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The reduction of soundings in a hydrographic survey of vast proportions, on 
the basis of tidal observations carried out at various tide-staffs, necessitates the compa­
rison of ranges with reference to time at such tide-staffs ; from this point of view 
the concordance method gives good results at the expense of a minimum of effort. 
But when a sounding datum must be selected and the tidal characteristics must be 
derived that will enable its prediction, it is obvious that analysis of the phenomenon 
requires greater care.

In this connection, harmonic analysis is unquestionably an extremely effec­
tive method. Without postulating the physical existence of the various « waves », 
it is but natural to seek, within the spectrum of the periodical phenomenon consti­
tuted by the tide, constituents whose periods result from the breaking-up of the 
luni-solar tide-generating potential into factors of mean time. The application of 
the method in its usual form however involves a large amount of computation and 
implies the existence of a fairly long period of continuous observations.

The analytical method suggested here is much more flexible than the usual 
harmonic method. It may be adapted to the length of the observational period, 
whatever this may be, and may likewise be adapted to the amount of time the 
observer is able to spare for this work.

This original method, which is described in the latter part of this paper, 
derives from the fact that whereas harmonic analyzers are rare, harmonic predictors 
are fairly common. It appears natural, therefore, to obtain an approximate arti­
ficial curve with a predictor, and then study the differences between the artificial 
and natural curves in their relationship with the constants used to « shape » the 
artificial curve.

In the first part of this study, the principles of the « Concordance Method » 
have been reviewed, various forms of a correlation surfaces » are referred to, and 
it is shown that such surfaces taper to a « point », which is important when the 
method is used to select1 sounding datum.

I. — SIM ILA R  T ID E S. C O N C O R D A N C E

The height of water at a port A , due to the tide, may be written :

where : 4
NA is the mean level;
A t and at are the harmonic constants of wave i at the port; 
q4 is the velocity of wave i expressed in units of arc per unit of mean time.



Two ports are considered in which the harmonic constants are:
A.  and B for the moduli of waves i,

i i
a. and B for the phases of waves i, and we assume that we have:i i
A ,
—  =  K  =  a constant not dependent on i ;

i
=  \q  where £ is a time not dependent on i.

Then, if we construct curves C a and representing the height of water 
at each port plotted against time, and providing k 15 not to° large » so that, during 
the time it represents, the variation of the astronomical factors « f  » of the waves 
may be neglected, one curve may be derived from the other by transference 
(consisting of a translation parallel to the axis for heights and another parallel to 
the time-axis) accompanied by a change m scale on the axis for heights. In this 
case the tides at the two ports are said to be similar.

A . —  In order to define this comparison of two tides, which forms the 
basis for the « Concordance M ethod », we shall examine the case in which the 
tide at both ports is due to a single wave. The curves showing heights of water 
against time are as represented in Figure 1, which is produced by a translation 
parallel to the time-axis and equivalent to T , the period common to the two tides. 
The delay in the tide of B with respect to that of A  is determined by the difference 
in the times of passage at the mean levels (which in this simple case are the means 
of the heights of H W  and LiW, also called half-tide level); this delay represents

—----- — and may also be read as the difference in the times of the two H W  and
q

L W . The range of the tide at A  is obtained by taking half the difference of the 
HjW and L W  heights at A , and the range at B by taking the half-difference of 
the H W  and L W  heights at B. The ranges may be connected by their difference 
or by their ratio. In the Concordance Method, the ratio is determined, and the 
reason therefor will be shown later on. The simple graphical method consists 
in plotting on two rectangular axes the heights of H W  and L W  at A  on the one 
hand, and those of B on the other, as shown in Figure 2. Observational errors 
cause a certain amount of scatter, and a straight line D is drawn as smoothly as 
possible through the centres of the spots A i and Bi. This is a « straight line of 
concordance », and its slope gives the range ratio.



It should be noted, that the « concordant » heights might just as well have 
been taken a constant time t0 after (or before) the respective H W s, and a similar 
graph would have given two spots A 2 and B2 centred on the same line D . Heights 
are taken at HM^ and LW^ for the following reasons :

Fig. 2.

a) Spots A i  and Bi are the farthest apart, and determine the slope of D  
under optimum conditions ;

b) T he lag of one tide with respect to the other need not be known in order 
to plot the corresponding points on the graph;

c) Heights vary only slightly in the neighbourhood of H W  and L W .

