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CORRECTION OF VARIANCE
FOR EXTRANEOUS CONTRIBUTION OF GRADIENT

by Carsten M. WINGER, Oceanographic Publications Branch,
Division of Oceanography, U. S. Navy Hydrographic Office.

ABSTRACT

The drawing of isolines of standard deviation for a function (temperature, for
example) necessitates having a sufficient number of stationary points, sufficiently
close together, for which the frequency distributions of the function are known.
Over ocean areas, however, this necessity is not met, and will not be met, presu-
mably, for a very long time. The best that can be done at present is to deal with
the observations for a finite area over a finite period of time, combining them as
elements of a single frequency distribution for some point near the center of the
area in question. This procedure introduces extraneous spatial deviations, giving
the variance of our function too large a value. The magnitude of this error increases
with the size of the area and with the numerical value of the gradient, and also
varies to some extent with the latitude and the orientation of the isolines of the
function. This report proposes a formula for the correction of this error.

Correction of Variance (s2) for Extrancous Contribution of Gradient

Consider a scalar function F (y, t), continuous in the plane. Let us choose
the area of consideration (A) small enough so that the isolines of F are reasonably
straight, and such that the gradient can be considered to change at a constant rate
with distance.

We are concerned with the construction of a set of isolines of standard
deviation of F over a region of which our area A is an integral part. Interpolation
in the completed pattern, then, will enable us to determine the standard deviation
of F for every point of A, However, if we inject into our problem the not uncommon
situation, especially over ocean areas, of lacking sufficient stationary points of obser-
vation, sufficiently close together, to permit the drawing of the pattern in question,
a rather considerable difficulty presents itself. In order to obtain adequate data for
any one frequency distribution, we are forced to combine the observations for a
finite area, rather than for a point; and this procedure tacitly involves extraneous
spatial deviations, giving the variance of F too large a value.

Though the following method for evolving a formula for correcting this
value of variance is applicable to any rectangular area, as well as to other geometrical
configurations, since it is felt that this correction would normally involve a function
related to the earth's grid, we choose our area A as an approximate rectangle
bounded by meridians and parallels of latitude, p degrees of latitude long and
p degrees of longitude wide. For convenience, we choose one degree of latitude
as our unit of length. The magnitude of p, of course, should be as small as possible
to enhance the credibility of our assumptions; and yet large enough to give sufficient
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observations to permit the consideration of frequency distributions. At the present
time, over most ocean areas, we must have p = 1.

To facilitate the mathematics, we must assume that our gradient does not
change with time, but only with distance, which limits the length of our time
interval; and in order that our theory may be applied to any particular area, the
observations should be reasonably uniformly distributed in the area.

In accordance with the foregoing assumptions, we have :
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where a is an arbitrary constant. Then :
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where (_) is the gradient of F at point C, the center of our « square », and
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does not vary w1th time ; and F(t) is the value of F at point C at any time t.

Letting F be the mean value of F at an arbitrary point and o, its true standard
—F

deviation ; and assuming a normal distribution with v = , the weighted
g

squared deviation A2 from F,, for our arbitrary point is given by
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where F_ is the average value of F for the entire area A and the point m is taken
as the midpoint of the isotherm having the value F_ on the mean chart.

We are interested in the surface integral of this expression over A, so we
wish to express (FF— F, ) as a function of y for given values of ¢ and «, the former
denoting the latitude of the center of A and the latter denoting the angle of orien-
tation of the isolines of F relative to the parallels of latitude (Fig. 1), taking counter-

clockwise measurement as positive. For convenience of expression, we adopt the
following notation in connection with Fig. 1 :

wle

=4+ 2 (cosa;sinacos¢)

It

+ 2 (sinacos¢ + cos a)

I s

l; = y tan
l4 = ytan o + psec acos ¢
Is =[y + %(cosa——sinacos¢):| [—cota] — 7 sin a[ ] -—-—cos?tana]

lg =|:y—%(cosa—sinacos¢)][—cota] + [% sin @ + p cos ¢ sec a

(1_ sin:a)]
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Fig. 1. — Basic diagram for deriving correction formula.

