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§ 1. Introduction.
The harmonic development of the tide-generating potential is the basis of 

most work on tidal observations, and since 1883 the development given by Sir 
G .H. Darwin has been universally used and has (been of remarkable value.
But discrepancies between prediction and observation are serious and have been 
attributed to faulty « harmonic constants » ;  it has been assumed that if these 
were improved better predictions would be obained, and it has also been tacitly 
assumed that it is only necessary to consider the harmonic constituents as given 
by Darwin. Recent work, however, especially at the Tidal Institute, has shown 
that when the « Darwinian constituents » are removed from the tidal height there 
is a residue composed of constituents which are not included in his schedules.
These are such that any slight improvements possible in the « constants » usually 
obtained are comparatively negligible.

The obvious course, therefore, was to make a more thorough development 
of the potential, and in view of the unknown nature of the residues great accuracy 
was obviously desirable, especially as the possibility of resonance has always to 
be considered. The development given in this paper, even if it proves to 
be needlessly thorough for practical tidal work, will cover the needs of research 
work, since it includes all terms whose coefficients (relatively to the greatest 
coefficient) are greater than 0 .00010.

Darwin used the old lunar theory and referred everything to the orbit 
rather than to the ecliptic; his results are all given in the algebraic form, 
arithmetic being used only to decide what terms to omit. His development is a 
quasi-harmonic development because he retains factors in the coefficients and terms 
in the arguments which are considered as constant over fairly long intervals of 
time, such as a year, but which are really slowly variable. The present method [p. 306] 
of development uses the results of the modern lunar theory and is essentially a 
numerical method throughout. The theoretical expansions for the longitude and 
latitude of the moon referred to the ecliptic, as given by Brown*, have been used, 
and the development is truly harmonic. Ferrel's development, published in 1874, 
was also truly harmonic, but it included only the most important terms.

The new schedules of constituents, as compared with the old schedules, 
contain many terms which, for modern purposes, are too large to be ignored; this 
matter is dealt with in § 9, and Table VI gives a comparison, of the main terms 
as given in the old and in the new schedules. It is of interest to note that 
J.C . Adams verified Darwin’s work and carried out the development so as to 
include more terms, but this work does not seem to have been published.

* Monthly Notices Roy. Astron. Soc., vol. 65, p. 285 (1905).



One great aim of the author has been to reduce the subject to its very 
simplest form, and what credit is due for this must be equally shared with Prof. 
J . Proudman, for whose criticism and advice the author is deeply indebted.

A  great deal of attention has been paid to the matters of notation and 
presentation of results; a prominent feature in both is the adoption of a special 
notation for the arguments, which is such that any argument is represented by a 
number and, what is very striking, if the terms in the expansions are arranged 
according to the argument-number, they are thereby automatically arranged 
according to « speed », which is very convenient.

The application of the new development to the analysis of observations 
and to predictions is not fully dealt with in this paper. Certain suggestions are 
made, however, concerning future practice.

§ 2. D eve lopm en t  o f  the Lunar T ide-g en era t in g  Potential.
\

Let E = mass of the earth

M = mass of the moon 

r = distance between centres of earth and moon 

1 f c  — mean value of 1 ¡r  

p = radius of earth at given place P 

1 = latitude of P

L = longitude of P , west of Greenwich 

a = mean radius of earth 

g  — mean value of gravitational acceleration 

and V  = tide-generating potential due to the moon.

(1)

[p. 307]

Then

iiM p2mJV1 Pz / \
V  = ---------  ( P2+ -  P 3 + -  P4+ ... ) = V 2 + V 3 + V 4 +  . . . ,

r3 \ r r2 /
(2)

where

and

P 2 = 
Ps =
P 4 -

n =

1/2 (3 cos2 2r _  1),

1/2 (5 cos32r — 3 cos S),
1/8 (35 cos4 S' — 30 cos2 & +3), 
geocentric zenith distance of the moon from P, 
attraction between unit masses at unit distance apart

= ga2/E.

The ultimate result of the development of V  is a series of terms harmonic 
in time, and as only the relative values of these are usually of importance, it is 
convenient to have the greatest numerical coefficient approximately unity; hence 
we write



3 M g a 2P
G = --------. —  , (3)

4 E c3
and therefore

V 2 = 2/3 (3 cos2 & — 1) . G (c/r)3 j

V 3 = 2/3 (5 cos3 2r _  3 cos 2r) . G (c/r)4 (p/c) > (4) 

V 4 -  1/6 (35 cos4 3 — 30 cos2 2r +3) . G (c/r)5 (p / c ) 2 )

The factor p /c  is small and can be taken as equal to the value of the 
sine of the mean equatorial horizontal parallax, whose numerical value is
3422" 70 -206265" = 00165937.

The first stage in the further development of these functions is the separa­
tion of the long-period, diurnal, semi-diurnal, ter-diurnal, and quarter-diurnal species 
of constituents. Referring to fig. 1, let y be the first point of Aries, M the place

P ig .  1 . [p. 308]

of the moon, C the north Pole, P the given place, and A  the intersection of the 
meridian of P with the equator, f- — y  A . Also let O’ , z, Sr I, and y  be 
respectively the geocentric zenith distances y'M, MIC, MP, M A  and yA .

Then, from the spherical triangle MGP we have

cos & = sin X cos z + cos X sin z cos C,

and since the angle C increases at the rate of approximately 360° per mean lunar 
day, the expansion of .V2, V 3, and V 4 in terms of cos C, cos 2C, cos 3C, and 
cos 4C will separate the species of constituents ; these expansions are expressed as 
series of terms involving functions of X and G, multiplied by functions of z and C. 
The former will be called « geodetic coefficients », and it is desirable that these 
should all be expressed with the same maximum value, G, so that the numerical 
coefficients; of the harmonic constituents ultimately obtained w ill give the chief 
index of their relative importance.



It is easy to verify, either directly, or by using the theory of spherical 
harmonics, that

V 2 = (c/r)3 (GoHo + G iH i + G2H 2) \

V 3 = (c/r)4(0 004947Go’Ho’ + 0011425G i’H i’ J 
+ 0031935G2’H2’ + 0013828G3’H 3’) (

V 4 = (c/r)5(0000046Go"Ho"+0000121G1"H 1"+ \ <5)
OOOOI48G2"H2" + 0000522G3"H3" + 0000201 G4"H4") /

where
Go = 1/2 G (I — 3 sin2 X) 1

Gi = G sin 2 X 

G2 = G cos2 X

Go’ = M1803G sin X (3 — 5 sin2 X) 
G i’ = 072618G cos X (1 — 5 sin2 X) 
G2’ = 2 59808G sin X cos2 X 
G3’ = G cos3 X

0 12500G (3 — 30 sin2 X + 35 sin4 X) 

047346G sin 2 X (3 — 7 sin2 X)

0 77778G cos2 x (1 — 7 sin2 X) 

3 07920G sin X cos3 X 

G cos4 X I 

  \

(Ho = 2 / 3  — 2 cos2 z 1
H i = sin 2 z cos C = 2 cos z cos Ç 
H 2 =  sin2 z cos 2 C =  2 cos2 t — sin2 z

Ho’ = cos 2 (3 — 5 cos2 z)
H i’ = sin z cos C (1 — 5 cos2 z) = cos Ç (1 — 5 cos2 z)
H2’ = sin2 z cos z cos 2 C = cos z (2 cos2 Ç, — sin2 z)
H3’ = sin3 z cos 3 C =  cos C (4 cos2 Ç — 3 sin2 z)

Ho" — 3 — 30 cos2 z + 35 cos4 z
H i"  = sin 2 z cos C. (3 —  7 cos2 z)
H2" = sin2 z cos 2 C. (1 — 7 cos2 z)
H3" = sin3 z cos z cos 3 C
H4" = sin4 z cos 4 C

The numerical factors in the geodetic coefficients are necessary for ach 
coefficient to have the same maximum value.