Thus the « Concordance Method » consists in comparing the two waves (in 
the present simple case, the two tides) when the tw o waves are in the same tidal 
situation.

T he result of concordance is expressed by two « constants » : the lag of B 
with respect to A , which is equivalent to

and the ratio of range, which is equivalent to

- - K .

B. —  W e shall now examine the case m which the tide at the two ports 
consists of several waves. The height of water as plotted against time at A  is as 
illustrated m Figure 3. The height of the water at A  due to the wave having *

cr —
i i

as its index at time { t+ ty  ( where k  =  ---------- ) :
\  % /  

y Kt =  A . cos (</.[< +  £] —  a )  =  A . cos (q.t —  [a . ~  q k])  
= A t cos (q.t Æ.)



''ndes composantes

1 he height of the water at B due to the same wave at time t is : 
y®. =  B cos (q t —  /3 )

I  I  ' I  V

This results in the derivation of the curve representing y  ,B plotted against 
time from the curve representing y  ,A plotted against time by means of a translation 
parallel to the time-axis and equivalent to' % and scale multiplication along the

B‘ 1
axis for heights equivalent to —  =  — .

r \ . JVi
If « similar tide » conditions are achieved, £ and K are independent of i, 

all the waves are subjected to the same translation and the same scale multiplication, 
and the two tidal curves are derived from each other by the same transformation.

In order to illustrate these conclusions (Figure 4), a vector A  with aI
modulus of value A  and with a polar angle, with respect to the axis for heights, 
of value (q i —  a.) is termed the « vector of wave i at port A  », in which the

height of water at A , due to wave A ., is the projection of A . on the axis for 
heights, i.e. y  A. Similarly, the « vector ;of: the tide at port A  » is defined by the 
geometrical summation : / \

YX.



« Similar tide » conditions involve the similarity of the polygonal lines : 
O A 1A 0A 3A 4 considered at time t +  £;
O B 1B2B3B4 considered at time t,

and the result is that the ratio y* ( <+$
y " (  0

=  K is independent of t.

If a concordance graph is constructed for this case (Figure 5), a series of 
points distributed along D is found, instead of two points A i and Bi as in the 
preceding paragraph. Actually, an elongated spot divided by line D is found.

Fig.  5.

C .  —  It is of interest to investigate the natural conditions for which the
two tides at A  and B will be similar. A  group of progressive waves with an
identical direction o f propagation is considered (Figure 6). For one of these waves,
the height of water at A  at time t is written :

1
K  =  A, cos ( q t — a).

A t B we write :
A , .

=  Bf cos (q.t —  Pt) =  —  cos iq f



L. being the wavelength of the i wave and d being the projection of the distance 
AB on the direction of propagation. The velocity of propagation V  being the 
same for all these waves, which are mass waves, we get :

q . L . =  2xV■ 1 1
and therefore :

L. i 4 V
whence

a. —  /5. =  q —i i t y

and the similar tide conditions with respect to phase are satisfied. If the depth 
between A  and B is constant, we get K =  I, (B. =  A .), thus fulfilling the 
condition with respect to range. If the depth decreases from A  to B (without 
however becoming so small at B as to produce overtides or compound tides), it 
can be shown, considering the conservation of energy of each progressive wave,

. A <
that the ratio —- =  K is the same for all waves (here K is smaller than l).

A  group of stationary waves with parellel nodal lines will now be considered. 
Each may be regarded as the sum of two progressive waves of like amplitude 
propagated in opposite directions, and by a simple process of thought, it will be 
seen that this pattern supplies approximately similar tides only, and even then the 
speeds of the waves must be nearly the same, i.e. the latter must be of the same 
type (diurnal or semi-diurnal) and their nodal lines must be near one another.

II. — DISSIM ILA R T ID E S. C O R R EL A T IO N S 

A i
If the conditions —- =  K  =  constant independent of i, a — /8. =  kq i

B  i i
i

where k is independent of i, are not fulfilled, the tides at ports A  and B are termed 
« dissimilar tides ».

