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1,. —  INTRODUCTION

The purpose of the present work is to describe the theoretical basis and 
method of practical application of computations with regard to overall corrections 
of tidal predictions obtained by the British Admiralty method.

Such corrections, however, are determined in terms of harmonic constants 
arising in shallow water (shallow-water components), and these are derived from 
the theoretical investigation of the propagation of progressive waves in canals of 
simple geometrical aspect.

It was therefore apparent to the writer that a complete theoretical account 
might appropriately be given herein. This decision was reached in view of the 
difficulty which might confront the reader, and in fact experienced by the writer, in 
obtaining a comprehensive bibliography on the development of shallow-water 
components, which, in our opinion, are not altogether satisfactorily derived in the 
Admiralty Manual of Tides.

W e may anticipate by saying that the theoretical semi-amplitudes of the 
waves derived herein have been checked against the values supplied by RausheLBA CH  
and reproduced in Dr. DOODSON’ S article entitled The Analysis of Tidal Obser
vations, which appeared in Philosophical Transactions, Vol. 227, Series A , 
pp. 223-279. The agreement obtained is almost perfect.

In order that the present article may not be restricted to a limited number 
of experts, it has been given an elementary character.

Acknowledgment is hereby made to Dr. DOODSON for his kindness in 
granting us an interview in July 1950 at the Tidal Institute. A  large part of this 
work is in fact based on data that was made available to us on that occasion.

2. —  GEN ERA L A SP E C T  O F PROBLEM

The development in harmonic series of the elevation of the equilibrium 
tide supplies all the important waves that must be obtained at any place as the 
exclusive result of the forces of celestial attraction.

In shallow water, particularly in estuaries and inlets, such waves are subject 
to distortions of a hydrodynamical nature that may altogether conceal the regular 
pattern of the astronomical tide.

Careful study of the apparent irregularities that occur shows that these may 
be represented as resulting from the action of new harmonic constituents of hydro- 
dynamical origin. It may therefore readily be seen that the study is a complex one. 
W e may however reduce its difficulty if we assimilate the tide-wave taken as a 
whole to a progressive wave analysed as a special case of the flow of fluids, by



using Lord Rayleigh’s device and considering the wave surface as stationary, while 
the water flows in the opposite direction to the direction of propagation of the wave.

It should also be remarked that in estuaries and inlets, the oscillations most 
frequently occurring are of the stationary type. They may be considered as the 
resultants of the reflection of a progressive wave on the inner barrier delimiting the 
bay or hydrographic figure.

Mathematics in their present status are as yet powerless to solve satisfactorily 
the problem of stationary oscillations. But in shallow-water areas, friction decreases 
the reflection of progressive waves on the inner barrier to such a degree that the 
motion of such waves can be assumed to occur in a canal of unlimited extent, and 
this constitutes one of the basic assumptions of the theory described in this article.

It may be added that the present study definitely supplies the shallow-water 
components that should be considered during analysis. Experience has already 
shown that such components may be used in any and all cases.

3. —  P R O G R ESSIV E W A V E  TH EO R Y

When we throw a stone into the unruffled waters of a lake, we observe the 
formation of ripples which originate at the point of impact and spread in the shape 
of circles. As a result of friction, the oscillations become weaker until they vanish 
altogether. This is the standard type of progressive wave.

If we apply to such oscillations a perfectly coordinated force, i.e. synchro
nized with the oscillations generated and strong enough to counteract friction, these 
will be maintained in amplitude and in their original form. In this case, we may 
consider the oscillations as resulting from the translation of a free progressive wave 
whose motion is unaffected by friction and which is the seat of a constant transfor
mation of potential energy into kinetic energy, and vice versa.

Let us now examine the tidal phenomenon in estuaries and inlets. It will 
readily be understood that oscillations occurring therein are caused and maintained 
by the oceanic tide, while the local action of the forces of celestial attraction are 
practically negligible.

For the horizontal component of the luni-solar perturbing force responsible 
for the origin of the tides to produce any appreciable effect, it must act on seas of 
great extent and depth, in order that the lateral displacement of large masses of 
water may appreciably raise the level of the sea at those points towards which flow 
occurs, and lower it at other points. It is therefore legitimate, if we consider the 
tide at the mouth of a canal as a source of energy counteracting friction, to assume 
that the tide-wave entering the canal is a free and progressive wave.

Since we are not dealing with the problem of reflection of the progressive 
wave, we must consider the canal in which it is propagated as being of indefinite 
extent, an assumption which, as we have already noted, actually applies in a large 
number of practical cases.

The speed of propagation of a progressive wave in a canal may be more 
or less approximately determined by measuring the time-interval elapsing between 
High Water at the entrance (bar) and any point in the canal x kilometres beyond. 
As soon as we know the speed of propagation, we can compute the length of 
the wave by measuring the time-interval between two High Waters (crests of the



wave) at an identical point in the canal. The length of the wave is equal to vT, 
which is much greater than the depth of the canal. A  long u)aüe is therefore 
involved.

