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Introduction.
It is well-known that experiment with the Decca medium—range radio- 

navigational system has shown that it is possible to consider the position-line curves 
as meeting the standard definition of hyperbolae, i.e. the loci of points whose 
differences in distance from the two foci are constant, with reference in this 
connection, of course, to geodetic distances on the earth s surface.

Since the shape of the earth, according to results supplied by geodesy, may 
be assimilated to that of an ellipsoid of revolution whose parameters have now 
been ascertained with a satisfactory amount of accuracy, the problem is theoretically 
determined and may be treated by mathematics as soon as all the necessary 
numerical data have been established. The hyperbolae in the system may accord­
ingly be plotted on the charts.

The actual testing of each Decca chain is then expected to supply the 
overall confirmation of these assumptions and of the plots, and to indicate residual 
corrections, (i.e. discrepancies between the theoretical and actual location of 
the position lines) which may appear locally following anomalies in wave propa­
gation.

The plotting of homofocal hyperbolic systems on charts is a mathematical 
problem that is difficult to solve with absolute precision, and various methods have 
been proposed to this end. However, certain approximations may be considered 
that are compatible with the problem’s physical features and may be advanta­
geously used to simplify computations. Thus, in the case of very-short-range 
hyperbolic systems (<100 km.), it is possible to reduce the problem to the plane, 
and the plot of the hyperbolae may then be obtained by the following convenient 
standard parametric formulae :

P —  p'
X = (cos x  ch y). j  with cos x = ---------

2/
p +  P

Y = (sin x sh y). f  with ch y  = -
2/

P and p ' : vector radii 
2 / :  distance inter foci.

In the general case of systems used m air navigation, with ranges of several 
hundred (Decca) or several thousand (Loran) kilometres, the indirect method has 
mainly been used, m which the hyperbolic value (p — p ) for points on the geo­



graphic grid is computed exactly (i.e. round latitude and longitude values), the 
latter being taken in sufficient numbers to enable interpolation over the meridians 
and parallels of the intersecting hyperbolae having a round parametric value.

The computations relating to the points on the grid can be handled with 
absolute precision by using one of the many methods for computing long geodetic 
lines. The legitimacy of later interpolations may be evaluated on the basis of 
standard techniques in the use of tables by interpolation; if need be, additional 
points on the grid may be computed. Properly developed, the method is satis­
factory from the practical aspect, as it is adapted to standard types of computation. 
It is extremely efficient when groups of operators fully conversant with the method 
are available (it should be stressed m passing that such computations involve series 
of largely varied operations which are difficult to transpose into the realm of auto­
matic calculations by card-programmed electronic computers).

When first faced with this problem, before the French Decca Chain went 
into operation (1952-1953), the Technical Bureau of the Institute’s Geodetic 
Section was fairly well acquainted with the performance of card-programmed elec­
tronic computers, and as a result of personal investigation, we moreover knew it 
as possible to obtain the rectangular coordinates of hyperbolae on conformai pro­
jection charts directly through the use of formulae of a standard type. W e thus 
decided the proper time had arrived to test a new method, and that useful progress 
would result owing to the increasing substitution of automatic computing by card- 
programmed machines for manual computing.

W e therefore propose to submit herewith, if not a complete technical report 
of this work, which would be of only slight interest to readers of this publication, 
at any rate a description of the basic features of the method used, and of the main 
experimental results observed during operations.

General Description

The mam feature of the method is that the plane rectangular coordinates are 
determined directly, by projection, of any points on the given hyperbolae, therefore 
involving a direct plot of the hyperbolae on the conformai charts.

An additional distinctive feature of the method from the practical aspect 
is the use of algebraic working formulae, which are well adapted to automatic card- 
programmed computers. This refinement is made possible since the rectangular 
coordinates of a plane conformai projection are determined for the computed points 
instead of latitude and longitude.

In order that the subject may be accurately defined, it should first be made 
clear that an auxiliary sphere is involved, closely resembling the ellipsoid of revo­
lution for the area concerned : between the sphere and a limited area of the ellipsoid 
(in the case of Decca), there is a quasi-isometric relationship (in which length 
measurements are almost exactly retained), so that the hyperbolae on the sphere 
may be regarded as reflecting the hyperbolae on the ellipsoid. The slight discrep­
ancy that exists may be evaluated in precise terms by means of the scale coeffi­
cient, and will be found to be negligible in so far as Decca is concerned.