Go" =
Gi" =
G2" =
G3" =
G4" =

[p. 309]



The seconds forms of the expressions for H i, H 2, H i’ , H 2’ and H3’ are 
obtained by using

sin z cos C = cos

derived from the spherical triangle M CA . The corresponding expressions for 
Ho"... H4" are not given, simply because they are not used; obviously there are 
simple relations between these and Ho, H i and H 2, and those are used, as w ill 
be shown later.

The development in terms of cos z and cos t  is required m order to use the 
known harmonic expansions for the longitude and latitude of the moon referred 
to the ecliptic. Referring to fig. 1, let y  L be the ecliptic and let

0 = y L = longitude of moon

8 = LM = latitude of moon /
(7)

w = angle A yL  = inclination of ecliptic to equator ^

and a)’ = angle LyM

Then we have

cos z =  sin O’ sin (10 + w’),

cos t  = cos Q’ cos X + sin 0’ sin X cos (co + co’),

and cos 6’ = cos 0 cos 8,

sin 0’ sin to’ = sin §, 

sin 6’ cos to’ = sin 0 cos 8 ;

whence

cos z = sin w cos 8 sin 0 + cosco sin 8 )
. . . .  (8)cos t, — cos 8 cos 0 cosX-f (cos w cos 8 sin 0 —  sin to sin 8) sin X )

It is, of course, possible to expand V 2, V 3, and V 4 in terms of 0 and 8 
direct, but a good deal of analysis would be necessary ; in addition to losing the 
present simplicity of the analysis, no real saving of arithmetical work would be 
achieved. The arithmetical expansions of cos z and cos X, are first obtained from 
the expressions of the longitude and latitude of the moon, and the rest of the 
work simply consists of carrying out systematically the operations involved in (5) 
and (6). The value of w used in (8) is the value on January 1, 1900, viz.,
to = 23°27’8" 26.

[p. 310J

§ 3. C ho i c e  o f  Variables fo r  Arguments.

The expansions for V 2 and V 3 necessarily involve six independent variables 
in the arguments, and considerable attention has been paid to the choice of these. 
For reasons which will be appreciated later, the independent variables adopted 
are defined as follows —



x = local mean lunar time reduced to angle 

s — moon’s mean longitude

h  — sun’s mean longitude

p = longitude of moon’s perigee

N’ = —N, where N is the longitude of the moon’s ascending node

pi = longitude of sun’s perigee

These are taken in preference to the variables ordinarily used in lunar
theory.

Mean solar time will be taken as commencing at midnight, and, analogously, 
local mean lunar time will be measured from the lower transit of the « mean 
moon ». Then if we write

t = Greenwich mean solar time 

we have 7. = \5°t + h — 180“ — L  ̂ (10)

and t — 7  — s+180° = 15°f + /t— s — L ^

A t first sight the choice of t rather than t as an independent variable seems 
simpler, but there are many conveniences attached to the choice of the argument 
of the principal lunar constituent as one of the independent variables, both in the 
presentation of the schedules and in actual application.

The « speeds » of the variables are all positive, and, as they Are written, 
are in descending order of magnitude. The chief variables are t ,  s ,  and h ,  and 
it is a curious fact that if we classify in terms of t, with a sub-classification with 
regard to s, and a further sub-classification with regard to h ,  the constituents are 
completely separated into groups with no over-lapping of speeds. It is still more [p. 311 ] 
curious that to the order required the same process can be continued for all the 
variables. Owing to this, a rather elegant and very useful form of presentation 
of the result is possible.

§ 4. Numerical Data fo r  Arguments.

The numerical data for the arguments is given by Brown, or may be obtained 
from the « Nautical Almanac », 1917 and 1923. The origin of time is taken 
as midnight at Greenwich on January 0-1, 1900:—

t = \5°t + h — s — L,

5 = 277° 0248 + 481267° -8906T + 0 0 0020T2 + ...,

h = 280° 1895 + 36000° 7689T + 0° 0003T2 + .. . ,

p = 334° 3853+ 4069° 0340T—0°-0103T2 + ...,

N’ = 100°-8432+ 1934M420T—0° 0021T2+ ...,

Pi = 281 °-2209+ r  7192T + 0° 0005T2 + .. .,  

where T  is a Julian century of 36,525 mean solar days.



The speeds per mean solar day are as follows :—

:  = 360°— 12° 19074939, p = 0° 11140408,

s  = 13° 17639673, N’ = 0° 05295392,

h = 0° 98564734, Pl = 0° 00004707.

The speeds per mean solar hour are not very important, and are omitted.

No provision is made in this paper for the discussion of observations other 
than those referred to Greenwich mean solar time.

§ 5. The Argument-N umber.

The actual calculations have been facilitated very considerably by the use 
of a special notation for the arguments, and this notation has been retained in the 
schedules. A ll the arguments are linear functions of the standard variables, with 
integral coefficients, and it is very desirable to have a short method of writing such 
expressions as

2- — 3s + 4h + p — 2N’ + 2pi.

Now the various coefficients involved in the expressions for the arguments are 
only occasionally outside the range —4 to 4, and this suggests the use of a datum 
of five for each so as to avoid writing negative values as much as possible. In 
the case of t , however, the coefficients are always taken as positive, and with 
this exception, if we add five to each of the coefficients in the above expression 
we shall get the argument-number

229637.

This number will serve to denote the argument and may also be used to denote 
the term as a whole. It is divided into two parts for reasons explained later

! . . .  [P- 312]
In rare instances the coefficients are outside the range —4 to 4 and in 

these cases we replace —6 by 1 , - 5  by 0, 5 by X  and 6 by E. The addition 
(or subtraction) of arguments is quite simple; allowance has to be made for the 
datum 055 555, which should be subtracted (or added) either before or after the 
operation — the former method is most convenient when dealing with the addition 
of one argument to each of a series of arguments.

§ 6. M ethods o f  Calculation.

The original data for the longitude, latitude and sine parallax of the moon 
were obtained from the Tables by Brown, and are given in Tables I to III in 
the notation of § 3 ; the coefficients in the expansions of the longitude and latitude 
were reduced to radians, and the coefficients in the sine parallax expansion divided 
by the absolute term 3422 -70 in order to get c/r. In these expansions the 
coefficients are given to six decimal places.