A . — Two ports A  and B are considered in which similar tidal conditions 
obtain for all waves save one (say of index I), so that:

for i I 

)

Let tide B’ be similar to the tide at A , whose constituents are identical 
with the tide at B, except for i =  I , so that we have :

Let us consider the tide vector R A at time t +  k  of H W  at A , and the 

« concordant » vector R 1’ at time t of H W  of B’ (Figure 7). Both vectors are

( Bi = b;
] and for i ^  1 and Bi =  B \  +  b\
f P =  /?’( t l



generally obtainable for any shape of the similar polygonal lines O A 1A 2A 3A 4 or

O B ’iBiB3B4, i.e. for any direction of Bi or of b 1 , since the triangle (Bi, b 1 , B’i) 

is of unvarying shape. This results in the following : if a single H W  height yB* of 

the B’ tide corresponds to a H W  height t/A at A , then an infinite number of heights 

yn will correspond to this same height t/A, between :

(yB' —  bi) and (yB’ + bi).

There is no longer concordance but correlation. As long as the modulus

of R B’ is small enough so that all possible distortions of the polygonal line

OB * 1B2B3B4 enable B’i to assume all possible directions, the area of correlation 

is limited by two straight lines derived from line D  and which are in concordance 

as between A  and B ’, following a translation parallel to OB and equivalent to + b 1 . 
It may further be stated that a segment of a straight line parallel to OB, of length 

2b\, and centred on D\ corresponds to a point of axis O A . But if the modulus

of R 3’ exceeds the length

Y b - b ,

then the possible distortions of the polygonal line O B 1B 2 B 3B4 no longer enable

B’i or b 1 to assume all possible directions. Hence a segment of line parallel to OB, 

whose length is smaller than 2b\ and which is no longer centred on D ’ , corresponds

to a point on axis O A . In order that R A and R B’ may assume their maximum value,

line O B ’iB .B ;^  must reduce to a straight line whose length is ^  B’i , the

direction of B’i, therefore of 6], is then determined, and a single H W  height i/8 
at B corresponds to the maximum H W  height tfK at A  (yR incidentally is not 

necessarily the maximum height at B). Similarly, a single L W  height t/B at B 

corresponds to the minimum L W  height yA et A  (which is not necessarily the 

minimum height at B). Thus, provided the modulus of any one of the constituent 

waves be no larger than the sum of the moduli of the other waves, a correlation 

area is obtained of the type of the hatched area in Figure 8 . A  Ime D may be 

drawn dividing the area as accurately as possible, and this line may serve as the 

line of concordance as between the tide at A  and the tide at B, for the purpose of 

obtaining an order of magnitude of the tide at B from the tide at A.



Let us now assume that the modulus of vector B’i is larger than B ’ ; then

iÿ l̂
the minimum value of the modulus of the tide vector R B’ is limited by the length 

B 'i —  V  B '(, and in the concordance between A  and B’, use is made of two

*=2̂ 1
segments only of line D ’ instead of the whole line. There thus exists a height yK 
of high water at A , and hence a height y*’ of high water at B which is smaller

than all the others, and well-defined directions of the vectors B’i and bi correspond 

to this height. Therefore, a single H W  height yB’ at B corresponds to this minimum 

H W  height yA at A . Moreover, the width of the correlation area, reckoned parallel 

to OB, is always smaller than 2&i. A  correlation area is obtained which is divided 

into two parts and which has the appearance of the hatched area in Figure 9. Two

lines of concordance D i and Do may then be drawn, of which one will be used 

for the long-range tides, and the other for the short-range tides, in order to obtain 

by means of the tide at A  an order of magnitude for the tide at B.



B. —  In the case of a short observational period, two separate patterns 

are frequently obtained, even when the modulus of one of the constituents is not 

larger than the sum of the moduli of the others. In this case, the relative position 

of the n vectors (of indices 1 to n, say), whose speeds axe adjacent, remains prac­

tically unchanged during the entire period of observation ; it is said that such waves of 

indices less than n « do not separate ». The resultant of these vectors has an 

approximately constant modulus and phase during the observational period, and 

behaves as an actual tidal constituent, whose modulus may be larger than the sum 

sum of the moduli of the « separate » waves with indices larger than n. Thus, 

in a correlation area such as the hatched section in Figure 10, a short period of 

observation will only give the two cross-hatched areas.

The concordance that may be derived from the graph is shown by the 

straight line D. This concordance is entirely adequate for expressing the tide at 

B irç terms of that j at A  during the period of observation, and enables the easy cal­

culation of formulae for the reduction of soundings in the various areas of a hydro- 

graphic survey. But the concordance should be used with caution in determining 

sounding datum and in investigating the characteristics of the tide at B. If a new 

short period of observations is used simultaneously for A  and B, other parts of 

the correlation area and a line D  different from the first will be found.