Having thus reduced the problem to the sphere, we can henceforth rely 
on consideration of isothermic nets of coordinate curves. The properties of such 
systems are well-known : they consist of sets of orthogonal curves so combined as 
to create a pattern of infinitesimal squares by intersection. By establishing a rela­
tionship between such an isothermic net and lines drawn on a plane with x  and y



as their Cartesian coordinates, we obtain a conformai representation of the surface 
(in this case a sphere) on the plane, and vice versa.

Let us then take two separate orthogonal isothermic nets plotted on an 
identical surface, and let x, y, Y, X  be the coordinates of an identical point in 
the two systems. The two charts obtained in the two planes xy, X Y  are both 
plane conformai representations of an identical object, and the relationship 
xy  ^  X Y  is thus a conformai representation of the plane on itself, so that an ana­
lytical relationship U =  f{z) necessarily exist between the complex variables 
z  =  x + iy and U =  X  + iY  respectively. The latter may be represented by 
a series development of the type :

U =  Uo +  az +  Æ Z 2 + Y Z3 + . . . ,  

which may be directly applied to a card-programmed electronic computer, even 
if of large degree. The operations required to form successive terms such as 
x2 — y 2, 2 xy, x3 — 3 xy2, 3 x2y  — y3, correspond to a constant algorism, i.e. 
the multiplication of two complex numbers, and the machinery is so designed that 
it can repeat algorisms a great number of times within a very brief interval.

To sum up, the method used by us consisted in taking on the one hand the 
isothermic pattern based on the spherical hyperbolae, and the isothermic pattern 
corresponding to the Lambert rectangular coordinates on the other; in determining 
the coefficients of the analytical relationship U =  /  (z) between the coordinates 
of an identical point in the two systems; and in making use of this latter relationship, 
taking advantage of its algebraic character and of the possibilities offered in this 
connection by card-programmed electronic computers.

An initial step will therefore consist in determining the isothermic system 
based on the homofocal hyperbolae, and in making the transition from the ordinary 
geometrical coordinates (the sum and difference of vector radii) to the isothermic 
coordinates. A  standard formula supplies the answer, which actually only exists 
for the sphere (and not for the ellipsoid in the general case).

A  second stage consists in deriving the relationship between such coordinates 
and the chart coordinates, and this may be accomplished empirically by taking an 
adequate number of coordinate pairs (x .y .X .Y .)  and by determining the coeffi­

cients of the relationship U = f  (z) by the system of linear equations corresponding 
to these control points.

W e shall now examine the particular features of these various partial 
problems.

Use of Intermediate Sphere

An extremely adequate spherical representation, described as the Gauss 
spherical projection, transposes the ellipsoidal figures to the sphere of mean 
curvature at the midpoint of the projection. This representation possesses the 
following basic properties :

— An extremely low scale coefficient (under 0.2.10- 5, within a 
600-km radius around the midpoint) ;

— Simple formulae in the transition from the sphere to the ellipsoid. These 
are of the following type :

A<p = /  (Acp*) [defined by A«i,= ^A .-£’]
AX =  £AX\



where <p, <p’  ; X , X ’  designate latitudes and longitudes on the sphere and ellipsoid 
respectively,X and S ’ meridional parts on these surfaces, k a parameter approach­

ing unity [1 + e ’2 cos4 ©o] , and the symbol A represents a discrepancy in 
coordinates with reference to the midpoint (it should be noted that for position cp0, 
Xo, the corresponding position on the sphere is <p’ o ( ^  <Po), X o).

The scale discrepancy of this spherical projection in the area of Decca 
pattern coverage is so slight that it may be disregarded altogether in view of the 
inherent inaccuracies of the Decca system. + 0.02-lane is the estimated amount 
of stability for any given point in the most favourable areas of the Decca pattern, 
which corresponds to an evaluation of the difference (p — p') to within 7 m 
(Purple pattern), and therefore to a definitely higher order of magnitude than scale 
corrections (1).

For practical purposes, therefore, the problem of plotting hyperbolae on 
the Gaussian sphere may be approached by making use of the distances defining 
the points just as they stand. (There are three distances : the focal distance 2/ ; 
P, and p \ which are the distances to either focus). After the spherical coordinates of 
the points have been obtained, these are transformed on the reference ellipsoid, and 
thence on the plane of the chart projection used, the conformai nature of the repre­
sentation being retained throughout.

