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A bstract

T he drawing of isolines of standard deviation for a function (temperature, for 
example) necessitates having a sufficient number of stationary points, sufficiently 
close together, for which the frequency distributions of the function are known. 
Over ocean areas, however{ this necessity is not met, and will not be met, presu­
mably, for a very long time. T h e  best that can be done at present is to deal with 
the observations for a finite area over a finite period of time, combining them as 
elements of a single frequency distribution for some point near the center of the 
area in question. T his procedure introduces extraneous spatial deviations, giving 
the variance of our function too large a value. T he magnitude of this error increases 
with the size of the area and w ith the numerical value of the gradient, and also 
varies to some extent with the latitude and the orientation of the isolines of the 
function. T his report proposes a formula for the correction of this error.

Correction of Variance {a2) for Extraneous Contribution of Gradient

Consider a scalar function F  (y, t), continuous in the plane. Let us choose 
the area of consideration (A) small enough so that the isolines of F  are reasonably 
straight, and such that the gradient can be considered to change at a constant rate 
with distance.

W e  are concerned with the construction of a set of isolines of standard 
deviation of F  over a region of which our area A  is an integral part. Interpolation 
in the completed pattern, then, will enable us to determine the standard deviation 
of F  for every point of A . However, if we inject into our problem the not uncommon 
situation, especially over ocean areas, of lacking sufficient stationary points of obser­
vation, sufficiently close together, to permit the drawing of the pattern in question, 
a rather considerable difficulty presents itself. In order to obtain adequate data for 
any one frequency distribution, we are forced to combine the observations for a 
finite area, rather than for a point; and this procedure tacitly involves extraneous 
spatial deviations, giving the variance of F too large a value.

Though the following method for evolving a formula for correcting this 
value of variance is applicable to any rectangular area, as well as to other geometrical 
configurations, since it is felt that this correction would normally involve a function 
related to the earth’s grid, we choose our area A  as an approximate rectangle 
bounded by meridians and parallels of latitude, p  degrees of latitude long and 
p  degrees of longitude wide. For convenience, we choose one degree of latitude 
as our unit of length. T he magnitude of p, of course, should be as small as possible 
to enhance the credibility of our assumptions; and yet large enough to give sufficient



observations to permit the consideration of frequency distributions. A t the present 
time, over most ocean areas, we must have p  ^  1 .

T o  facilitate the mathematics, we must assume that our gradient does not 
change with time, but only with distance, which limits the length of our time 
interval; and in order that our theory may be applied to any particular area, the 
observations should be reasonably uniformly distributed in the area.

In accordance with the foregoing assumptions, we have :
J 2 p  J 2 p
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where a is an arbitrary constant. T hen :
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where ( ----- ) *s the gradient of F  at point C , the center of our « square », and
y c .

does not vary with time ; and F c(t) is the value of F  at point C  at any time t.

Letting F  be the mean value of F  at an arbitrary point and <r, its true standard
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deviation ; and assuming a normal distribution with v =  ---------- , the weighted
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where F m is the average value of F  for the entire area A  and the point m is taken 

as the midpoint of the isotherm having the value F m on the mean chart.

W e are interested in the surface integral of this expression over A , so we 
wish to express (F —  F n, ) as a function of y for given values of and a, the former 
denoting the latitude of the center of A  and the latter denoting the angle of orien­
tation of the isolines of F  relative to the parallels of latitude (Fig. 1), taking counter­
clockwise measurement as positive. For convenience of expression, we adopt the 
following notation in connection with Fig. 1 :

Ii =  +  -f (cos a —  sin a cos ¢)

h  = +  y  (sin a cos <?> +  cos a)

13 =  y tan a

14 =  y tan a +  p  sec a cos t

15 = [y  +  (cos a —  sin a cos ¢) ]  [  —  cot ct J —  f- sin a [  1 —  cos <P tan a J

lô = [ y  —  y  (cos a —  sin a cos <P) ] £ —  cot a J +  [ y  sin a +  p  cos <P sec a



A P Q R is a p-degree « square » with C as its center.
<p =  Latitude of C.
Equation of line RA : y = x  cot a .
Equation of line QP : y  = cot a [x  — P sec a cos ^]. __
Equation of line RQ : y  = — tan a [x  — (p/2) sin a —p cos <p sec « (1—1/2 sin2 a)]

+  (p/2) [cos a — sin a cos </>].
Equation of line AP : y = — tan a [x +  (p/2) (sin a — cos <p sec a a)]

— (p/2) [cos a — sin a cos </>].

Points : __
Q [(p/2) sin a + p cos ÿ sec a (1—1/2 sin2 a), (p/2) . (cos a — sin a cos *)].
R [(p/2) sin a (tan a cos <p + 1), (p/2) . (sin a cos <p +  cos a)].
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T hen :
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H ence :

A2 =  cr2 +
» F

—  r  + . y aP

24
(1 —  sin2 a sin2 ¢)

By the definition of A2, our deviations are being taken with respect to F  .
m

If <*u2 denote the uncorrected variance for point M , for the interva)
0  ^  a  ^  cot' 1 cos 1> we can write :
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From considerations of symmetry, our formula also holds for the interval 
— cot- 1  cos 0 ^  a ^  0 ; and, in similar fashion to the above, it can be shown to
hold for the interval cot- 1  cos a ^  <r . — cot- 1  cos <P. Therefore, it can be said 
to hold for all values of a.