The procedure is substantially that indicated by equations (8), (5) and (6). 
It may be noted that Ho and H2 can be calculated together, since

2 c o sH  = H 2+ I /2  Ho+ 2/3,

In the case of the terms arising from V 3, the expansions of (c/r)4 cos z and 
(c/r)4 cos t, were determined and used as follows:—

(c/r)4Ho’ = (4/3 + 5/2H0) . (c/r)4 cos z,

(c/r)4H i’ = (-2/3+ 5/2H o) . (c/r)4 cos t,

(c/r)4H2’ = H 2 . (c/r)4 cos z,

and

(c/r)4H s’ = ter-diurnal part of 2H2 . (c/r)4 cos

The terms arising from V 4 were found in a similar manner; 4 cos4 z was obtained 
from (2/3 — Ho)2 and hence Ho” was readily calculated; also we have

H ^  = (2/3 + 7/2H0) . H i,

H2" = (-4 / 3  + 7/2Ho) . H 2,

H 3" = ter-diurnal part of H iH 2,

H 4" = quarter-diurnal part of 1 /2  H22.

The terms resulting from V 4, however, were, except for one term, just too 
small to be incorporated in the schedules.

The order of variables adopted in § 3 was not altogether the best for actual 
calculations and certain modifications were made. Brown’s arguments for (0 — s), 
8 and c/r are given in the form

a (s — h) + b (s — p) + c  (s — N) + d  (h — pi), 

and if the variables be changed to s, h, p, N and p i ,  this expression takes the form

A s +Eh + Cp + ON + Epi

with the relation A +  B + C + D +E = 0 . If the datum 5 be used then the sum 
of the figures in each argument-number is 25 (*).

Knowing this, it was possible to omit systematically one figure of the 
argument-number, and so to save a considerable amount of writing. In the case 
of cos z and cos I, however, this relation was not the same for all terms, but they 
separated themselves into sets of which the characteristic was that the sum of the 
figures of an argument-number was constant within the set.

[p. 313]

* In the Tables, however, it should be noted that the variable there used 
is — N, and not N, so that the relation just mentioned does not hold.



By rearranging the order of the variables the terms of a set were separated 
into large groups in which the only effective variables were s and h, if p be ignored 
as mentioned above. The advantage gained by grouping was enormous because 
of the amount of writing thereby eliminated, and in fact the calculations were 
greatly facilitated by these methods of grouping.

The actual multiplication of series was quite an easy matter, and very 
efficient current checks were available; the greatest trouble was in connection with 
the collection of coefficients contributing to a term in the expansion, and this part 
of the work was always done twice. The author acknowledges with thanks the 
great assistance he has received from the staff of the Tidal Institute in this laborious 
arithmetical work.

Certain methods of checking were used which may be illustrated from 
Table III. Consider the calculation of (c/r)3 from (c/r); if we suppose that all 
the variables are made zero except s then each of these expansions reduces to 
seven group-terms: all the coefficients of terms whose argument-numbers start with 
six would be added together, and so on. Taking the abbreviated expansion of 
(c/r) and cubing it should give an expansion for the abbreviated value of (c/r)3 whose 
terms should be equal to the group-terms obtained from the full expansion. This 
method of checking, with appropriate modifications, has been used with the 
groupings explained above, and it has been very efficient indeed. The difference 
between any two such group-terms obtained by the two methods has always been 
less than 0000050; usually it has been much less than this. In the one case where 
the difference reached 0000050 no error could be found, but as coefficients less 
than 0000005 were ignored in this case the probability of serious error in any one 
term is not great. The coefficients in the final schedules are reduced to five 
decimals and terms with coefficients less than 0.00010 have been ignored; the 
figures given may be taken as accurate to within two in the last place.

The expansions of (c/r)3, (c/i')4, cos z and cos Z, are contained in the 
following Tables:—



Table I.—Expansion for the Longitude of the Moon : (0 —s). 
Coefficients of sines to six decimals.

1 Argument- 
1 number. Coefficient. Argument-

Dumber. Coefficient.
I
Argument- 

n umber. Coefficient. IArgument­
number. Coefficient.

55 -654 5 555 -605 74 -356 47 85 -255 175 *
753 1 654 -13 8 455 - 4 1 475 -2 19
775 6 65 -356 - 2 554 - 1 1 9 86 -254 - 3

56 -356 - 1 2 455 0Í09760 75 355 3728 9Í -755 3
455 90 554 87 . 454 6 90 -556 9
554 -3243 653 - 1 2 575 -1996 91 -555 67
576 7 675 -19 2 76 -354 -3 7 92 356 6

57 -355 -1026 i 66 355 * 9 574 2 554 - 1
553 -37 1 454 -532 77 155 - 5 576 - 2
575 -267 575 3 375 3 93 -355 70 ;

58 -354 -4 2 1 67 '255 -6 4 81 -657 2 575 -2 8
574 - 1 1 453 - 6 855 1 94 -354 - 1

59 -353 - 1 68 -254 - 2 80 -656 21 95 155 9
60 -658 1 70 -558 2 81 -457 4 375 - 1 9
61 635 1 756 13 655 186 595 2

657 36 71 -557 40 82-456 71 XI 655 2
855 6 656 - 1 555 2 X0 456 1

62 -436 - 2 755 1 149 654 - 3 XI -455 10
535 - 1 72 '556 1 802 1 676 - 2 675 - 1
656 1000 655 - 1 6 83 -455 931 X3 255 5
755 - 6 754 1 - 2 675 -4 6 475 - 5

63 -435 - 3 1 73-335 1 ' - 2 84 -256 3 X5 275 - 2
457 13 357 1 355 - 3 El -355 1
556 - 3 555 0-011490 454 - 1 4
655 0-022236 654 i ! 476 - 1 i

64'456 717 775 - 3 575 i ! i

Table II.—Expansion for the Latitude of the Moon : (8). 
Coefficients of sines to six decimals.

Argument-
number. Coefficient. Argument­

number. Coefficient. Argument­
number. Coefficient. Argument­

number. Coefficient.

55 -566 - 4 544 -5 9  j 466 33 84 -366 4
665 -4847 566 24 !! 565 -2 6 465 - 3

56 -4*4 -2 5 65 -345 154 !i 664 - 6 564 - 6
466 4 565 0-089504 ■!! 75 -245 8 85 -365 300
565 23 66 -344 - 2 465 4897 585 - 3 1
664 -2 7 465 2 ; 564 4 86 -364 - 3

57 -245 - 1 564 -3 1  .j 685 - 1 4 90 -666 2
465 -808 67 -365 -7 5  !I 76 -464 -2 6 91 -445 2
685 1 585 - 1 1 77 -265 - 7 665 15

58 -464 -3 6 68 -364 - 3 485 - 2 92 -466 6
59 -463 - 1 70 -646 3 80 -546 2 93 -465 73
61 547 5 71 '645 32 766 1 685 - 1

745 3 667 2 81 -545 18 94 -461 - 1
62 -546 144 72-446 9 ! 567 2 1 95 265 i9

645 - 2 545 - 2  : 765 12 ’ 485 - 5
63 545 3024 ; 666 43 ; 82 -566 39 i XI -565 6

765 - 8 i 73 -445 162 ! 665 - 1  ¡ X3 -365 7
64 -346 1 665 967 ! 83 345 10 X5 165 1

445 - 3 j 74 -444 - 4  1
1

565 568 El -464 1

[p. 314]



Table III .—Expansions for (c/r), (c/r)3 and (c/r)4. (Lunar.) 