The possibility of making use of the properties of Gauss’ representation in 
order to reduce the problem to the sphere has been recognized and applied earlier 
by other authorities (S. Ballarin, Ref. [6] and K. Ansorge, Ref. [7]).

Isothermic System of Curvilinear Coordinates on the Sphere, including 
Hyperbolae as a Family of Coordinate Lines

Reduced to the sphere, the problem of plotting the hyperbolae may, as 
we mentioned above, be dealt with by ordinary spherical trigonometry (2).

In the different method selected by us, the isothermic and orthogonal 
network based on the hyperbolae of the homofocal pattern is needed. The ortho­
gonal curves to such hyperbolae are of course the spherical ellipses having as their 
foci F and F ’ and which may be located by their parameter 2 u = P +  P'. After 
ascertaining and defining the orthogonal curvilinear net we require, we must then 
define thereon a system of coordinates possessing the required isothermic property, 
i.e. one possessing the same structure as a plane Cartesian grid.

A  general approach to the problem of isothermic curvilinear coordinates 
on a surface leads to certain required adequate conditions of accomplishment, which 
are capable of fulfilment as regards hyperbolic networks on the sphere, but gene­
rally not as regards the ellipsoid of revolution. W e are compelled as a result here 
to use the sphere as the intermediate surface.

(1) A different line of reasoning may be followed and the scale discrepancy 
in the Gauss ellipsoid/sphere projection be compared with the inherent accuracy 
with regard to knowledge of the speed of Decca wave propagation, governing the 
transformation of phase-differences into distance-differences. The amount of uncer­
tainty with respect to this speed is of a definitely higher order than the scale 
discrepancy.

(2) There is an interesting article on the direct plotting of spherical homo-
focal hyperbolae by P. Hugon, entitled: N ote  on the rectilinear representation of
spherical hyperbolae  (Service Central Hydrographique, Paris, 1951).



The particular investigation, with regard to the net of isothermic homofocal 
coordinates on the sphere was made the subject of intensive research by two 
standard authorities, Peirce and Guyou, with the object of constructing charts 
allowing of such a coordinate system as a Cartesian reference system, resulting in 
the remarkable planispheres bearing their name supplying a doubly periodic repre­
sentation of the earth’s surface. The work of Peirce and Guyou is concerned with 
special homofocal systems (so-called « equilateral » systems) in which the focal 
length is equal to one-fourth of the terrestrial meridian ; however, the same principle 
may be applied to any type of focal system, upon which special maps of the sphere 
might also be constructed.

Our method in plotting the hyperbolae on a conformai projection essentially 
consist in using the equations of the conformai relationship existing between the 
Peirce-Guyou type of chart in the Decca homofocal system and the proposed 
general Lambert chart.

The Peirce-Guyou formulae as set forth and proved in the Trctité des Pro­
jections by Driencourt and Laborde therefore solve the problem arising with regard 
to the change in variables. They enable the transition to be made from the geo­
metric parameters u  =  1 / 2  ( p  +  p ’) and u =  1 / 2  ( p  —  p )  to the isothermic para­
meters p = p  (u), q = q} (o) which are most conveniently related to the rectangular 
coordinates of the conformai projection.

Expressing and Computing the Homofocal Isothermic Coordinates p, q.

The Peirce and Guyou formulae are :

r __________ ± _________  r ____________ do___________

p ~  J cos2/  — cos2u q ~  J  y/ sin2/  — sin2ü

supplying the following simple form with regard to the length factor of the sphere :

dS2 — (dp2 + dq2) sin p sin p * .

For computation purposes, there is advantage in introducing an additional 
set of parameters L^ and M :

u L  —>■ p, D -~y- M ->- q,
E E

which are of concrete geometric significance on the sphere (see Figure I).
The transformation equations thus take on the following form: 

u pi :



dM
do /» E

q ~  J  y /  sin2/  — sin2ü j  \ J  1 — sin2/  sin2ME

which is Legendre’s standard form (1).
The transition from L to p and from M to q constitutes, from the 

E E
numerical aspect, one of the main difficulties in the present method, and may even
be described as a key operation of the process.

N

Fig.  1
Diagram of Spherical Focal System.

I, represents the arc distance between apices of the ellipse
and the focal axis.