A  study of the free motion of a progressive wave in a canal with vertical 
sides, a rectilinear axis, a horizontal bottom, and constancy of width and depth 
enables determination of the speed of propagation ü of the wave in terms of depth.

Figure 3A shows the profile of a progressive wave propagated in an ideal 
canal such as the one described above.

It is clear that in cross-section BE, where the figure represents Low Water, 
the water-level will increase until High (Water is reached. This will of course 
only occur through the displacement of the mass of liquid in the shape of currents, 
which result from the oscillatory movement proper. In order to comprehend fully 
the formative process of such currents, let us assume that the depth h in the canal 
is of very great extent, and that owing to the extreme length of the wave as compared 
with the semi-amplitude of the vertical oscillation, the currents have practically no 
vertical components. Let us also assume that the profile of the wave, in the present 
instance, is rigid and incapable of deformation, and that an observer travelling with 
the wave is aware of events occurring beneath him in the various sections of the 
wave as it progresses, in the direction shown by the arrow, at speed v0 . Under 
such imaginary circumstances, it is readily apparent that the process taking place 
may be assimilated to the flow of water within a tube represented in longitudinal 
section in Figure 3A.

If the speed of propagation is constant, it is clear that the flow occurs at 
a constant rate, which means that the volume of water flowing during the unit of 
time through all cross-sections of the wave is constant. Since the areas of the 
cross-sections are different, the flow will only be constant if the rate varies from 
one cross-section to the next. The observer will therefore be able to check, by 
measuring the rate of flow at various points of the wave-profile, that in the cross- 
sections of maximum area the rate of flow will be minimum (crests of the wave), 
and maximum in the cross-sections of minimum area (troughs of the wave).

Therefore, if the profile of the wave moves at a rate equal to V , it is clear 
that the differences between this latter value and the values ascertained by the 
observer will be currents, which can be measured by an additional observer stationed 
on the bank of the canal.

By taking v as the speed of the current, the rate of flow is —  (vG — v’).
In view of the constant amount of flow, in the case of a canal of width b 

we can put :
— b (h + y) (vo —  v’) =  Constant (3 a)



in which b(h + y) is the area of the canal cross-section corresponding to point P  
located at height y above mean level.

Owing to the condition expressed by (3 a), as regards the cross-sections 
corresponding to the points where y =  O, we can put :

—  bhvQ =  Constant (3 b)
since where y =  O  (absence of tide), the current is necessarily nil.

Let as now assume that the constant is identical in the expressions (3 a) and 
(3 b). By equating and extracting the value of v\ we get:

y y y
v’ = v 0 --------- =  v0 —  (l + - ) - 1

h + y h h
But as y is small in relation to h, we may apply the binomial theorem and

y
disregard in the result all powers of — above the first power. Whence :

h

v' = v0 — (3 c)
h

This expression may be regarded as correct for pure progressive waves, 
which can only exist at greater depths. From (3 c), the inference may likewise be 
drawn that the current is maximum and is propagated in the same direction as the 
wave at High Water (y max. positive), that it is nil when y =  O, and maximum 
and opposite to the direction of propagation of the wave at Low Water (y max. 
negative).

We may now examine the case of any progressive wave propagated in a 
canal of which the depth h is no longer such that y may be considered small with 
reference to it.

We must then first consider the potential and kinetic energy of a particle 
located in the wave-profile, say at P (Fig. 3A).

Let us assume as we did in the previous case that motion of the particles 
occurs within a tube whose shape may be regarded as unvarying during a relatively 
short time-interval.

If the rate of flow is shown by—U, the potential energy of a particle of unit 
mass located in the wave-profile at P  is

g(h + y)
while the kinetic energy is

1
— U2
2

Now according to the law of conservation of energy, each increment of 
kinetic energy gives rise to an equivalent decrement of potential energy and vice 
versa, which is mathematically expressed by :

U2
—d — =  d g(h + y)

2
whence

du
U ------

dy



This differential equation cannot foe integrated since it only expresses the 
condition which must be fulfilled by the motion of a particle of unit mass located 
on the wave-surface.

It therefore becomes necessary to lay down a new condition which must be 
fulfilled by the motion of all particles in the same cross-section of the wave. Let 
us assume for the purpose that the profile of the wave remains rigid and undeformed 
during a relatively brief interval of time. We are then entitled to assume that the 
amount of flow is constant, and, as in the special case described above, we may put :

—  b (h + y) U =  Constant

whence we readily obtain
du U

dy h + y

By substituting this expression in (3d), we get

u  =  V g  (h + y) (3 e)

This is the value for the speed of propagation of the wave with respect to 
the water, since U  includes the current whose speed is represented by y .

The expression (3 e) may hence be written as
v — v’ =  v/g(h + y) (3 f)

in which o is the speed of propagation with respect to the bottom of the canal.

The expression (3 f) representing the algebraic difference between the two 
speeds, it is clear that the expressions defining ü’ and v must be of the same nature 
as (3 f). v’ may hence be represented by an expression of the form

v =  A  s /g(h + y) + B (3 g)
where A  and B are constants to be determined. In order to eliminate B directly, 
we need only express it in terms of A , as in the case of y = 0  (absence of tide), we
of course get v’ = 0 ,  whence B =  — A-y/gh.