Coefficients of cosines to six decimals, except for (c/r)*, where the coefficients
are given to four decimals.

Argument-
Dumber.

cjr
coefficient.

(C/r)3
coefficient.

(dry
coefficient.

Argument-
number.

c]r
coefficient.

(c/r)*
coefficient.

(c/r)«
coefficient.

65 *555 1-000000 1-004736 1-0095 74 -356 37 167 3
654 7 455 -3 2 -14 3 - 2
775 - 3 4 - 1 554 - 8 8 -287 - 4

56 *455 4 -4 2 - 1 75 '355 2970 13442 210
554 - 1 1 7 - -318 - 4 454 •5 22

57 *355 - 8 9 1463 32 575 - 4 -4 8 -1
553 - 3 - 7 76 -354 -3 0 -13 5 - 2
575 - 3 1 -10 5 - 2 1 77-155 - 4 - 1 1

58*354 - 6 47 1 1 375 - 3 - 1 3
574 - 2 - 6 I 81 -855 1 6

61 -657 14 46 1 80 -656 20 91 1
855 2 26 1 81 -457 3 13

62 -656 422 1348 18 655 176 814 18
755 - 3 - 1 1 82 -456 67 3Ô8 5

63 -435 - 1 4 -5 2 - 1 555 - 1 0
457 6 19 654 .-3 - 1 4
655 0-010025 31475 430 83 '455 902 4189 66

64 -456 337 1014 14 675 - 3 - 1 5
555 -285 -866 - 1 2 84 256 4 21
654 -6 6 -208 - 3 355 - 3 - 1 6

65 -455 0-054501 0164395 2201 454 - 1 4 — 65 - 1
554 44 133 2 85 -255 182 1076 19
653 - 6 - 1 8 475 - 4
675 -209 -629 - 8 86 -254 - 3 - 1 6

66 -355 5 13 91 -755 3 17
454 -278 -846 - 1 1 90 '556 10 50 1
575 2 6 91 555 76 396 6

67 -255 -3 5 - 2 1 92 -356 6 36 1
453 - 3 —9 554 - 1 - 5
475 -2 4 -7 7 - 1 93 -355 83 496 9

68 -254 - 1 - 1 94 354 - 1 - 8
70 -756 9 43 1 95-155 12 85 2
71 '557 27 83 1 XÏ -655 3 15

?55 109 513 8 ,X0 -456 2 11
72 '556 561 1771 24 XI -455 13 79 1

655 - 1 1 -4 1 - 1 X2 -256 3
73 -335 - 1 - 6 X3 255 7 52 1

555 8249 26580 367 X5 055 4
775 - 4 - 1 8 El 355 1 9

[p. 315]
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Table IV.—Expansion for cos 2. (Lunar.)

Coefficients of sines to six decimals.

Argument­
number. Coefficient. Argument-

number. Coefficient. Argument- j 
number. Coefficient. Argument­

number. Coefficient.

55 -556 - 1 7 566 22 675 - 1 0 575 - 5
566 - 4 655 - 1 0 74 -444 - 4 775 - 2
653 - 2 754 2 456 175 84 -356 19
655 -21825 65 345 141 466 30 366 4
665 -4442 355 143 555 -1 19 455 - 1 5
675 -3 9 456 - 2 565 -2 4 465 - 3

56 -444 -2 3 555 0395818 654 -3 3 554 - 3 1
454 -7 0 565 82032 664 - 6 564 - 6
456 21 575 -795 75 -245 7 85 355 1329
466 4 775 6 255 6 365 275
556 120 66 -344 - 2 455 21684 375 - 3
565 21 354 - 2 465 4488 454 2
654 -108 356 - 3  ! 475 -4 4 575 —  5
664 -2 5 455 26 554 17 86 -354 - 1 6

57 '455 -4518 465 2 564 4 364 - 3
465 -74 1 554 -647 653 - 2 87 -155 - 4
653 - 2 564 -2 8 675 -8 2 90 656 8
675 12 576 2 685 - 1 7 666 2

58 -454 -19 8 67 -355 -451 76 355 4 91 '445 2
464 -3 3 365 -6 9 454 -142 655 64

59 '453 - 7 553 - 7 464 -2 4 665 14
463 - 5 575 -7 8 77 -255 -3 9 92 -456 25

61 557 7 585 - 1 3 265 - 6 466 6
745 3 68 354 - 1 7 453 - 2 93 455 326
755 5 364 - 3 475 - 1 3 465 67

62 536 2 574 - 3 485 - 3 675 - 2
546 132 70 '646 3 78 '254 - 2 94 -256 2
556 142 71 645 29 80 546 2 355 - 2
645 - 2 655 12 756 5 454 - 6
655 - 2 657 7 81 ’545 17 95 255 86

63 -535 32 667 2 555 ■ 4 265 17
545 2769 72 -446 8 557 9 96 -254 - 2
555 2020 456 4 567 2 X0 556 3
'557 8 545 - 2 755 52 XI 555 26
755 -4 0 656 197 765 11 565 6
765 - 7 666 39 82 556 176 X2 356 3

64 -356 2 73 -435 - 5 566 36 X3 355 33
445 - 3 445 149 655 - 5 365 6
455 - 2 455 57 83 345 9 X5 -155 6
544 -5 4 457 3 355 3 El -455 4
554 - 1 7 655 4282 555 2528 E3 255 3

4 556 637 665 885 565 524
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Table Y.—Expansion for cos£ (Lunar.) 

Coefficients of cosines to six decimals.
i

Argument-1
number. Coefficient. Argument­

number. Coefficient. Argument­
number. Coefficient. Argument­

number. Coefficient.

107 855 7 655 52249 755 3 564 - 6
109 655 11 146 456 - 8 1 163 -435 28 177 -355 -4 7
115 955 13 545 5 457 - 6 365 - 1 5

| 117 '755 79 555 -288 645 161 575 - 8
I 118 754 7 644 - 7 655 -10886 585 - 3
1 119 555 63 654 422 164 -446 6 180-656 - 3
IllX  554, 8 147 -445 -19 2 456 -26 1 181 -645 6
HE 355 3 455 10318 545 - 5 655 - 2 9
124 856 - 5 554 - 3 555 290 182 '456 - 1 1
125 '845 - 4 653 8 654 50 555 - 3

855 208 655 - 6 656 7 656 20
126 656 - 1 3 665 -3 2  ! 666 5 666 9

755 - 5 675 - 1 1  ! 165 -435 4 183 -445 32
854 5 148 -355 - 3  ! 445 963 455 -13 8

127 -435 - 4 444 - 9  j 455 -52590 655 444
645 - 1 5 454 476 554 -4 2 • 665 192
655 786 149-453 17 i 653 6 675 23

128 456 - 3 465 - 6 655 -2264 184 -456 18
654 60 152 536 - 8 665 -963 466 7

129 445 - 3 756 -4 0 675 94 555 - 1 2
455 155 153 525 3 166-444 - 5 565 - 5
653 3 535 -187 454 168 654 - 3