Similarly, M represents the arc distance between the focal
axis and apex T of the hyperbola (which is also an ellipse 

with its foci at F and cp).
The following- terms should also be noted: 

p + p ’ =  2 u, p — py =  2 v.

Two separate methods are followed, owing to the difference in the orders
of magnitude sin2 /  cos2 j :

(a) In the case of the integral q (jM ), the smallness of the « modulus »
E

(approximately 0.01 for the French Decca chains) suggests a convergent series 
development of the type (by putting sin2 /  =  £2) :

i f .  1 . 3  r  .
<7=M> sin2M dM  + 0 sin4 M JM ,

E 2 J  E E 2 . 4 J  E E

where the development may be limited to the first corrective term (in the case 
of Decca) and use may be made of Wallis’ Integral Tables as computed at the 
National Geographic Institute (2). Computation is of a standard simple type, and 
it may be pointed out that the maximum value of the corrective term, where

Q
=  100 , is 50 centesimal minutes for patterns in the French Chain.

(1) Legendre put :
C d(PF (fe, ç) =  I . .. where fe2 =  m2 : « modulus » of elliptic integral.J W  1 — fe2sin2<p

(2) Note sur le calcul des Grandes Géodésiques, avec X I  Tables annexes,
by J.J. Levallois and M. Dupuy, National Geographic Institute, 1952.



(b) On the other hand, the integral p (L ) has a modulus in the immediate
E

neighbourhood of one, and we are therefore faced with the problem of calculating 
the most difficult type of elliptic integral. Legendre’s Tables cannot be used, 
since interpolation is impossible in the region concerned (i.e. moduli close to 
unity). Recourse is had to the ingenious transformation originated by Landen, i.e. 
a special change of variable simultaneously modifying the upper limit L and

modulus m of the elliptic integral (see formulae in Appendix). The transforma­
tion can be so dealt with as to raise the modulus to the value of one, in which case 
the elliptic integral becomes identified with the standard « meridional part » : £

1 =  —log tan /  \Jy i - v4 2 y
which is easy to compute directly.

In the case of patterns in the French Chain, two successive Landen trans­
formations enable the transition to be made from the entry L to the entry argument

E
L.2 for the meridional part.

To obtain p corresponding to a given L by this method requires about
E .

fifteen simple numerical operations.
Use of Previously Obtained p, q Coordinates. Obtaining and Use of 

Wording Formulae.

5 * J5 ’ w  0* 6‘ JS'E:

Fig.  2
French Decca Chain Array on 1:106 Lambert Map of 

National Geographic Institute



W e have now reached a stage where, with reference to a point known by 
its distances P, p'  to the foci (or by the equivalent parameters u, v),  it is possible 
to relate new parameters p and q  included within a system presenting a 
known type of analytical relationship with the plane rectangular coordinates of 
the conformai chart.

The coefficients of this analytical relationship may be determined as soon 
as the corresponding coordinates X , Y and p, q  are known for a sufficient number 
of points.

The desired indications as to the number of points required and their 
arrangement in the plane are supplied by theory (1). The preceding indications 
have moreover shown how operations should be carried out in practice for each of 
the selected points. Such points may be taken on fixed hyperbolae (hence be 
defined by u, u; whence p  and q),  their positions be calculated by spherical tri­
gonometry, and their X , Y chart rectangular coordinates derived. Conversely, 
points may be taken as referred to X  and Y, and P, p \  be derived, followed by 
u and V, and finally p, q.

Thus the pair (p q ~ X  Y .) which will determine the coefficients of 
i i i i

the « working formula )) are obtained.
At the stage where the working formula is to be applied, a point-by-point 

plot of certain hyperbolae known by their parameter ü is desired. It will accord­
ingly be necessary first to compute the values of q  corresponding to such values of 
ü. Values of p will moreover so be selected as to ensure the appropriate distri­
bution of control points on each individual hyperbola (see Fig. 3).

A  network of values p and q corresponding to points located on the required 
hyperbolae is thus obtained, where the latter intersect with certain arbitrarily 
selected ellipses. Applying the working formulae to this set of values, we get the 
X  and Y rectangular coordinates of these points on the chart.