By substituting this value in (3 g), we get

▼’ =  A  -s/g(h + y) — A v/gh (3 h)
and by substituting in (3 f)

v =  (A +  1) v/g(h + y) — A  x/gh (3 i)

The constant A  may at present be determined in consideration of the 
special case of pure progressive waves, which, as we previously noted, are distin
guished by the fact that the speed of propagation is identical at all points on their 
surface. This being true, this speed may be obtained for points where y =  0 ,  thus 
changing (3 i) into

v0 =  \/gh (3 j)

This expression will only foe valid for points on the wave surface at which 
y is very small compared with h, i.e. at greater depths. If A^/gh is brought out in 
expression (3 h), we get



Let us apply the binomial theorem and retain the term of the first order in 
y/h. In accordance with (3 j) we shall have

A y
V =  v0 ------

2h
Finally by equating this expression to (3 c), we immediately obtain A  =  2, 

and (3 i) becomes
v’ =  2 x/g (h + y) — 2 v/gh (3 k)

which, by substitution in (3 f) supplies the expression

v =  3 y /g(h + y) — 2 \/gh (3 m)
a result arrived at by De Saint-Venant by means of the differential equations of 
hydrodynamics.

In the usual cases, the relationship y/h is small enough to allow (3 m) to 
take the form

= ^ « h [ 3 ( ' + f ) 4- 2  ] (3 n)

1¾1 " y
and enable the series development of (1 +y/h) following the powers of — , terms

h
up to the second order being retained in the result. We thus get :

/ 3y 3y2 v
v =  v0l I + ------------------)  (3 0)

V 2h 8h2 '
Examination of this expression shows that the principal term in y/h is posi

tive, indicating that at the crest of the wave (jy max. positive), the speed of propaga
tion is maximum, while in the trough (y max. negative) the speed is minimum. 
Under these conditions, it is clear that for any point in the canal penetrated by a 
progressive wave High Water will gain and Low Water lose, i.e. the time of rise 
will be less than the time of fall.

A  typical instance of this interesting phenomenon occurs in Macapa Harbour, 
in the channel north of the mouth of the Amazon {Fig. 3 b), in which the interval 
between HW  and LW  is about 8 hours, whereas the LW  to H W  interval is around
4 hours.

M ACAPA 
Maregram - A ugust 1952

macapX 
Marégramme- Août 1952



Let us assume that at the mouth of the canal the tidal elevation with respect 
to mean level is given at time t by

y =  21 R  cos r

If such is the elevation of a point of the progressive wave being propagated 
within a canal, and if v is the speed of propagation at that point of the wave, it will 
readily appear that such elevation will occur at a spot x kilometres away from the 
entrance bar, x/v hours later. Thus, if q generically expresses the speed of any 
component, it will readily be understood that at time t the elevation of the tide at 
that point is given by he formula

x
y =  2  R  cos (a — q —  ) (4 a)

v
But from (3 a) we derive :

1 1 3y 3y2
-  =  - ( 1  + ------------------ ) -
v v0 2h 8h2

By applying the binomial theorem and retaining as previously only terms up 
to the second order, we get :

1 1 3 y 21 y2

v v0 2 v0 h 8 v0 h2

By only taking one component of the summation expressed by (4 a), and 
substituting the value of 1/v, we get:

r  x / 3 x y 21 xy2 \ lyc =  R cos I r — q ----- 1- q ( -------------------------L v0 \ 2 v0 h 8 v0 h2 / J

(
3 xy 21 xy2 \

2 v0h 8 v0 h2 /

x / 3 xy 21 xy2 \
—  R sin (r —  q —  ) sin q I -------------------------I

v0 \ 2 v0 h 8 v0 h2 /

x
=  R cos (r —  q —  ) cos q

Vn

(4 b)

But if we wish to retain the y/k  terms only as far as the second order, we 
may put :

3xy 21 xy2 \ 9 x 2y2
cos q I “ — ;-------- ----—  ) =  1 —  q2(

3xy 21 xy2 \

2 v0 h ~~ 8 v0 h2 )  ~ ~

/ 3xy 21 xy2 \ ,
in q ( ------------------------ ) =  q (V 9 v  l i  ft v . V»2 / V

8 v2h2

3 xy 21 xy2 \ / 3 xy 21 xy2

2 v0 h 8 Vo h2 '  ̂ 2 v0 h 8 v0 h2 '  

whence, by substitution in (4 b):
x 3 xy x 

y.c =  R  cos (r — q —  ) —  q --------- R  sin (r — q —  ) —
Vn 2 vft h V0

3 xy2
—  q2 ----------

8 v2 h2
[

X V  X " 1

3xR cos (r — q —  ) —  7 —  R  sin (r — q — )

v n q v0 J



or putting

we get :

3 x =  k cos 9 (4 c)
7 v„

------=  k sin 0 (4 d)
q

x
y> =  R  cos (r —  q —  ) —

Vo

3 x y „  . ,--------------qR sin (r — q — ) —
2 v0h v0
3 kxy2 x

q2 R  cos (r —  q —  + 0) (4 e)
8 v„ 2 h2 v

in which k and Ô are taken from (4 c) and (4 d) which supply :

. v / .k =  V 9 X 2 + ---------  (4 f)
q2

7 Vo

6 — arc tan ---------  (4 g)
3qx

q and vQ are constants, x being the distance to the canal entrance. It is 
logical, therefore, that k and G should be constant for each cross-section of the canal.