12X 454 18 557 - 1 7 456 2 185 255 - 1 4
133 955 - 9 745 15 555 12 455 2250
134 756 -3 8 755 -1089 565 5 465 973
135 535 - 1 2 154-534 6 654 - 1 1 475 106

656 5 546 6 664 . - 5 675 - 9
745 -60 - 556 -1559 167 -455 -469 685 — 4
755 3202 655 62 465 - 1 6 1 186 -454 - 1 5

136 556 — 75 754 - 8 168 -454 - 2 1 464 - 5
655 — 35 155 335 13 464 - 7 187 -255 - 4
754 46 535 83 171 557 - 1 7 191 -545 4

137 -335 - 4 ! 545 -17788 755 - 1 2 555 - 1 0
545 - 1 1 4 555 0953747 172 -546 29 755 5
555 6091 654 - 5 556 -343 765 2

138 455 - 1 2 755 - 1 5 655 4 192 556 18
544 - 8 765 - 3 1 173-535 3 566 8
554 424 775 3 545 600 193 355 - 8

139 345 - 2 156 356 6 555 -4868 555 262
355 127 455 -2 4 755 - 4 565 114
553 21 544 - 5 174 -356 - 4 575 12
565 - 4 554 1536 455 5 194 -554 - 3

13X 354 11 566 12 644 - 1 2 195 355 138
142 856 - 4 157 355 -9 6 554 42 365 60
143 635 -3 2 553 19 556 66 375 7

657 - 4 555 -2 10 566 5 1X1 -655 7
855 -9-1 565 -600 576 - 3 665 3

144 646 5 575 77 175 -345 31 1X2 456 3
656 -341 158 554 - 1 5 355 -345 1X3 -455 34
755 10 564 -2 9 555 41067 465 15

145 425 4 574 4 565 17788 1X5-255 9
435 — 197 161 -635 3 575 1916 265 4
457 - 6 657 - 1 7 176 -354 4 1 El -555 3
556 42 855 3 455 3 ! 1E3 355 3
635 5 162 646 '7 554 -6 7 1
645 -973 656 -477



§ 7. D evelopm ent of the Solar Tide-generating Potential

The tide-generating potential due to the sun is developed by methods similar 
to those already used, but the whole problem is much simpler in this case. The 
expansions for the longitude and sine-parallax of the sun contain very few terms, 
and the sun’s latitude may be ignored.

Using subscripts to denote quantities corresponding to those used for the lunar 
potential, we have

0i =  h +  0033501 sin (h — p i)+0000351 sin 2 (h — pi)

+  0 000005 sin 3 (h — pi) + ...

Cl/ n  =  I +0016750 cos {h — pi) +  0-000281 cos 2 (h —  P l)

+ 0 000005 cos 3 (h — pi) + . .  .

which may be obtained from the formulae of elliptic motion, with eccentricity
00167504.

The geodetic coefficients are the same as for the lunar potential, except 
that G is replaced by

3 S ga2P2 S c3
G 1 = --------------- = --------- G, (12)

4 E ci3 M ci3

where S, M, E  are respectively the masses of the sun, moon and earth. It is 
desirable, however, to retain G as the common coefficient of both lunar and solar 
constituents, and to absorb the factor (S /c i3)-^(M /c3) in the numerical coefficients 
of the solar constituents. Now, 1/c and 1/c i are proportional to the sines of 
the mean equatorial horizontal parallaxes of the moon and sun, respectively; the 
former is accurately known, and its value is 3422" 70; also, it is definitely known 
and well established* that S /E  multiplied by the cube of the mean equatorial 
horizontal parallax of the sun is equal to 2"-26428 x 108. The mass of the moon 
is not very accurately known, but the best value** is apparently given by
E /M  =  81 53 +  0047. W e therefore obtain G i =  0 46040 G, and this numerical 
coefficient has been used.

The terms arising from the solar potential are given in the same schedules 
as those arising from the lunar potential, and are distinguished by inserting the 
appropriate geodetic coefficient for the solar terms, and leaving it as understood 
for the lunar terms.

§ 8 . Explanation of the Schedules.

The harmonic terms in the development of the potential are contained in 
four schedules, numbered 0 to 3. The number of the schedule denotes the species; 
for example, Schedules 1 and 2 contain respectively all the diurnal and semi-diurnal 
terms, whatever be their source — lunar or solar, V 2 or V 3. Each term has a 
numerical coefficient and a geodetic coefficient, and the source of the term is 
indicated by the latter; terms arising from the lunar V 3 have geodetic coefficients 
Go’, G i \  G 2* or G s’, the suffix indicating the species. Terms arising from the

* Ball, « Spherical Astronomy », pp. 309 and 310.
** « Monthly Notices, Roy. Astron. Soe. », February, 1911.



solar V 2 have geodetic coefficients Go, G i or G 2, and so have the terms from the 
lunar V 2 : to distinguish between the two sources, the geodetic coefficient is not 
written in the schedules for the lunar V 2 terms, and at the top of each schedule is 
a note stating the geodetic coefficient that is supposed to be understood. The 
values of the geodetic coefficients, considered as functions of the latitude, are 
placed at the top of the schedule.

W ith each geodetic coefficient is associated either a sine or a cosine of the 
given argument; the necessary information is given at the top of the schedule; as 
examples, from Schedule 1 we have the terms

037689 G i sin j 145-555 j , —016817 G! sin jl65-555 J
and

—000108 G i  cos j 145 655 

and from Schedule 2 we have terms

0 90812 G 2 cos j 255 555 J , 042286 G 2 cos (  273 555 j
and

0000525 G 2’ sin J 265 555 j ,

curl brackets being used to denote the argument corresponding to the argument - 
number.

The numerical coefficients are given to five decimal places, and all terms 
with numerical coefficients less than 000010 are ignored. The latter rule just cuts 
out all the V 4 terms except one, a quarter-diurnal term, which has a coefficient 
of 000016. and this also is ignored.

A s was mentioned in § 3, the terms, when arranged according to the 
argument-number, are thereby automatically arranged according to speed, as 
may be easily verified from the speeds given in § 4. The full argument-number 
will be used to denote the associated term.

Considered from the point of view of analysis of tidal observations, and 
assuming that the terms in the tide correspond to the terms in the potential, it is 
possible, using one year’s observations only, to distinguish between terms whose 
arguments differ by multiples of h ,  but not between terms whose arguments differ 
by multiples of p, N ’ or p i. If, therefore, we have several terms whose arguments 
are the same so far as t ,  s  and h  are concerned, these must necessarily be regarded 
as one constituent.* The word a constituent » will be applied and restricted to a 
set of terms wholly inseparable within a year ; we can therefore appropriately speak 
of the first three figures of the argument-number as the « constituent-number », 
and it is convenient to apply the term a group-number » to the first two figures 
of the argument-number ; as an example, take the following :—

argument-number: 265 555, 
constituent-number: 265, 

group-number : 26, 
species-number : 2 , i.e., semi-diurnal.

* It is possible to infer the separate terms of a constituent if it  be assumed 
that the harmonic terms in the tide have to one another the relations of corres­
ponding terms in the potential, but this is a matter which hardly concerns us at 
the moment: the point is, that in actual analysis of records not exceeding one 
year, terms such as the above must be regarded as one.