Checks
As the working formula is determined from a certain number of control 

points, it has the approximate character of interpolation formulae, and the accuracy 
of the positions obtained should be verified by careful checking. Such checks 
are made by computing the exact distances to the foci according to the rectangular 
coordinates of the points on the chart, whence the actual distance-differences 
2ü — P —  p ' are obtained, which should be compared with the theoretical 2v 
value of the hyperbola. The XY position is considered to be acceptable if Au 
(the theoretical ü minus the actual ü) is below a certain limit (defined as 10 m.), 
consistent with the known physical accuracy of the Decca system.

Practical Application of Method in Plotting French Decca Chain on 
1 :1 000000-5ca/e Map on the Lambert Projection of National Geographic 
Institute

Having described the general characteristics of the method adopted, we 
shall now supply various specific data with respect to the French Decca Chain 
and related computations effected in 1953 at the National Geographic Institute’s 
Technical Bureau.

(1) The theoretical study of this relationship as applying to the general 
problem of the spherical hyperbolic net would not come within the scope of this 
article. An approximate idea thereof may be had, however, by considering the 
plane homofocal hyperbolic net, which, using the same symbols, is written :

(X + iY) = sin (p +  iq)
(rect. plane coord.) (homofocal isothermic coord.)



Common Master

The French Chain (see Fig. 2) consists of three patterns, defined by four 
transmitters, as follows :

Patterns Focal distance
(in km)

Green pattern 179.5
Red pattern 174.1
Purple pattern 157.2

The effective range of the system is evaluated at approximately 500 km., 
thus supplying positions that can be used for maritime navigation purposes near 
the coast. Inherent position-fixing accuracy under favourable conditions, on the 
basis of cumulative tests, is reported as 0.02 (one-fiftieth) of a mean lane, or 
approximately 10 m.

Montluçon

Plan tz )

Fig.  3
Arrangement of Control Points for Purple Pattern 

Working Formula.
(It will be noted that Hyperbola A 65 is here considered 

as the useful limit in the pattern.)



The, aeronautical chart to be completed consists of a special mosaic deriving 
from the National Geographic Institute’s general map of Europe on the scale of
1 : 1 000 000 in Lambert projection : a conformai projection of the International 
Ellipsoid on the plaine. The area to be covered extended northwards as far as 
London, and southwards to the Azores, thus requiring that curves be plotted over 
an 800 to 1,000-km stretch from the central area, and therefore over a far longer 
distance than the optimum effective range of the system.

On this chart the control points along the hyperbolae could be taken at 
100-mm intervals (appr. 100 km. over the ground) in the outer areas, but in the 
central zones of the patterns it appeared necessary to increase the frequency of the 
control points by two or even by four. The block diagram in Fig. 4 shows the 
standard arrangement adopted. In the transverse sense, preliminary investigation 
showed that at the scale of 1:1 000 000 it was possible to draw all the inserted 
curves by graphic interpolation, using only the sector limit curves (DEF...) as a 
basis, except in the marginal areas of each pattern, where a narrower interval 
must be taken in the direction of the base line region. In the first sector adjacent 
to the base line (from Ao to Bo, and the symmetrical sector), each hyperbola 
should enven be computed separate ly ,  although no such attempt was made here for 
ieasons of economy, and the hyperbolae were plotted only approximately as far as the 
two-thirds mark of the first sector. About seven hundred control points in each pattern 
thus had to be computed.

Fig.  4
Model of Control Points for Plotting of Hyperbolae 

(Central Area)
Note. The control ellipses are spaced 100 km apart beyond 

the figure (300 and 400 km control ellipses).

The general method described below was more or less standard for all 
three patterns, the principal difference consisting in the control point arrangement 
used for the working formulae.



For purposes of readier numerical calculation, a set of thirteen points in 
the R ed  and Green patterns has been selected only along the axes of symmetry 
in the system; firstly, because the points could readily be positioned, owing to 
the fact that they were located on hyperbolae reduced to great circle arcs, and 
secondly, since the coefficients of the working formula could be obtained by means 
of simple combinations carried out with the coordinates of these basic points.

When put to the test this arrangement proved to be of insufficient scope 
with respect to the area to be covered, resulting in a decrease in the quality of 
checks in the inner and outer regions of the pattern. (In every case where the 
discrepancy Ao between the assumed value of P — p ' and the actual value derived 
from the coordinates exceeded 6 m., lïie position as obtained from the electronic 
computations was suitably corrected).