The expression (4 e) may undergo yet another small transformation, as, since 
only the semi-diurnal components are included in the y/h  term of the second order, 
we can substitute the hourly speed of M 2 for the value of q, in radians, which is 
nearly equal to //2. Thus, if we consider all the components, (4 e) will be trans
formed as x

y =  H R  cos (r —  q — ) — 
v0

3 xy x
—  — —— 2  qR sin (r —  q — ) —

2 v0 h v0
3 kxy2 x 

2  R  cos (r —  q —  + 0)
32 v0 2 h2 v0

The value of y appearing in the second member of this formula may be 
replaced with no appreciable error by the approximate value given by the first term 
of the second member ; by putting : x

2  R  cos (r —  q — ) =  y0 (4 h)
v0

X
2  qR sin (r —  q — ) =  z (4 i)

v o

X

2  R cos (r —  q ------M )  =  w (4 j)
v

we may write :
3 x 3 kx

y = yQ + ---------(— 2 yG z) + --------------(—  yQ2 w) (4 k)
4 vn h 32 v 2 h2



By now examining the joint action of two components of semi-amplitude A  
and B, and whose respective phases are a and b, from (4 h)-(4 j) we derive : 

yQ =  A cos a + B cos b 
—z =  q A  cos (a + 90°) + q B cos (b + 90°)
—w =  A  cos (a + 0 + 180°) + B cos (b + 0 + 180°) 

or again, by taking into consideration the general trigonometric expressions:
1 1

cos p cos q =  —  cos (p + q) ----- cos (p —  q) (4 1)
2 2

1 1
cos 2p = ----- 1----- cos 2p (4 m)

2 2
we get :

A 2 B2 A 2 B2
y2 = ---------1----------- 1---------cos 2a H----------cos 2b + A  B cos (a + b)

2 2 2 2

+ A B cos (a —  b) (4 n)
By obtaining the products (—2y0 z) and (— yQ 2 w), and applying the general 

expression (41), we obtain a series of new harmonic components arising from the 
joint action of A  and B. Table 4-1 supplies the phase angle expressions and the 
cosine factors of such angles (semi-amplitudes). The speeds of the new components 
are obtained by substituting qa and qb in degrees respectively for a and b.

T A B L E  4-1

- 2 y 0 z — y 2J o w

Angle Cosine factor Angle Cosine factor

2a +  90° qa A 2 ( a +  0 +  180° A 3/2 + A B2
a +  b +  90° (qa + qb) AB j a — 0 — 180° (A3/2 + A B2/2

2b +  90°  qb B2 j b +  0 +  180° B3/2 + a 2B
a —  b +  90° (qa —  qb) AB j b — 0 — 180° (B 3/2 +  A 2B)/2

3a +  0 +  180° A 3/4
2a +  b +  0 +  180° 3 A 2B/4
2b +  a +  0 +  180° 3 A B2/4
3b +  0 +  180° B 3/4

j 2a — b +  0 +  180° A 2B/2
j 2a —  b — 0 —  180° A 2B/4
j 2a —  a +  0 +  180° A B 2/ 2
j 2b — a — 0 —  180° A B 2/4

As the arguments of the components in brackets merely differ insofar as the 
constant part is concerned, if we set them down in the general form :

P  cos [a + (0 + 180°)]
Q cos [a — (6 + 180°)]

we may combine them in a single expression represented by :
R cos (a + O’) =  P  cos [a + (0 + 180°)] + Q cos [ a —  (9 + 180°)]

=  P  cos (6 + 180°) cos a —  P  sin (0 + 180°) sin a +
+ Q cos (0 + 180°) cos a + sin (0 + 180°) sin a



whence
R cos (a+ 0’) =  (P + Q) cos (0+ 180°) cos a — (P—Q) sin (0+ 180°) sin a

In order that the values of R  and 0* may satisfy this equation, we need 
only put :

(P + Q) cos (0 + 180°) =  R  cos 0’
(P — Q) sin (0 + 180°) =  R  sin 0’ 

whence we easily derive :
R  =  v/2(P2 + Q2)

(P —  Q) sin 0
=  arc tan

(P + Q) cos 0

Let us again examine Table 4-1. W e note that for the components in brackets we 
invariably obtain the identity :

P  =  2 Q
and

P  y /lQ
R =  ------------- (4 o)

0’ =  arc tan
sin 9

3 cos 0
(4P)

Observing that q has been taken as equal to 1/2, from the expression (4 g) 
we derive :

14 v0
0’ =  arc tan ---------  (4 q)

9 x

It is of interest to note that both the value of 0’ and that of 0 solely depend 
on distance x from the canal entrance.