A P Q R is a p-degree « square » with C as its center.
¢ — Latitude of C.
Equation of line RA :y = x cot g.
Equation of line QP : y = cot 4 [x — p sec ¢ cos ¢].
Equation of line RQ:y = — tan a [x — (p/R) sin g —p cos ¢ Sec (1—1/2 sin2 g)]
+ (p/2) [cos ¢ — sin ¢ cos ¢].
Equation of line AP :y = —tan ¢ [x + (p/2) (sin ¢ — cos ¢ sec g sin? g)]
— (p/2) [cos ¢ — sin g cos ¢].

I

Points : o
Q [(p/2) sin ¢ + p cos ¢ sec g (1—1/2 sin2 o), (p/) . (coS ¢ — sin ¢ cos ¢)].
R [(p/?) sin ¢ (tan g cos ¢ + 1), (p/2) . (sin g cos ¢ + cos g}].

Then : 7
-y + 1y *+ Iy + 1y
pcos¢F = / / Fdx dy + / f Fdxdy+
¢+ s
At o 2
P _
/ / Fdxdy =—ax-)ﬁ-— ] —sin2asin?¢ | + pPcos¢k
24 c
+ L + 1a
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Hence :

2
= | Sy < > in? o sin? )

By the definition of A2, our deviations are being taken with respect to F .
m

If cu2 denote the uncorrected variance for point M, for the interval

0 << « =< cot? cos ¢ we can write :

@ -l * +l +1h *+
pPcosda? = / / Azdxdy+/ / A?dx dy +
1 +1l5 - +13

>+l *+lg

/ A? dx dy
+1 +13

or
cuz=c2+ - |:l—-sin2asin2¢]
a2 p“
5 3524 (1—sin? & sin? ¢)2+ 3 sin? o cos? o cos? ¢

From considerations of symmetry, our formula also holds for the interval
—cot™! cos ¢ =< 4 =< 0; and, in similar fashion to the above, it can be shown to

hold for the interval cot—! cos ¢== a == & . —cot—! cos ¢. Therefore, it can be said
to hold for all values of a.

Substituting the expression found previously for F,, in our general expression
for F gives the ordinate Y. of point M as :

a2 p? (1 — sin? o sin? ¢)
| —
ym b3 y ] + > F 2
12 (f’)
Y/7e
For a uniform gradient, a = 0; and our correction formula simplifies to

| — sin2 @ sin2 ¢

This immediately raises the question as to the magnitude of the ratio of the
first term (C,, cay) of our correction to the second term (Cg) in our general formula.
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Let F; be the value of F at the northwest comer of our area on the mean
cha.rt and let F2 be the value at the southeast comer. We then have :
Fi=— —(sm @ €05 ¢+ COs a) ( > — (sinacos¢+cosa) | +Fecs
2] 2
i P > F P,. =
F=— ——(inacos? + cosa) |+ | — — —(sinecos¢ + cosa) |+ Fo-
2 | 2 >y /| 2

Hence :

F-1+I‘:2—2Fc 3 F FT]_—Fz
a = and — = :
P,. 2 >y /. p (sin @ cos ¢ — cos a)

[7 (sin @ cos ¢ + cos a)

Substitution in our general correction formula gives

o | — sin? asin? ¢
5] 2=0'2+(-’F1—~F2)2 .

12 {sin a cos ¢ + cos @)?