It is impracticable, even were it desirable, to invent for each constituent a 
symbol corresponding to the symbols already in use; the constituent-number 
is much more serviceable than an initial can be, and it certainly conveys a great 
deal more. Certain symbols such as M 2, S2, K i and O i are, however, well 
established, and may still be used. A  list of Darwin’s symbols, together with 
the corresponding constituent-number, is given later (Table VI). It should be 
remarked, however, that each tidal-constituent given by Darwin only includes 
a particular set of terms from the whole of the contributory terms to our constituents. 
Since, however, it is the same constituent that is dealt with, though his expression 
for it is not complete, there is no objection to regarding his symbols and our 
numbers as equivalent.

Two diagrams are given to illustrate the schedules. The first, Diagram A ,

gives for the first three species a representation of the constituents, with speed 
in abscissa and the logarithm of the absolute value of the coefficient as ordinate, 
assuming that the contributory terms are additive regardless of sign. The logarithmic 
scale gives, to some extent, a false idea of the magnitude of the constituent, but 
the scale is convenient for representation; further, the difficulties of analysis are 
not caused by the large constituents, but by the small ones, and, from this point 
of view, the logarithmic scale does correspond roughly to the difficulties experienced [P- 321] 

by the harmonic analyses.

The speed scale is indicated by the figures at the top of the diagram; these, 
with the species-number, give the group-numbers, and the places of the consti­
tuents in the diagram can then be readiily found. An increment of 1 in the group- 
number coresponds to an increase in speed of about 13° per mean solar d a y ; the 
increase in speed for an increase of 1 in the constituent-number is about 1° per 
mean solar day.



Diagram B gives, on a more open scale than Diagram A , a representation 
of constituents separable in a period of about nineteen years. Terms whose

14-iorO,) CROUP

&

j6/orfft, CROUP

25(orM2j CROUP
¡h

Mil

27(*stiGROUP r?

D iagram B : terms separable in about nineteen years, (a ): two distinct terms not 
separable from one another (see § 7).

arguments differ only in p i are regarded as one; in a few cases two terms may 
have nearly the same speed, though their arguments differ in p and N \  as in the 
case of the two terms 145 455 and 145-535. The speed of the latter term is 
greater than that of the former by p — 2 N \ which is comparatively small; these 
terms are marked by (a) on the diagram. Only four groups are illustrated.

The speed scale is indicated by the figures at the top of the diagram; these, 
with the group-number, give the constituent-number, and an increment of unity 
in constituent-number corresponds to an increment in speed of nearly 1° per mean 
solar day.



SCHEDULE 0.
Go =  |G ( 1  — 3sin2\), associated w ith  coefficients o f cosines to five decimals.
G</ =  r il8 0 3  G sin A, (3-5 sin2\) , associated w ith  coefficients o f  sines to five 

decimals.
( When no geodetic coefficient is entered Go is understood.)

Argument-
number. Coefficient. Argument­

number. Coefficient. Argument-
n,umber. Coefficient.

05 (or Ssa) group. 07 (or Mf) group. 08 group—contd.

055 ‘555 
555 
565 
575 
655

056 *554 
554

. 556
057 -355

50458 
23411 

-6 5 5 2  
64 
26 

— 16 
1176 
-6 1  

73

G0

<V

go
Go

071 -755
072 -556
073 -545

555
565 
655

074 -554
556
566

26
91
98

1370
- 8 8

15
- 1 7

48
12

G0'

085 -255 
455 
465 
475 
555 
565 
675

086 -454

54
2995
1241
117
38
24

- 1 2
-2 6

G0'
G0'

553
555
555

30 
12 

7 287

Go

Go

075 -345 
355 
365

- 3 6
677

- 4 4
09 group.

565
575

058 -554
059 -553

-1 8 1
- 4 0
427

17
Go
G0

455
465
555
565
575

76 
12 

15642 
6481 . 

607

G0'
G0' 091 -555 

755
092 -556 

566
093 -355 

555 
565 
575

095 *355 
365 
375 
455

20
14
32
13

06 (or Mm) group.
585

076 -554 
564

077 *355 
365

- 1 3
- 5 4
- 1 4

4/7

25
478
200

19
396
165

16
11

062 -656 
063-445 

645 
655 
665

68
- 1 6

-1 1 3
1578

-1 0 3

—  4}/
- 1 9

08 group. Go'

064 *456 
555 
654

065 -445 
455 
465 
545 
555 
565

51
- 4 4
- 1 0

-5 4 2
8254

-5 3 5
- 2 4
466

73
A A O

081 -655
082 ’456 

656 
666

083 -445 
455 
465 
555 
655 
665 
675

42
16
26
11
22

217
- 1 4

13
569
236
21

OX group.

Go'
G0'
G0' Go'

0X1 -655 
0X3 -455 

465 
0X5 -255 

265

23
116
48
45
19

ODD
665
675

-1 7 9
- 4 7

OE! group.

066 ‘454
067 ’455 

465

—43
-1 1 6
- 5 8

0S4 -456
466
555

28
10

- 1 6
0E1 -555 
0E3 *355

12
19



SCHEDULE 1.
Gi =  Gsin 2X, associated w ith  coefficients o f sines to five decim&ls^
Gi'= 0'72618Gcos\ (1-5 sin2\), associated w ith  coefficients o f  cosines to five  

decimals.
( When no geodetic coefficient is entered Gi is  understood.)

Argumenfc-
number. Coefficient. Argument-

number. Coefficient. Argument-
number. Coefficient.

10 group. 13 (or Qt) group—contd. 15 (or Mi) group.

105 -955 11 135 435 - 2 8 152-656 - 1 4
107 755 46- 545 - 8 4 153-645 - 6 3
109 -555 28 555 -2 1 1 G 655 -2 7 8

| 635 - 4 2 154 -656 15
645 1360 155 -435 17

11 E r o u n . | 655 7216 445 -1 9 7
755 - 1 3 455 -1 0 6 5  ‘
855 - 1 9 545 98

115 -755 - 1 0 GY 136 456 - 1 3 555 -6 6 1
845 21 555 - 3 9 565 86
855 108 644 11 645 85

117 555 - 1 0 G7 654 68 655 -2 9 6 4
645 53 137 -445 258 665 -5 9 4
655 278 455 1371 675 17

118 -654 21 555 - 1 8 156 -555 16
119 '445 10 655 - 7 8 654 - 1 8

455 54 665 24 157 -445 16
138 -444 11 455 -5 6 6

454 64 465 -1 2 4
139 -455 - 1 4 158 -454 - 2 4

iz  group.

124 -756 - 1 3 14 (or 0 0  group. 16 (or Kj) group.
125 ‘645 —23 G /

655 - 5 8
v-*i
G,'

745 180 161 -557 42
755 955 143 535 - 1 7 162 -556 1029 <*!