The expression (4 o) enables computation of the cosine factors of all the 
bracketed terms in Table 4-1, whose new arguments will all take the form (a + 0’). 
In this way we obtain Table 4-II :

T A B L E  4-II

1 to o N — y 2 w

Angle Cosine factor Angle Cosine factor

2a + 90° qa A 2 a + 0 (A3/2 + AB2) y/\0/2
a + b + 90” (qa + qb) AB b + 0’ (B3/2 + A 2B) ^/10/2

2b + 90« qb B2 3a + 0 +  180° A 3/4
a — b + 90“ (qa — qb ) AB 2b + a + 0 + 180° 3 AB2/4

3 b + 0 +  180° B3/4
2a—b + 0 A 2B x/10/4
2b— a + 0’ AB2 -v/10/4



The introduction of an additional component of semi-amplitude C and 
phase c would cause the introduction in —2 y0 z and —yQ2 to of A  and Ç terms 
and B and C terms, which would be identical with the A  and B terms already 
known, and in addition to these, of ABC terms in —y0 2 w as follows :

T A B L E  4-II (continued)

- y 0 w

Angle Cosine factor

a + b + c + 0 + 180° 3 ABC/2
a + b —  c + 0’ ABC \J 10/2
a + c —  b + 6* ABC \/ 10/2
b + c —  a + 6’ ABC x/ 10/2

By using Table 441, we can tabulate all the shallow-water components 
normally obtained through the analysis of a year’s observations.

In the case of simultaneous action of M 2 and S2, we would have to replace
A , a, q, B, b and qb by the following values :

Ma S2

A  =  f H B =  H
a =  V  + u — g b — V  —  g
qa =  0.5059 rad./h qb =  0.5236 rad./h

In practice, however, the g values for shallow-water components usually are 
not equivalent to the results of g operations for Ms and S2 with the constants 90°, 
6’ and (6+ 180°) owing to the substitution for a and b of their values. W e shall 
therefore restrict ourselves to determination of the astronomical arguments of the new 
components. W e shall thus take :

a =  astr. arg. M2 =  M2 
b =  astr. arg. S 2 =  S 2

For similar reasons, we shall obtain the semi-amplitudes with respect to the 
new components by putting:

A  =  f(M2) . 0.908 
B  =  0.430

which are the equilibrium-tide coefficients.

W e shall follow this general pattern in deriving the joint effects of any other 
components when the purpose to be attained is the deduction of relative theoretical 
influences of shallow-water constants.

W e should finally mention that in the following table terms whose arguments 
are a, b, etc. added to 0’ are not included, since they represent disturbances in the 
basic components themselves and cannot be separated from them. If we consider all 
the semi-diurnal components simultaneously, we get :



Affected component Arguments Cosine factor

V i o
/ A  A 3 \

A  a + 6’ f _ 2 R 2 ------ _ V

/ B B3 \ __
B b + 0’ f _ s R 2 ------ —  V l O

which shows that the shallow depth may alter the semi-amplitudes of the basic 
components.

The foregoing indications will readily show how the following table was 
drawn up, in which the symbols of the actual shallow-water components explain 
the combinations producing them.

TA B L E  4-HI 

Shallow-Water Components

3x
General factor : 3x/4v Qh General factor : -------------- v/9x2+196v02

32 vq2 h2

Symb Astr. arg. Cos. fact, f Symb. Astr. arg. Cos. fact, f

m 4 2 M2 0.40 f(M2)2 2MSa 2M2 + S2 0.26 [f(M2)]2
m s 4 M2 +  S 2 0.40 f('M2)2 m 6 3M2 0.19 [«M2)]3
m n 4 M2 + n 2 0.16 f(iM2)2 2SM6 2S2 + M2 0.12 [f(M2)] 2
m k 4 M2 +  K2 0.11 m2). » 2MN6 2M2+ N2 0.11 m 2)]3
s 4 2 S 2 0.09 1 MSNe M2 + S2+ n 2 0.10 m 2)]2
s n 2 s 2 +  n 2 0.06 f(M2) MSK6 m 2 + S 2 + K 2 0.07 f(M2) . f(K2)

2MK6 2M‘2+ K 2 0.07 f(M2) . f(K2)
m k 3 M2 + Ki 0.37 f(M2) . f(Kx) s 6 3¾ 0.02
MOs M2 + Oi 0.26 f(M2) . f(C!)
SK3 S 2 +  K i 0.17 f(Ki) 2MS2 2M2+ S2 0.26 m 2)]2

s o 3 S 2 +  O i 0.12 fiOi) 2SM2 2S2 +M 2 0.13 f(M2)

m 3 1,5 M2 0.01 f(M2) m n s 2 M2 + 1N2— s 2 0.11 [f(M'2)]2
m s n 2 M2 + S2 + N2 0.11 m 2)]2

OP2 Oi + Pi 0.03 f(Oi)
o k 2 Ki + Ji 0.01 f(K0 . f(Ji)
MPi M2 — P1 0.04 f(M2)
SOi S2 — Oi 0.04 f(Oi)
MS f M2 — S2 0.01 f(M2)

The large number of components in Table 4-111 added to the already 
considerable number of astronomical components is proof of the inherent difficulty of



high-quality prediction. This conclusion is further strengthened by the fact that the 
number of shallow-water components derived herein is still inadequate in certain 
cases, as with regard to some ports eighth-diurnal components and even others of a 
higher order appear.