This type of figure is especially encountered when the tides are of a sin­

gle type (generally semi-diurnal), which is why concordance is described as « good » 

when they; are of such type. It is clear that this quality is only apparent.

C. —  There is a case of dissimilar tides where the correlation area is reduced 

to a line, i.e. the case where the two tides at A  and B consist of two waves only

(Figure 11). Knowledge of R A at time t + k supplies R 3’ at time t, as in the

general case, but here only two directions are possible for vector B i, and therefore

for the complementary vector b], and finally only two vectors R E at the time of 

H W  at B. Instead of infinity as in the general case, a curve is obtained like the 

one shown in Figure 12. Each branch of the curve corresponds to the case where

B’i is on one side or the other of R B\



If one of the waves is a solar wave, it suffices to know whether the time 

of H W  at A  precedes of follows, a given time in order to ascertain without ambi­

guity the height of the corresponding H W  at B.

D. —  Let us now examine two dissimilar tides at A  and B, consisting of 

only three waves, and let us assume that the heights of the corresponding high 

waters at A  and B are recorded, only as regards those which occur at A at a given 

time of one of the waves. For the sake of clarity, it will be assumed that one 

of the three waves is a solar wave, and that the time selected is the mean time of 

H W  at A . It will readily be seen that the previous case obtains, and that the 

height of H W  at B is determined without ambiguity. It is possible to visualize 

the construction of the various curves corresponding to the various times taken for 

H W  at A , the above given time being taken as reference, but it is more conve­

nient to tabulate these results.

III. — CO NCLUSIO NS AS RE G A R D S  CON CORDAN CE M ETH OD

The preceding account has been limited to a cursory description of height 

concordance. Concordance in time has similar characteristics.

The above indications are sufficient for the purpose of showing both the 

simplicity of application of the concordance method and the limits within which 

it may be used. The method is particularly suited to the investigation of correc-



tions that should be applied to soundings in hydrographic surveying, but as regards 

the precise determination of tidal characteristics and prediction, it can only supply 

qualitative results.

IV . —  H A R M O N IC  A N A LYS IS  BY M EAN S O F A P P R O X IM A T E  

H A R M O N IC  CONSTANTS

A) Separation of a wave.

The height of water due to the tide at a port A  may be written :

^  =  NA + A . cos (/. —  a.)

I
where :

N ' is the mean level;

A . and a. are the harmonic constants of the wave of index f;

t — q t is the « time of wave i ».
I i

We shall for the time being consider the tide due to a single wave (A., a), 

and propose to determine the phase a. and modulus A  . It is first assumed that 

the mean level is known, and the curve for heights y is plotted m polar coordinates 

above this mean level against time t. This height is expressed by :

y i =  A i cos <<i —  »i)

and the curve obtained is a circle. Figure 13 shows that the plotting of this circle 

supplies A . (its diameter) and a .

It will now be assumed that mean level is only known approximately (say 

determined by inspection). The curve then obtained is a spiral. But if construction

is continued during a period equivalent to 24 h ., h . =  — h ^ , where is the



mean time), for each polar angle, we get two points corresponding to the two 

generally different values of y ., and the centre of these two points is located on 

the circle previously described. The circle may thus be plotted and supplies the

elements A  and a .
i i

We shall then examine an additional wave (A^ a q.). The height of 

water at time y is written :

yi + j =  yt + Uj =  A . cos {t. —  a.) + A , cos {tj —  a.)

Retaining die same representation as above, it will be seen in Figure 14 that y . is

algebraically increased by the projection on this segment of vector A  , the angle 

of projection being (t —  a ).

If the height y. is again taken at a time 12 h later (i.e. at time t + 12  h^
—

of the i wave), segment O Y  is in the same location but vector A  will have rotated

% -  %

It will therefore be realized that by repeatedly taking heights for yt + 

under these conditions, segment y will sometimes be positive in length and 

sometimes negative, except for the harmonics of wave i whose frequency will be 

an odd multiple of the fundamental frequency (see IV-E). By averaging the yf 4 

heights, we get :
y 4- ûvi

where cftj is a residual which will be examined later. It will readily be realized

that this residual decreases as the number n of heights taken increases. The residual 

moreover cancels out during the course of operations, but generally not at time 

t of the i wave, so that this property can but with difficulty be used.



A  tide will finally be considered which is composed of several waves, and 
from wlhich it is proposed to derive the [harmonic constants of the i wave. 