Substituting the expression found previously for F m in our general expression 
for F  gives the ordinate y of point M  as :

ym = C n ) a2 p 2 (1 —  sin2 a sin2 </>)

12
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For a uniform gradient, a =  0 ; and our correction formula simplifies to

2
» F

12
1 —  sin2 a sin2 0

This immediately raises the question as to the magnitude of the ratio of the 
first term (C i, say) of our correction to the second term (C2) in our general formula.



L et F i  be the value of F  at the northwest coiner of our area on the mean 
chart, and let F 2 be the value at the southeast comer. W e  then have :

a
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—  (sin a cos <t> +  cos a)
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H ence :

F i  +  F 2 —  2 Fc

—  (sin a cos <P +  cos a)

and

--------(sin a cos + +  cos a)
2

Fi — F2
p  (sin a cos </> —  cos a)

+ Fc

Substitution in our general correction formula gives

_  J-  1 — sin2 a sin2 f
a 2 =  a2 +  (F i— F 2)2

+ (Fi + F2 — 2 Fc )2

12 (Jsin a cos f  + cos a)2 

(1 —  sin2 a sin2 ¢)2 +  3 sin2 a cos2 a. cos2 4>

45 (sin a cos <P +  cos a)4 

=  a2 4- (Fi — F2)2 X 1 + (Fi + F2 — 2 Fc )2 X 2 , say.

]

Letting r
F c —  F i C i

---------------- , we h a v e ------
+ 1

—  1

xi

X2

For 0 'v; a ^ / 2, x i /x 2 ^  3 .75 ; and since [(r  +  1 )'/(r —  I ) ] 2 decrease* 
as r  increases, we can arrive at a lower limit for C i /C 2 if we can determine, for the 
particular function F(y, t) in hand, a maximum value for r.

T w o functions for which this correction procedure is of prime importance 
are sea temperature and air temperature over the oceans. For these functions, with
0  ^  a ^  x / 2, w e will rarely have a value of r greater than 2, so that the ratio 
C 1/C 2 will generally be greater than 30. Even for r =  3, this ratio will be equal 
to, or greater than, 15.

From our general formula it follows that these results are therefore also true
x

for — a ^  0 , sa we can conclude that, for temperatures over the oceans, we

can use the simpler formula

a2 =  <j J l
12

D T
1 —  sin2 a sin2 f

Figures 2 and 3 are nomograms for the evaluation of our correction for 
various combinations of our parameters. Figure 3 also enables one to determine 
values of C  /<r 2. T he  intersections of our cr —  lines with our 100 % —  line give

.1 . u . .u •
the lower limit for <r for any given combination of parameters.



Obviously, our correction will always be positive. For a given latitude, it 
will increase as the size of our area increases, and as our gradient increases numeri­
cally, and, for a given gradient, will decrease as the isotherms take on more of a 
north-south orientation.

A s a concrete example, consider the following excerpt from the mean chart 
for February :

Two-degree square (p =  2) bounded by parallels of latitude 38° N 
and 40° N , and meridians 148° E  and 150° E . H ence =  39. A lso,

T = 4 5 ° F „  « = 1 5 ) = 5 F°, and a = 4.4F°.
C \ Z  y / c  U

W e are interested in evaluating graphically our correction

1 /  ̂ T  \ 2 r i
C i =  p 2 __ — j  ^ 1  —  sin2 a sin2 <P J

Entering Fig. 2  with the given values of and a, we drop vertically 
to the line k =  5 and read the corresponding value along the right-hand margin. 
This would be our correction for p  =  1 . However, for p =  2, the case in 
hand, we proceed horizontally in Fig. 3 (which is but a continuation of Fig. 2) 
to the line p  =  2 and read the corresponding value along the base of our 
nomogram. T his gives us the value of our desired correction, namely C i =  8 . 
H ence a2 =  19.36-8 =  11.36, or c =  3 .4 . Proceeding vertically from C i =  8  
to the interpolated dashed line <r =  4 .4 , the corresponding point along our right-

hand margin gives 41 % as the percent correction to <t 2. T his corresponds to a________ u
correction to a of (1 —  1 —  . 41) 100 =  23 %.

In Figure 4, curve A  represents the distribution for point C with or =  3 .4 ; 
and curve B represents the distribution with (j„ =  4.4. T he corresponding intervals 
within which 90 % of the observations lie are also shown.

<) T
If we next consider this same point with c =  3.4, (------ ] =  5 and

V 5 y  /  c

p =  5, we find a 2 =  62.56. Curve D  of Figure 4 represents this distribution, 

with =  7.9, for which our 90 % interval is 32.0 —  58.0, a range of 26 as
^  rp

compared to only 11.2 for curve A . This is an extreme case, with (----- | =  5,
V> y / c

but does illustrate the effect of p  =  5 as compared to p =  2.

Curve C represents a more normal case, with p =  5, a =  3 .4  and
/  D T \
(------ ) =  3, giving a =  5.5 . Our 9 0 %  range is 18 as compared to 11.2 for
\ D y U u
curve A , an appreciable difference. A t present, it appears that w e must operate 
with p  =  5 in many areas (if at all); and the foregoing figures show the necessity 
of considering the correction in question.



LA
TI

TU
DE

 
[$

]

- sin sin

F ig . 2. — Part one of nomogram  for ca lcu lating  corrections.
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Fig. 3. Part two of nomogram for calculating corrections.
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Fig. 4. — Curves illustrating correction-effect.

In conclusion, though admittedly the situations met in practice will never 
conform exactly to those proposed under our assumptions, nevertheless, the judicious 
use of the formula developed in this paper permits a reckoning of the order of 
magnitude of our correction, and hence gives an approximation to the magnitude 
itself.