These difficulties may be circumvented by mechanical means through the 
agency of a tide-predicting machine equipped with all the components required 
for correct prediction. The German Hydrographic Institute machine is a case in 
point. Since the cost of such an instrument is relatively high, Dr. DOODSON 
attempted to solve the problem at the Tidal Institute by a method of correction of 
times of High and Low Water obtained by means of incomplete tide-predicting 
machines, based on the mathematical analysis of time and height differences between 
the observed and predicted curve. Chapter X V  of the Admiralty Manual of Tides 
gives a brief description of the procedure. Hie method is barely outlined here, 
since our purpose is the application of knowledge so far acquired to the computation 
of total corrections applicable to approximate predictions. The following para
graphs will deal with this question.

5. — G EN ERAL OUTLINE O F T O T A L  CORRECTIONS

Let us assume that a prediction has been made accounting only for astrono
mical constants, and that the result of such prediction is shown in Figure 5A by 
a continuous line.

W e shall proceed to show that it is possible to compute fixed corrections in 
terms of harmonic constants of the shallow-water components derived from M2 
and S2 for times preceding and following the time of High Water of M2 shown 
on the curve.

After computing such corrections, which are fixed for each place, let us 
mark on the astronomical tide-curve, starting from High Water of M2, the points 
corresponding to intervals of one lunar hour (0102 mean hours). From these points 
we may add —  positively or negatively — the computed corrections. W e thus 
obtain a new set of points, as shown by the pecked line in Figure 5A, and which 
upon being joined together will supply the tidal curve corrected for shallow-water 
effect, represented by the components resulting from the joint action of M2 and S 2.

It should be noted that these corrections lead to remarkably accurate results, 
especially if it is considered that they are to be applied to prediction methods used 
by the navigator.



6. — DETERM INATION O F  PH A SES O F COMPONENTS

Since the total corrections are taken with respect to the time of High Water 
of M2, the first step in the computation of such corrections consists in expressing 
the phases of the shallow-water components resulting from the combined action 
of M2 and S2 in terms of such time.

W e learned in Section 4 that the joint action of two components, of semi
amplitude A  and B and phase a and b respectively, gives rise to a series of new 
components, whose semi-amplitudes and phases may easily be derived from the data 
supplied in Table 4-11. If we therefore merely consider the combined action of 
M2 and S2, the respective phases of which we shall denote by m and s, we get :

m =  Vm —  g(M2) =  a (6 a)
s =  Vs —  g(S2) =  b (6 b)

in which V  genetically represents the uniformly variable part of the astronomical 
argument; we neglect therein the nodal part u as regards M2, since it is invariably 
of small value and will only slightly affect the accuracy of the corrections.

But since the angular constants 90°, 0’ and (0 + 180°) appearing in 
Table 4-II seldon coincide with those determined by analysis, which happen to 
be the ones which concern us, we shall replace them by others designated 
by Cn. Furthermore, phase lags g of the shallow-water components are supplied 
directly by analysis, and their astronomical arguments are those mentioned in
Table 4-III.

Tables 4-II and 4-III enable the following identities to be established for 
the various components:

T A B L E  6-1

Components Phases

MSf m -  s + Cx =  V m- V s - g (  MSf )
2 MS2 (½) 2m —  S + 1C2 =  2 V m— V s —  g (2 MS2)
2 S M 2 2s — m + C3 =  2 V s —  V m- g ( 2 S M 2)

MS4 m + s + C4 =  V m + V s —  g ( MS4)
2 M S6 2m + S + C5 =  2 V m + V s —  g (2 MS6)
2 SM6 2s + m + Q  =  2 V s + V m —  g (2 SM6)

Mn -------- m + C7 = ------ Vm —  g (Mn )
2 2

In order to obtain the values of constants Ç , we need only take the values 
of m, s, and V s at the time of High Water of M2, conditioned by the expression

m =  V m — g(M2) =  O
whence

vm= g(M2)

By substitution of this value for V m in Table 6-1, and of the value given 
in (6 b) for s, we get the values for Cn appearing in Table 6-11.



TA B L E  6-H

Components c n

M S, g(M2) —  g(S 2) — g( MSf)
2 MS2 (1*2) 2g(M2) — g(S 2) —  g(2 MiS2)
2 SM 2 2g(S 2) — g(M2) —  g(2SM2)

MÔ4 g(M2) + g(S 2) —  g( MS4)
2 M S6 2g{M2) + g(S 2) — g(2 MS6)
2 SM 6 2g(S 2) + g(iM2) —  g(2 SM6)

Mn - g ( M 2) -  g(Mn) 
2

Let us now put m =  O in Table 6-1, and by substitution of the values given 
in Table 6-II for Cn, we obtain the phases of the various components at the time 
of High Water of M2. Table 6-1II supplies these values as well as their hourly 
variation per mean lunar hour.