Application of the process to both the times of wave {/.)i and (^)2 will enable the

determination, provided a sufficient number of observations are available, of 

(j/J 1 and (ir)2, and the construction of the circle passing through the origin and 

the two points :

(Y,h I (Oi ; (y) i(
(Y .)2 ) (^)2 ; (1^)2 i

In practice it will be well to construct a certain number of points ( Y ^  to 

take care of the errors in observations which have been reduced already in the plot 

(by hand or tide-gauge) of the height-curve against time. If the duration of 

observations is of no great length, we get :

W P + aU lieU de
i

and for a given duration of observations (Jv*) depends on the time ( / ^  considered. 

It will be seen that even if such times (/.) are fairly numerous and are evenly
V p

distributed over the 12  hours of the wave, the circle which most nearly fits the 

points {y)p thus obtained is not the same circle as that determined above and which 

supplies the constants sought for.

If the 1 wave is a solar wave, and if times (/) one hour of mean time apart
' P

are taken, it will be seen that normal harmonic analysis is the process actually being 

used, and that the preceding considerations are a method of describing the theory.

B) Study of residual.

Vector A ; is examined in its various positions during the n observations of 

heights as previously defined. Such positions are distinguished by :

T 1 A 2 . . . Â»
j ) j

The residual (tflj)n' at the end of n measurements will be the projection on

axis O Y  of the resultant of n vectors A " 1 (m =  1 ... n). The extremity of the

resultant will be the barycentre u™ of the n extremities of the n vectors A™. The

extremity of vector A™ may be replaced by the centre of gravity of the circular 

arc of centre Y f and radius:

R
R  = -r— A m

sin P ]

placed as shown by Figure 15 with recpect to vector A™.

Thus the point w™ will be the centre of gravity of a circular arc of angle 

2nfi at its centre. The locus of point w" has been plotted in Figure 16. Angle 

is equivalent to :



Fig. 15.

In Figure 16, vector A 1 corresponding to the first height measurement may 

be drawn, followed by axis O O ’ containing O Y ., provided angle (q t —  a.) is 

known for this period. The number n of consecutive heights plotted from

observations determines arc 2n/2 and locates vector Y  w™, whose projection on 

axis O O ’ supplies (<K *)n. This operation may be repeated for all j waves in the 

tide, and in particular it is possible to ascertain the time of initial measurements, 

which, for a given n value, supplies a zero-residual for one of the j waves (say the 

most important one), or one may ascertain the smallest n value which for a given 

time of the beginning of observations cancels the residual for a given wave.

0 0 ’ need only be approximately normal to Y.w^. It will be noted that points mn, 

are located on the spiral of the figure but do not occupy all points thereof, as n 

is an integer. In particular, if the heights for p times t of the wave are measured 

and the value n is selected, the residuals corresponding to each of these times will 

generally not be very different (provided the tide is of the single type), since the 

projection of a point of the spiral on axes O O ’ located within an angle smaller 

than 2Æ will be involved. The conclusion is that multiplication of the times 

(such as hourly measurements) does not reduce the residual, as anticipated in the 
foregoing section.

C) Indirect use of approximate constants.

Thus the determination of points u>n enables the calculation of the residuals 

j left by all the j waves on the wave i to be extracted, and therefore the 

separation of all waves whose difference in phase-lag does not vary exactly by 2 tz 

during the observational period. But the placing of point wn. presupposes a 

knowledge of the harmonic constants of wave j. These constants are not known, 

but their approximate value may be estimated, with the result that separation of 

the waves, whose phase-lag difference does not vary exactly by 2% during the 

period of observation, will not be perfect but will be the best that can be derived 
from such period.

The use of approximate constants for the computation of such residuals has 

been termed by us « indirect utilization », and is applied as described below (see 
Figure 16) :



Locus of point <j)n plotted against 2nf3

The outer solid black curve corresponds to 2n/3 
between 0 and 2X.

The dot-and-dash curve corresponds to 2w/3 between 
and 4%.

The inner solid black curve corresponds to 2nj3 
between 4% and 6X-

For higher values of angle 2nj8, the « loop » 
corresponding to 2nj3 between 2k% and 2 {k+l)% 
closely approximates a circle. The diameter of this 
circle p and the polar angle of this diameter are 
given plotted against k by the curves shown below.