126 -556 - 1 6 •745 - 2 0 163 -535 14
655 — 11 755 -1 1 3 545 -1 9 9
754 15 144 -546 - 1 5 555 30

127 *455 — 11 G / 556 -1 3 0 555 17554 »1
545 218

u  i 145-455 12 < v 557 - 1 1 <*1535 -2 1 8 755 - 2 6ODD
128 '544

1J.ÜO
14 545 7105 164 -554 -1 4 7 G-i

554 79 555 37689 556 -4 2 3
129 -355 ,  35 645 16 < v 165 -455 - 3 6

655 -1 0 8 G / 545 1050
665 14 555 -  -16817 Gi
755 -2 4 3 555 -  3623313 (or group. 765 - 4 0 565 -7 1 8 2

146 -544 •12 575 154
554 115 655 - 1 3

133 *855 - 2 3 147 -355 - 2 1 166 554 -4 2 3 &i134-656 - 6 1 455 - 2 1 G / 167 -355 - 2 6
545 14 553 - 1 1 G-i
555 -4 9 1 555 -7 5 6 Gï565 107! 565 29

148 -554 - 3 3 575 14 f
168 554 - 4 4



S c h e d u l e  1 — continued.

Argument­
number. Coefficient.

17 (or Jj) group.

172 -656 - 2 4
173 -445 - 1 7

645 18
655 -5 6 6
665 -1 1 2
765 - 8 9 Gi'

174 -456 - 1 8
555 16

175 -445 •87
455’ -2 9 6 4
465 -5 8 7
475 13
555 -2 4 1
655 46
665 29
675 17

176 -454 15
177 *455 . 12

Argument­
number. Coefficient. Argument-

number. Coefficient.

18 (or OOi) group. 19 group—contd.

182 -556
183 -545 

555 
565

185 ’355 
365 
455 
465 
555 
565 
575 
585

- 3 2
- 1 6

-4 9 2
- 9 6

-2 4 0
- 4 8
- 4 0
- 1 6

-1623
-1 0 3 9

-2 1 8
- 1 4

G /
<*i'

195 -255 
455 
465 
475

- 1 9
-3 1 1
-1 9 9
- 4 2

IX  group.

1X3 555 
565 

1X5 355 
365

- 5 0
- 3 2
- 4 1
- 2 719 group.

191 -655 - 1 5 IE group.
193 -455 - 7 8

465 - 1 5
655 - 5 9 1E3-455 - 1 2
665 - 3 8

SCHEDULE 2.
G2 — G cos2A,} associated w ith  coefficients o f cosines to five decimals.;
G2' — 2'59808 G sin \  cos2X, associated w ith  coefficients of sines to five decimals. 
( When no geodetic coefficient is entered G2 is  understood.)

Argument­
number. Coefficient.

20 group.

207 -855 15
209 -655 18

21 group.

215 -955 27
217-755 111
219 555 69

22 group.

225 '755 - 2 7 < v
855 259

226 -656 - 1 2
227 -555 - 2 7 G2'

645 - 2 5
' 655 671

Argument­
number. Coefficient.

22 group—contd.

228 -654 54
229 -455 130

22X ’454 15

S 23 (or 2N2) group.

! 234-756 -3 1
i 235 -535 - 1 4
; 645 - 2 7 <V

655 -1 5 6 < v
! 745 - 8 6

755 2301
236 -556 - 4 0

655 - 2 5
754 36

237 -455 - 2 9
! 545 - 1 0 4
i 555 2777
; 238 -554 189
>! 239 -355 85

Argument­
number. Coefficient.

24 (or N2) group.

243-635 - 1 5
855 - 5 6

244 -656 -1 4 7
245 -435 - 6 3

545 - 9 7 GV
555 -5 6 9 G /  .
556 14
645 -6 4 8
655 17387
755 11 g 2'

246 -456 - 3 3
555 - 9 4

I 654 163
! 247-445 • -1 2 3
! 455 3303
I 555 15 <V
1 655 17
: 665 - 1 2
1 248 -454 153



S c h e d u le  2— continued.

Argument-
number. Coefficient. Argument.

number. Coefficient. Argument*
number.

1
Coefficient.

25 (or M3) group. 26 (or Lo) group—contd. 28 group.

252 -756
253 -535 

755
254-556 

655 
255 -455 

535 
545 
555

-1 1
- 4 0

-2 7 3
-3 1 4

14
32
47

-3386
•90812

265 -445 
455 
545 
555 
565 
645 
655 
665 
675

95 
— 2507 

-3 1  
525 

99 
- 1 2  
643 
283 
40

Gy
< v
Gs'

283 -655 
665 

285 -445 
455 
465 
475 
555 
565

123
54

- 1 2
643
280

30 
48
31

Gs'
Ga'

655
665
755
765

256 ’554
257 -355 

455

86
16
53
19

276
- 5 2

17

267 ‘455 
465

123
59 29 group.

g 2'

27 (or S2) group. 293 555 
565 

295 355 
365 
555 
565 
575

107
46 
53 
23

168
146

47

555
565
575

107
- 5 1

18
271 -557
272 -556
273 545 

555 
555

101
2479

Q4,
•42286

72

g 2
g 2

g 2
zb (or L12) group. 274 -554 

556
- 3 5 4

92
0-2
a . 2X group.

275 -455 29 G /
262 656
263 -645 

655
264 -456 

655

-3 3
24

-6 7 0
- 1 0

17

545
555
555
565
575

276 -554
277 -555

-1 4 7
7858
3648
3423

372
92
78

g 2

g 2
gs

2X8 -455 
2X5 *455 

465

17
32
28

GV =
SCHEDULE 3.

G cos3A, associated w ith  coefficients o f cosines to five decimals.

Argument-
number. Coefficient. Argument-

number. Coefficient. Argument-
number. Coefficient.

‘32 group. 34 group. 36 group.

327 '655 . - 1 7 345 -645 
655

18
-3 2 6

a ,'
<V

363 -655 
365 -455

17
67

g 3'
g 3'

• 33 group.
347 -455 - 6 1 655

665
- 2 5
- 1 1

Gì'
G,'

335 -755 - 5 6 G„'
35 group.

37 group.
337 -555 - 5 7 <V

355 -545 
555

66
-1 1 8 8

g 3;
< v 375 *555 

565
-1 5 5
- 6 8

G /
G /

c 2

[p. 325]



§ 9. Comparison with D arw in  s Results.

Darwin’s schedules are not directly comparable with those now given, as 
his expansion is not purely harmonic. The constituents he gives are of the general 
form J cos ( d  +  u), where a is the appropriate speed, J is a function of the 
inclination of the moon’s orbit to the equator, and u depends upon the position of 
the intersection of the equator and orbit. [p. 32GJ

Darwin’s practice is to replace J and u by their mean values within the 
interval of time considered, and each set of observations is treated with different 
values of J and u. His theoretical « mean coefficient » is the mean value of 
J cos u over a period of about nineteen years, the period of revolution of the 
node. H e shows that J cos {d  +  u) can be expanded in the form

S j rcos(cf +  rQ ),

where 0 is the longitude of the node; J is not quite constant, but partly depends
r

upon the longitude of the node and upon the inclination of the orbit to the ecliptic. 
Darwin’s mean coefficient is taken as equal to Jo in the above expansion. (This 
is not the mean value of J, however, which is somewhat larger than Jo : his theory 
and practice are not quite in conformity in this respect.)