T A B L E  6-III

Components Phase when m = O
Angular 

speed in degrees 
per lunar hour

MSf 
2 MS2 M  
2 SM 2

m s4
2 MSe 
2 SM 6

g(M2) — g(S 2) — 
2g(M2) — g(S 2) -  
2g(S2) - g(M2) -  
g(M2) + g(S 2) — 

2g(M2) + g(S 2) — 
2g(S 2) + g(M2) -

g( MSf ) —  s 
g(2 MS2) -  s 
g(2SM2) + 2s 
g( M S4) + s 
g(2MS6) + s 
g(2SM6) + 2s

— 1°.0515 
28 .9485 
32 .1030 
61 .0515
91 .0515
92 .1030

Mn — g(M2) 
2

—  g(Mn) 15°n

W e now must express s in terms of civil time T  of High Water of M2, 
Which presents no difficulty, since at 0 hour the astronomical argument of S 2 is 
always nil, and the phase of this component at such time is accordingly equal to 
—g(S2). Since it increases by 30° per mean solar hour, at time T  of High Water 
of M2 it will be equal to 30° T  — £(£2). Substituting this value in the preceding 
table we ultimately get :



TABLE 6-IV

Components Phase at time T  of Angular Speed
HW of M2 per Lunar Hour

MS, g(M '2)-g( MSf) —  30° T
2 MS2 (½) 2g(M'2) — g(2 MS2) —  30° T
2 SM2 —g(M2) — g(2 SM2) + 60° T

MS4 g(M2) — g( MS4) + 30° T
2 MS6 2g(M2) — g(2 MS6) + 30° T
2 SMe 2g(S 2) — g(2 SM6) + 60° T

Mn — g(M2) — g(Mn)
2

- r ’.0515
28 .9485
32 .1030
61 .0515
91 .0515
92 .1030

15°n

Let us now examine the use of the expressions determined. If we know 
the value of —m at 0  hour ciüil time, the phase of M 2 at ciüil time T  is equal to 
29° T  — m, and since High 'Water of any component occurs when the phase 
cancels out, at the time of High Water of M2 we shall have 29° T = m, whence 
T  =  m/290. Knowing the value of T , by means of Table 6-IV  we may compute 
the phases of all the components listed for this particular time.

Thus, if H and r respectively represent the mean semi-amplitudes and the 
phases of these components, the correction to be applied to the height of the tide, 
computed without regard to the effect of the shallow depth, at lunar time t reckoned 
from High Water of M2, is:

2  H cos (n t — r) (6 c)

in which yj is the phase variation in degrees per mean lunar hour.

If each prediction required such elaborate computation, no mariner would 
willingly attempt it, and tables have therefore been drawn up which are invariable 
for each place and supply overall corrections of hourly heights in terms of civil 
time T  of High Water of M 2, and of the lunar time t, computed before and after 
such instant.

Thus, a time T  will correspond to a lunar time zero. In England, where the 
happy idea of the corrections originated, values of T  are computed for the semi
diurnal tide at syzygy, intermediate tides, and the tide at quadrature.

Since the time of High Water of S 2 invariably occurs at the same civil 
time given by the relationship g(S2)/30°, and since during the tide at syzygy the 
M2 and S2 High Waters occur simultaneously, we shall necessarily get :
T  =  g(S2)/30°.

When component S2, at the time of High Water, is 90° ahead of M2, 
High Water will occur 90°/29° =  0306 hours later (intermediate tide), and at 
quadrature and the other intermediate tide, delays of M2 High Water will 
respectively be 180°/29° =  0612 hours and 270°/29° =  0918 hours later.



To sum up, we shall then get the following four values for T  :

T  for tide at syzygy =  g{S2)/30°
T  for first intermediate tide =  g(S2) / 30° + 0306
T  for tide at quadrature =  g(S2)/30° + 0612
T  for second intermediate tide =  g(S2) / 30° + 0918

Using the T-values thus determined, and by means of the expressions in 
Table 6-1V , we compute the phases r of the various components implicit in (6 c). 
By means of this expression the corrections may then be computed readily by using 
the KELVIN tide-predicting machine as shown in the following section.

The table of shallow-water corrections given below is reproduced from 
Part II of the Admiralty Tide Tables

Ivuni-hourly

Intervals

No. 4150 
Chittagong SL. HW (1)

0213 0520 0826 1132

—  6 + 1.1 — 0.3 —  0.7 —  0.1
—  5 — 0.1 — 0.8 — 0.9 — 1.0
—  4 + 0.1 — 0.3 — 0.8 —  0.9
— 3 + 1.0 + 0.5 —  0.5 — 0.3
—  2 + 0.9 + 0.9 —  0.3 0
— 1 + 0.4 + 0.8 — 0.1 + 0.2
A T 0 + 0.4 — 0.1 + 0.3
+ 1 — 0.5 — 0.1 — 0.2 + 0.1
+ 2 — 0.7 — 0.5 — 0.3 — 0.1
+ 3 0 — 0.4 — 0.4 + 0.1
+ 4 + 1.2 + 0.1 — 0.4 + 0.6
+ 5 + 1.9 + 0.2 — 0.5 + 0.6

