS4			
K٤	1	~ 5	-1	2	~5			1	~4	2			
T_2	-1	2	• • •	~1	3		• • •	• • •	1	-1			
ν <u>.</u>	-2	3	2	-2	4		-5	-1	1	-2			
21/2	-2	3	2	-2	5		-11	-1	1				
P	15	-15	•••	• • •	-3		• • •	1	- 3	1			

Corrections to $10^5~\mathrm{R}$ sin r of

From												
R sin r	Q,	0,	M,	K	\mathcal{J}_{i}	00,	µ,	٨z	M2	L ₂	$\mathcal{S}_{\mathbf{z}}$	25M2
Κz	-8	• • •	-10	1	9	-1	~7	63	~65	221	40	110
T_{2}	2	1	4	• • •	-3	1	7	÷35	33	-134	11	-47
$\nu_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	2	-1	-2	• • •	-1	-2	102	2	~150	47	-43	-35
2N2	• • •	2	-4	• • •	3	-3	-1000	126	-82	4	-32	~40
Ρ,	-97	106	-283	~ 5	215	-14 5	7	-11	15	- 18	15	19
	Mm	MSf	MO_3	M_3	MK_3		MN4	Мц	5 N.L	MS4		
K2	- 3	-1	-1	3	• • •			4	-2	4		
T_{2}	3	• • • •	•••	-2	• • •		-1	1.	$\bar{2}$	-3		
ν_{i}	27	12	• • •	-1	• • •		-3	-2	3	-4		
2N2	-4	• • •	2	• • •	-1		-11	-1	3	- 5		
່ວັ	-6			1			2	2	_1	6		

(There are no corrections to sixth-diurnal constituents).

5. Remarks on methods of analysis.

When the Tidal Institute Method was first devised, it was realised by the author that the older methods then in use were inadequate to give very accurate results. The analysis of observations for the solar constituents was simple because the observations were in solar time, but the re-reading of the tide gauge to give, say, lunar time for the lunar constituents was prohibitive so that the observation at the nearest solar hour was « assigned » to the lunar hour. Processes such as this are accurate if the effects are computed once for all on exact trigonometrical expressions, but at that time such results were not available, and the accuracy of the analysis depended upon having such a large number of observations that the errors might be treated almost as casual errors. No direct method can be devised so that corrections for one constituent upon another are not necessary. Even if the corrections are not omitted they are rendered extremely complex because of the choice of time origin at the beginning of the first day. The author showed that the calculation of corrections was greatly simplified by the choice of a central time-origin, and he would regard this as an absolute necessity.

For the corrections by those older methods it was assumed that the processes sufficiently separated the species so that one did not affect another, but it is doubtful whether this is true for short lengths of observations. Even in the Tidal Institute Method for 29 days it is impracticable to devise direct formulae which will make M_2 free from the effects of O_1 , but the formulae for X and Y are very effective for the isolation of species except in this special case.

The processes used in the Admiralty Method are dependent upon adequate corrections, for the constituents of any species contribute to the constituents of all other species in a small but not negligible degree. As it was first devised, certain smaller constituents like L₂, M₁, J₁ were completely ignored, and the analytical results are not greatly affected by doing so. It was necessary to consider the amount of labour involved, the accuracy of the observations, and the use to be made of the results, so that the original Admiralty Method is a compromise method. Its extension involves much more labour and many other considerations. The author's opinion is that it is better to use the Tidal Institute Method rather than to extend the Admiralty Method, but because a great many analyses have been effected by the latter method it is desirable to place on record what is involved in its extension.

6. Notes on the effects of casual errors.

The original methods of harmonic analysis used multipliers which were cosines or sines, and which were usually taken to 3 or more decimals. These are indicated by the mathematical theory which leads to « The Least Square Rule »; the formulae are chosen so as to give the least possible value for the mean of the squares of errors. As an example, for 24 hourly values of a solar diurnal tide the coefficients for one phase will be the cosines of multiples of 15°,

The Tidal Institute multipliers are the nearest integers to twice the cosines,

with the general divisor 24.52.

The Admiralty Method multipliers are

with the general divisor 15.20.

As there is no reason why casual errors should affect any of the observations more than the rest, it follows that on the average the mean value of the square of the errors will be the same (say, e²) for all data. The signs of the errors will be random, and so the maximum error will occur when it happens that all errors of positive sign occur with positive coefficients in (a), (b), (c), and all errors of negative sign occur with negative coefficients. Hence the maximum errors from (a) are

$$2.000e + (0.966 + 0.866 + ...0.259)$$
 4e

divided by 12.00. The maximum errors from (b) and (c) are similarly deduced and we obtain results given by

There is close correspondence between (a) and (b) in these extreme circumstances because the multipliers in the Tidal Institute Method closely conform to the cosine variations, but if a casual error is appreciably large there is not much to be gained by (a) or (b) over (c).

The more usual way of estimating error is to take the square root of the sum of the squares of the products. The sign of the individual error does not enter into consideration, but it must be remembered that the multipliers in (a), (b), (c), are each to be divided by the proper divisor. Thus if a multiplier is m and the divisor is D, and the error is e or —e, then the sum of the squares is

$$\Sigma m^2 e^2/D^2$$

Thus from (a), (b), (c) we get

$$12e^2/144$$
, $52e^2/24.52^2$, $22e^2/15.20^2$

and the square roots give

respectively.

It is evident that the least-square formula (a) has no practical advantage over the integral formulae (b) and (c). Much waste of labour has been incurred and is still being incurred by methods of analysis which use cosines and sines to a number of decimals, as will be revealed by a glance at some of the appalling forms given in textbooks dealing with computation.