+ (Fr+ Fo—2F: )2 [

(1 — sin? @ sin? ¢)2 + 3 sin? a cos? a cos? ¢
45 (sin o cos ¢ + cos a)*
= g% + (Fl——rfz)le -+ (F—l + FTz—ZF—C )27( 2, say.
Fe —F C 1 72
Lettingr = —_———_—1-, we have R s G
Fo —Fe C, r—1 X2

Fr0<a< 7:/2, x1/x2 = 3.75; and since I:(r + 1@ — 1)12 decreases
as T increases, we can amive at a lower limit for C;/Cs if we can determine, for the
particular function F(y, t) in hand, a maximum value for r.

Two functions for which this correction procedure is of prime importance
are sea temperature and air temperature over the oceans. For these functions, with
0 =< a = =/2, we will rarely have a value of r greater than 2, so that the ratio
C1/Cs will generally be greater than 30. Even for r = 3, this ratio will be equal
to, or greater than, 15.

From our general formula it follows that these results are therefore also true
)

for — <= a« = 0, sa we can conclude that, for temperatures over the oceans, we

2

can use the simpler formula

p"’ > T\
62 = ¢ 2 — _ I—sinzasin2¢ .
u h3 y

Figures 2 and 3 are nomograms for the evaluation of our cormection for
various combinations of our parameters. Figure 3 also enables one to determine
values of C / s 2. The intersections of our ¢ — lines with our 100 % — line give

u

the lower llmlt for s for any given combination of parameters.
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Obviously, our correction will always be positive. For a given latitude, it
will increase as the size of our area increases, and as our gradient increases numeri-
cally, and, for a given gradient, will decrease as the isotherms take on more of a
north-south orientation.

As a concrete example, consider the following excerpt from the mean chart
for February :

Two-degree square (p = 2) bounded by parallels of latitude 38° N
and 40° N, and meridians 148° E and 150° E. Hence ¢ = 39, Also,

T =45°F., a = 15°, (;’—T) —5F°, ands = 4.4F°.
y/e v

c

We are interested in evaluating graphically our correction

C = Pzé <2T>2[|-——sin2asin2¢]
y/e

Entering Fig. 2 with the given values of ¢ and «, we drop vertically
to the line k = 5 and read the corresponding value along the right-hand margin.
This would be our correction for p = |. However, for p = 2, the case in
hand, we proceed horizontally in Fig. 3 (which is but a continuation of Fig. 2)
to the line p = 2 and read the corresponding value along the base of our
nomogram. This gives us the value of our desired cormection, namely C; = 8.
Hence ¢? = 19.36-8 = 11.36, or ¢ = 3.4. Proceeding vertically from C; = 8
to the mterpolated dashed line ¢ = 4.4, the corresponding point along our right-

hand margin gives 41 % as the percent correction to ¢ 2, This corresponds to a

correction to o of (I — /' 1T—.41)100 = 23 %.

In Figure 4, curve A represents the distribution for point C with ¢ = 3.4;
and curve B represents the distribution with ¢, = 4.4. The corresponding intervals
within which 90 % of the observations lie are also shown.

2T
If we next consider this same point with ¢ = 3.4, (——) =5 and

>

y
p =5, we find s 2 = 62.56. Curve D of Figure 4 represents this distribution,
with o = =79, for which our 90 % interval is 32.0 — 58.0, a range of 26 as

2T
compared to only 11.2 for curve A. This is an extreme case, with (a ) =5,
y c
but does illustrate the effect of p = 5 as compared to p = 2.
Curve C represents a more mormal case, with p = 5, ¢ = 3.4 and

>T .. .

(a > =3, giving ¢ = 5.5. Our 90 % range is 18 as compared to 11.2 for
Y/e "

curve A, an appreciable difference. At present, it appears that we must operate

with p = 5 in many areas (if at all); and the foregoing figures show the necessity

of considering the correction in question,
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Fig. 2. — Tart one of nomogram for calculating corrections.
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In conclusion, though admittedly the situations met in practice will never
conform exactly to those proposed under our assumptions, nevertheless, the judicious
use of the formula developed in this paper permits a reckoning of the order of

magnitude of our correction, and hence gives an approximation to the magnitude
itself.