The Brazilian Navy Hydrographic Office does not base its choice of the 
values of T  on the standard followed by the British Admiralty. It believes that T  
should be more appropriately assigned values from 0 to 12 hours, even though this 
means a considerable increase in the size of the tables. Interpolation by inspection 
is thus rendered far easier for the operator entering the table with any time of 
High Water of M2. Moreover, upon examination of Table 6-1V , it may be seen 
that if T  covers all values between 0 and 12 hours, all the phases of the components 
will cover at least one cycle. Hence, as regards this set of T-values, the phases 
of the various components will cover practically all the possible relative values.

The following table, drawn up on this basis, gives results for the Brazilian 
port of Florianopolis :



N Lunar intervals from HW of m 2

—6 -5 — 4 — 3 —2 — 1 0 +1 +  3 + 3 +  4 +5

0 +10 +  3 — 5 — 6 + 1 + 7 + 7 0 — 8 —11 — 5 + 6

1 +12 + 5 — 4 — 7 0 + 7 + 8 0 — 9 —13 — 6 + 7

2 +14 + 5 — 7 — 9 — 1 + 8 + 2 — 9 —13 — 5 + 9

3 +13 + 3 —10 —12 — 2 +10 +12 + 3 — 8 —12 —4 + 9

4 +12 0 —14 —13 0 +13 +15 + 5 — 8 —12 —■ 2 + 9

5 +10 — 3 —15 —13 + 2 +15 +15 + 3 6 — —12 —3

6 +10 — 3 —14 —11 +4 + 14 + 12 0 —11 0 +11

7 +11 — 3 —13 —10 + 3 +  11 — 2 —11 — 9 +3 +13

8 +11 — 2 —12 — 9 + 1 + 8 + 5 — 3 — 9 — 6 + 5 +13

9 +10 — 2 —11 — 9 0 + 6 + 4 — 2 — 7 — 5 + 5 +12

10 + 9 -1 —10 — 8 0 — 4 + 5 — 1 — 6 — 5 +2 + 9

11 + 8 0 — 7 — 7 0 + 7 + 6 0 — 6 — 8 + 6

12 +10 — 3 — 5 — 6 + 1 + 7 + 7 0 — 8 — 5

Each line of the above table supplies corrections for tidal heights corre
sponding to lunar times preceding and following High Water of M2, which occurs 
at the civil time indicated in the first column.

7. — MACHINE COM PUTATION O F SH A LLO W -W A TER
CORRECTION S

As a result of theoretical explanation, use of the Kelvin machine becomes 
so instinctive that a mere outline of the procedure should suffice.

(a) Compute phases of components by successively introducing in the expres
sions of Table 6-1V  values of T  from 0 to 11;

(b) Set the Kelvin machine at zero, adjust the mean semi-amplitudes H of 
the components, then phases of the latter for T  =  0:360° (formulae of Table 6-1V );

(c) Adjust limb of M2 to 0-graduation;

{d) On height-scale read off height of stylus with respect to mean level, 
whence the correction for the time of M2 High Water is obtained;

(e) The machine is operated forward, and is stopped when the M2 limb 
reads 30° ; a reading of the height-scale in this position supplies the correction 
corresponding to the first lunar hour which follows M2 High Water;

(/) The operation is repeated for the indications of the M2 limb equivalent 
to 60°, 90°, 120° and 150°, and a whole series of corrections is thus obtained for 
the five lunar hours following M2 High Water;



(g) The machine is now operated backward, and by reading the height- 
seale when the M2 limb successively shows 330°, 300°, 270°, 210° and 180°, 
corrections are obtained for the six lunar hours preceding M2 High Water;

(h) The settings of the shallow-water component phases are varied for the 
values successively corresponding to T  =  1, 2, ... 11 by repeating in each case 
the operations described in (a) to (g), without further change. The corrections for 
T  =  12 are the same as for T  =  0 .

W e may now note that corrections are repeated for M2 High Water civil 
times exactly twelve hours apart. But since, during any particular day, the two 
M2 High Waters are separated by an interval of 1225 hours, it will readily be 
apparent that the correction series applied by taking the first High Water as reference 
will not be identical with that corresponding to the second High Water, whose time 
should be subtracted from 1200 to supply a new entry to the tables and thus enable 
a new series of corrections to be obtained. For purposes of routine operation, the 
second series of corrections is considered as being practically equal to the first.

It should at last be explained that when there occurs a component M , in 
which n is an odd number and which is of considerable amplitude, two series of 
corrections are necessary. As an example, let us assume that the component M3 
is of relatively large semi-amplitude and that at the time of first M2 High Water 
the two components are in conjunction. Then at the time of second M2 High 
Water, both components will be in opposition, and thus it will not be possible to 
use the first correction series for the second M 2 High Water. New values of T  
between 12 and 24 hours will thereupon have to be tabulated, in addition to the 
values applying to the general case analyzed above.