-—O



a) Vector A* corresponding to the first n observation is placed on the graph 

in such a way as to produce an angle P with respect to axis Y .0°, and so that its 

extremity is located on the spiral. The scale of lengths is thence determined on 

the graph, as well as the positive and negative directions of the rotations indicated 

by -(- and —  in the circles with arrows : thus if P >  0, the + direction is in the 

right-hand circle, and if P <  0 the + direction is in the left-hand circle.

b) The extremity of vector is on the spiral and its polar angle is nP 

reckoned in the direction of arrow nP,

c) Angle {q}t — a.) enabling the positioning of axis OY^ is plotted with 

due regard to the direction of circulation on the circle (see a) above), and may 

easily be computed with the Nautical Almanac as regards the eight principal 

waves. If m1 is the mean time of the first of the n observations of the i wave and
]

q t —  a
. 3 1 . .

if mM is the mean time nearest H W  of wave j, then the ratio -------  is in the
i m1 —  mM

. . . f i  J
vicinity or :

15° for the diurnal waves;

30° for the semi-diurnal waves;

60° for the quarter-diurnal waves.

d) The length of the projection of vector Y.ton on axis O Y  , measured on
t j i

the same scale as A j, supplies the value of (t7lj/n

D) Direct utilization of approximate constants.

I. If the moduli of the j  waves are small, the residuals left by these waves 

on an i wave are small and may be neglected with regard to the modulus of that 

wave. It is assumed that curve of an artificial tide is available, whose constants 

are the approximate constants, and that the heights as described in section A  are 

taken, not from mean level, but from curve Cfl. This operation will enable the 

extraction of a wave whose vector is a.,  whose constants are (a., e , q ) ,  and such 

that (Figure 17) ;

A . approx. + af =  A . observed.

A1 observe



If the period of observation is short, there will be residuals r* left in wave 

a. by the a waves, but if the moduli of such a. waves are small, the residuals will 

be negligible with regard to A  .

If the constants pf the artificial tide are suitably approximate, the observed 

height is written :

dtf =  dA t cos (q.f —  a.) + A.</a. sin (q.f —  a.) 

and if the dy values are taken at times t. and t. + 12  h., the mean of the dyI t  ?.
values over a long period represents that which, in each, relates to a., and 

therefore :
dy =  ai cos (q t —  a ) + A  e. sin (q t —  a ).

m ean I t '  t < r

Rectangular axes are now used in a. and A^s. ; the equation above is that 

of a straight line whose distance to the origin is precisely <&mean • The straight 

lines corresponding to the various times t. of the wave, i.e. to the various values 

of (q.t —  at), all intersect at an identical point I, whose coordinates supply :

dA . =  at =  O’H*

A  A  = A ih =

Among the times t to be selected, those which render (q.t —  a.) equivalent 

to 0 (HW  or L W  of the approximate wave) or to x/2 (half-tide of the approximate 

wave) may advantageously be taken. In the first case, ^ymean *s very nearly equal

dû
m e a n

to a , and in the second, e closely approximates — --- . The two corresponding
* i 

straight lines are of course those which are parallel to the axes in Figure 18.

A  graph is obtained which has the appearance of all graphs that are 

illustrative of approximation methods. It may however be remarked that here the 

straight lines are not tangent to the loci of point I, but are the loci themselves, so 

that, apart from the elimination of the residuals, the approximate constants may be



fairly different from the actual constants, without change to the graph. Only the 

interpretation will be different. Figure 17 shows that:

A . approx. + O’H ’ O’H

A  =  ----------------  tan s =  ----------- ---—
1 cos £ £ * A .  approx. -f O’H ’

II. In this form, harmonic analysis is closely related to concordance between 

the actual tide and the approximate artificial tide, but such concordance is 

established separately for each wave.

The practical application of the method of computation raises no difficulty. 

When surveying, it will suffice to propose approximate constants to the Central 

Hydrographic Office and request to be supplied with a curve obtained with the 

predicting machine for the period of observations. The times t are easily obtained 

by means of a rule graduated for the speed of each wave, and the artificial curve 

carries reference marks showing H W  for the waves every five or six days in order 

to obviate the accumulation of errors due to plotting with the graduated rule. When 

computations are carried out at the Hydrographic Office, the approximate tide need 

not be recorded ; it will be sufficient to read the height of water on the dial at each 

passage of the wave-pointer in front of a graduation of the ring at the base.

E) Particular case of « odd harmonics ».