Further expansion by the above method would be very difficult, but it can 
be shown that one of Darwin’s constituent would yield ultimately a set of terms 
whose arguments would be identical, but for the part dependent on N ’. On looking 
through the new schedules, such sets of terms can be readily picked out; the 
greatest numerical coefficient in each set should be very nearly equal to Jo, or 
Darwin’s mean coefficient. It will be noticed, however, that in some cases several 
such sets of terms may be contributory to a « constituent » as defined in § 8. In 
all cases only one coefficient, the greatest, is extracted to represent each set, and 
in Table VI those terms (or representative terms) with coefficients greater than
0.00400 are set forth for comparison with Darwin’s results. The constituent- 
number only is given to represent the argument. In those cases where Darwin has 
compounded two terms to form one constituent the comparison is made separately; 
the compounded terms are bracketed. In the case of M i three terms are given, 
of which two are compounded by Darwin; the third term is the true M i.

Generally speaking, there is fair agreement, except in the case of ^2 and 
the true M i; the cause of the latter discrepancy has been ascertained to be due to 
certain approximations made by Darwin in expanding V 3 .

The constituents omitted by Darwin and indicated in Table V I are con­
sidered to be decidedly worthy of consideration; their combined effect is by no 
means negligible.



Table VI.—Comparison of New Expansion with Darwin’s.

Name. N umbei’. Coefficient. Darwin’s
coefficient.

Per cent, 
difference.

055 0 -50458 0 -50448 0 0
Mf 075 0 -15642 0 -15654 0 1
Mf 075 677
Mm 065 0 -08254 0 -08272 0 2
Mm 065 466
Mm 065 -4 4 2
Ssa 057 0 -07287 0 -07286 o-o

Ter-mensual 085 0 02995 0 03032 1 -2
Erect, mthly. 063 0 01578 0 01510 4 3

Msf 073 0.01370 0 -01242 !) -3
Sa 056

083
093
058

0 -01176 
0 -00569 
0 -00478 
0 -00427

o , 145 0 -37689 0 -37712 0 1
K, 165 - 0  36233 -0-36230 1 o-o
K, 165 -0-16817 -0 -1 6 8 1 4 / o-o
P! 163 0 17554 0 -17550 0 0
Qi 135. 0 07216 0-07302 1 -2
M, 155 - 0  -02964 -0-029701 0-2
M, 155 -0-01065 - 0  -01044 / 2 0
M, 155 -6 6 1 - 0  -00990 49-8
J. 175 -0 -02964 -0-02970 0-2
00, 185 -0-01623 -0-01624 o-o
Pi 137 0 01371 0 01416 3-3

127 0 01153 0-00900 21 -9
162 0 -01029

2Qi 125 0 -00955 0 -00974 2*0
167
173
183
147

-0*00756  
- 0  -00566 
- 0  -00492 
- 0  -00491

Sx 164
166

- 0  -00423 
-0-00423

M, 255 0 -90812 0-90852 o-o
s 2 273 0-42286 0-42274 ‘ 0 0
Nî 245 0-17387 0 -17592 1 2
n 2 245 -5 6 9
k 2 275 0 -07858 0 -07858 1 0 0
k 2 275 0 03648 0-03646 J 0 1
v 2 247 0 03303 0 03412 0 3
M2 237 0 -02777 0 -02188 21 2
l 2 265 - 0  02567 - 0  -025741 0-3
I>2 265 643 6 4 6 / 0-5
l * 265 525
t 2 272 , 0-02479 

' 0-02301
0 -02486 0-3

2N 235 0 -02346 2 0
*2 263

227
285

-0 -00670  
0 -00671 
0 00643

- 0  00660 1 -5

m 3 355 - 0  -01188 - 0  01198 0-8

The effect of taking mean values of J and u  over a period of a year is 
readily investigated; the process is practically equivalent to taking a mean 
value of N' (or N) in the set of terms obtained by expanding J cos ( a t +  u).



Suppose that
J cos (at + u) =  Jo cos + cos (a/+N ) +•••; [P-

then, if bars denote mean values of functions of N, we have

J cos (cf + u)—J cos (cf + u) =  J i cos (d + N)---Ji COS (fff + N)

=  2Ji sin 1/2 (<N— N) sin (at + 1/2 N + 1/2 N).

Therefore the effect is to leave a residual harmonic term with coefficient 
approximately equal to Ji sin (N—N); at the ends of the yearly period this has 
the approximate value of 1 /6  Ji. Now the size of Ji is not to be judged by the size 
of Jo, and large residues may be left by the smaller constituents. On looking through 
the schedules it will be found that there is a possibility of residuals of coefficients
0.011, 0.005, 0.005, ..., in the long-period constituents, 0.012, 0.012, ..., irn diur­
nal constituents, and 0.006, ..., in semi-diurnal constituents- These residues are 
by no means negligible, especially when there are other constituents of this order 
which are not taken into account; the total effect of these may be important.

§ 10. Considerations regarding Application to the Analysis and Prediction
of Tides

The application of the schedules to the analysis and prediction of tides 
requires mature consideration, though it has been borne in mind during their pre­
paration. In Darwin’s paper on the abacus, he gives a method of analysis of the 
solar constituents which may be applied more generally. Essentially he regards the 
constituents of the 27 (or S2) group over a short interval of time as one constituent, 
and afterwards separates the various constituents T 2, S2, R 2, K2, .... by conside­
ring the variations in certain quantities derived by harmonic analysis. This method 
may be generalised with considerable advantage. Considering each constituent as 
effectively a function of t ,  s  and h  only will simplify the application of such a 
method as this; it ought to simplify most methods.

If the variables p, (N’ and pi were absent, we should get constant coeffi­
cients for the constituents; actually their coefficients and arguments will vary very 
slowly, and it would probably be sufficient to tabulate for January 1 of each 
year the appropriate multiplying factor and change of phase; this would be a gene­
ralised. form of J cos (rf +  ti), as given by Darwin. But, for reasons already given, 
mean values over long periods are inadmissible ; if, however, the multiplying factor 
and phase-shift be changed slowly but discontinuously at short intervals of time, 
the errors may be made negligible. Linear interpolation in J and u should suffice 
for this purpose. There seems to be no difficulty in doing this, either in analysis or 
in prediction. [p.

Referring to the constituent 265, the chief term is 265-455, whose speed 
differs by p from the speed of 265.555; but there is no reason why the speed of 
the constituent 265 should be modified on this account, as any correction necessary 
would be automatically applied in using the variable coefficients and phases as 
indicated above-



To sum up, it is proposed—

(1) that the constituents be regarded as functions of x, s, and h, with appro­
priate speeds;

(2) that analyses and predictions should be made with variable coefficients 
and phase corrections, automatically applied if possible, such coefficients and 
phase corrections being regarded as constants only over a sufficiently short interval 
of time.

The translation of these proposals into practical methods, however, is i  
matter for careful consideration.

ERRATA (1954)

Corrections have been made as follows :
§ 7 : Coefficient of 2” .264-28 is 108.
Schedule 1 : Coefficient of 165.455 is G \ .
Schedule 2 : Coefficient of 277.555 is 78.

In addition, Table VI should include : 157 0.00566.