The lessons thus learned were duly applied in the case of the Purple
pattern, in which the set of control points was more adequately adapted to the
area involved. The arrangement in this case (see Fig. 3) is such that the entire
sector between the « quasi-degenerate )) A  65 hyperbola and its image, and the
ellipse with an L value of 600 km., is included within the control polygon. (The 

E
zone thus delimited includes the area covered by the French Geodetic Survey). 
Complex interpolation theory indicates that an evaluation of the maximum position 
error within this figure is supplied by checks obtained at the midpoints of the outer 
sides of the control polygon (points V i V 2, V 3, V 4).

By proceeding on the same basis as heretofore (by checking P —  p ' and 
P + p ' derived from the rectangular coordinates), a maximum position error of 
31 m. was found for these four points.

This shows that the process enables close delineation of the net of ellipses 
and homofocal spherical hyperbolae to be obtained. This result may be attributed 
to the high degree of the working formula, which we shall now briefly describe.

The sets of control points consisting of thirteen or twelve basic points were 
used in determining the numerical coefficients of 11 th-degree complex algebraic 
formulae designed for a card-programmed electronic computer : it is of course 
obvious that such high-degree formulae hardly invite calculation by hand (1).

The formulae have the following aspect :
U =  X  + iY =  j{z) = j  (p + iq) — U0 + az + Pz2 + yz3 + ... + n z11, 
where U 0, a, P, y ,.. .  as are U and z themselves, are complex numbers with two 
coordinates. The components of successive powers of z are derived from one 
another in the constant sequence :

z P+  ...(which is written x + iy ) = (x + iy) * =  z P.z
p + 1 p + 1

{x + iy ) (x + iy) = {x x — y  y) + i (x y  + y  x)
P P p  p  p  p

(1) The decision as regards the degree of the working formula is governed by 
the accuracy required at long distances. The decrease in the terms of the series 
development (the « con,vergency » of the development) can be predetermined by 
theoretical means, and can likewise be ascertained empirically by the working for­
mulae. In the working formulae for the R ed  and Green  patterns, the figure supplied 
by the llth-degree term, 450 km from the centre of the pattern, is of the order of 
100 m. ; for the following term, it would be a few decametres and therefore negli­
gible.



This algorism of complex number multiplication can be introduced once 
for all time into the computer programme. With the I.B.M. equipment available 
for making the Decca computations, the « card-programmed » procedure was 
followed, each programme-card operation (at the rate of one every 0 .6-second) 
initiating a new complex multiplication. The total amount of computation per 
point required slightly less than a minute. In other words, it was possible to 
compute the entire set of 600 or 700' control points in each pattern within the space 
of a few machine-hours. There are grounds for believing that certain technical 
refinements in programme design may result in a further appreciable decrease in 
the time element, using a similar type of commercial electronic equipment, and in 
its thus being brought down to a few seconds per point (1). Final calculations 
(supplying the desired coordinates of the control points) consequently take up a 
practically negligible amount of time as opposed to the time spent in preparing the 
working formulae — a characteristic and abiding trait in electronic computation.

Practical Conclusions

We believe that the method described above may be recommended owing 
to the following main advantages :

— The coordinates of control points on hyperbolae with a round para­
metric value can be obtained directly;

— The coordinates obtained are the direct chart coordinates of points in 
the conformai projection used. If the latter is the Mercator projection, the 
coordinates of longitude and the meridional parts are obtained, whence ordinary 
latitude may be derived directly;

—■ Since electronic computation is involved, as many control coordinates 
as desired may be obtained, with no necessity for transverse interpolation (i.e. 
the control coordinates of interpolated hyperbolae may be obtained directly);

— In particular, the difficulties involved in interpolation in the marginal 
sectors (near the base line extensions) no longer prevail : the working formulae 
remain valid for these sectors. It should be pointed out, however, that in order 
to plot the hyperbolae in this section, the working formula should be drawn up for 
a system extending to the outer margins of the pattern, which was not done syste­
matically in the case of the French Decca Chain.

Opposing such advantages, there is the question of the rather delicate 
preparation of the control points and obtaining the working formulae. The 
problem here is one of organization and the rationalization of computations, and it 
may well be that new experiments will vastly improve the still largely satisfactory 
results that have been obtained in the present computing of the first French Decca 
Chain.

(1) These results were actually obtained by Ing. Géographe H.M. D u f o u r , 
of the Technical Bureau of the National Geographic Institute’s Geodetic Section, 
to whom important work on the purely analytical determination of coefficients 
of the transition formulae is also due.