The case here involves the harmonics A . of a wave A. whose frequency 

is an odd multiple of the frequency of A .. We have previously noted in section 

IV-A that, in these waves, the residual tfv * did not decrease in accordance with 

the number of observations as described. It may be added that the procedure 

indicated in section IV-C for determining the residual is impracticable : as an 

example, wave Me, an overtide due to the superimposing in shallow-water of waves 

M2 and M4, may be taken. In this case ft =  180°, and it will be seen that vector

A* cannot be placed in Figure 16. Retaining this example, we shall see how Mo 

may be separated from M 2.

A  wave A . is taken, and it is assumed that the heights Y  ̂ it produces are 

plotted in polar coordinates as in section IV-A, but this time by taking absolute 

values of Y  j. The diagrammatic representation (Figure 19) now consists of two 

circles, one corresponding to the polar angles between 270°, 0° and 90°, and the 
other to the polar angles between 90°, 180°, and 270°. Two segments (OY)i 

and (OY )3 separated by an angle of 270° yield by geometric construction a 

point m; similarly, by geometric construction, two segments (OY )2 and (OY )4 
separated by an angle of 270° supply a point M , OM' =  O m =  A ..

The graph of wave M 2 is now considered, which is similar to Figure 17 

and such that the straight lines I and III are at right angles, i.e. correspond to two 

series of measurements separated by three hours of M 2 ; as is the case for the pair 

of lines II and IV  (Figure 20). It will be assumed for the time being that the 

points M 2 representing wave M 2 is known ; then M 2H 1 and M2H 3 represent segments 

of group (OY)i (OY )3 ; whence P represents m and similarly Q  represents M . M 2 is 
therefore at the midpoint of PQ  and easily placed. It is not essential, in order 

to find point M 2, to take groups of heights of wave M 2 separated by three hours



of the wave, but this practice considerably facilitates the investigation of Mg and 

is to be recommended. The length M 2P =  M2Q  =  A . supplies the modulus 

of Mfi. Finding the phase is simple : let us assume, for purposes of clarity, that 

the line I corresponds to the H W  of M 2 ; consequently line III corresponds to the 

process down to mean level (the case illustrated by the figure), and we have the 
following pair of equations :

M 2H 1 =  A . cos (3qjt— cr) for (q.t—  a.,) =  0 hence cos (3a. —  â ) =

M 2H 3 =  A . cos (3q.t —  a}) for (q.t —  a ) =  90° hence sin (3ô  —  a) = 

These equations determine a. without any ambiguity.

MjH j

A
__l_

m 2h 3

A
1

n

m

Fig. 19.

Thus, whenever the direct use of approximate constants leads to a graph 

with lines too far apart to be attributed to inaccuracy of observation, the existence 

of an odd harmonic must be suspected. It is not advisable to introduce this odd 

harmonic in the approximate constants, as the cause is local and data for its evaluation 

are practically non-existent. The precaution should merely be taken of constructing 

at least two pairs of right-angled segments (OY)i of the fundamental tide.

F) Conclusions.

Thus approximate constants play the same part in the computation of the 

constants at a port as the reference tide in the concordance method. The number 

of ports at which the constants are known is quite large already, and the availability 

of constants for a port near the hydrographic survey is not exceptional. Moreover, 

in selecting the approximate constants, the conclusions reached in the available 

theoretical studies of the propagation of the various waves may be used. In the 

particular case where it is proposed to rectify the former harmonic constants of a 

port by means of recent observations, the former constants may be taken as 

approximate constants.



Fig. 20.

The essential feature of the presently described method finally consists 

in the elimination or calculation of the residuals, which is of undoubted advantage : 

if we consider the curve in Figure 16, we note that the residual d l l. may still be 

equivalent to 0.06 A , whereas the j  wave has gained 10 x over the i wave. In 

order to eliminate this residual, conventional analysis makes use of a period of 

observation whose length is defined according to the speeds q. and q ., with the
V J

result that the entire observed period may not be used, or that no period of adequate 

length may be found in the observations.

Another feature of the proposed method is the taking of heights at times t. of 

the wave, whereas the conventional method uses heights at the mean times. This 

practice has the following advantages :

a) As the periods of the waves being sought are different, the number of 

heights being equal, « exploration » of the curve for heights is more thorough than 

in the conventional method.

b) As the observations in relation to each segment O Y . (see Figure 14) are 

used independently, an error of observation or summation may easily be detected, 

and the harmonics whose frequencies are odd multiples of the fundamental 

frequency may easily be separated. Moreover, the number of O Y  segments 

determined for each wave is adaptable to the accuracy desired and to the amount 
oj time that may be available for analysis.

c) The segments OY^ (and consequently the times t.) may be selected with 

due regard to optimum conditions for the determination of the unknown values

and a.. In particular, the method of hourly heights expressed in mean time 

introduces into the mass of equations a large number of equations in which the 

coefficients of the unknown values are small. These equations are of little use in



solving the unknowns, as shown by the considerations forming the basis of the 

Cauchy-Tisserand method in the resolution of a system of superabundant equations.

d) Use of the time of the wave enables the discovery of a possible odd 

harmonic, whereas in the conventional method, the existence of such a harmonic 
must be assumed beforehand.

Although the present system may appear to require more time than the 

conventional method, in actual fact this is not the case, as heights are measured 

with a curvimeter (or surveyors’ tape), which effects the algebraic sums on its own, 

with the result that the number of readings on the instrument is extremely small.

V . —  EXAM PLES

A) As a test, the method of approximate constants was first applied to a 

height curve corresponding to thirty days of observation. This curve was plotted 

by the predictor, so that the « observations » are perfect and the results of the 

calculation may be compared with the exact values. The constants were determined 

by the « direct method » (see IV~D). The constants of waves M 2 and (S2 + K 2), 
which had the largest modulus, were determined by four straight lines. The graphs 

are shown in Figure 2 1 . The other waves were determined by two straight lines 
parallel to the axes.

The results are shown in the following table : waves K 2 and S2 have been 

separated as described in V-B.

O X D K S

C O N S T A N T E S  C A L C U L É E S C O N S T A N T E S  E X A C T E S

K em «t? A  cru a ’

m ; ..........• '...................................... 109,5 10 110,0 1 0

\ ................................................... V».7 199 45Î0 200

K , ...................................................................... 9.9 199 1 0 , 0 200

K , ...................................................................... 40.1 IM) /»o,o 100
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0

Graph of wave M2

(The point representing the 
approximate constants is out­
side the figure.)

Graph of wave (S2+K2)

(The point representing the 
approximate constants is out­
side the figure.)

Fig. 21.

These results were obtained on curves plotted at the scale of 1 :15, i.e. a 

distance of 1 cm corresponds to 0.6 mm on the curve. This amount is the limit 

of graphical accuracy.

The following information was obtained during the test :

a) The error in the measurement of height differences with the curvimeter 

depends on the number of measurements and not on the measured length, i.e. on 

the scale of heights. Various measurements taken under identical conditions showed 

that the error over a thirty-day observational period is 0 . 1 0  mm per measurement 

for the semi-diurnal waves, and 0 . 1 2  mm per measurement for the diurnal waves. 

At the scale used here, this means an error with reference to segment O Y i 

(Figure 14) of 1.5 mm for the semi-diurnal waves and 1.08 mm for the diurnal 

waves. The use of the curvimeter is therefore entirely suitable.

b) The largest error is due to the setting of the predictor. This is only 

possible to within 0.3 mm, which at the scale used results in an error with reference 

to segment O Y i of 4.5 mm. This explains the discrepancy of 5 mm noted with 
regard to wave M 2.



c) The time required to extract a wave from thirty days of observations 

is 50 minutes for a semi-diurnal wave if one pair of segments O Y i is used (which 

decreases to 40 minutes per pair if three pairs are used) ; and 40 minutes for a 

diurnal wave if one pair of segments O Y i is used.

B) Natural tide.

The method was then applied to a natural tide. Thirty days’ observations 

at Zigumchor (on the Casamance River, in French West Africa) were used. This 

tide was recorded on the scale of 1 :10 on a Brillié recorder by the West African 

Survey. This set of observations was chosen as they had been analysed elsewhere 

by the least squares method described by B. Imbert (1) and by the conventional 

analysis method (2). Two features of the work deserve particular attention: the 

bringing out of a constituent wave Mr, and the separation of waves K 2, S2 and

Klf Pi.

M q wave (See IV-E). — This wave was not introduced in the artificial tide 

compared with the actual tide according to the process indicated in IV-D; the 

graph of wave M 2 therefore supplied a « cocked hat » which is incompatible with 

accuracy of the observation (Figure 22).

The separating of wave Mg enables the constants of M 2 to be fixed at :

( H  - 280 mm.

> go =  17.7*.

Those of M g are :

I H  =  10 mm.

• I  go =  274*.

It will be noted in Figure 22 that the distance from M 2 to the representative 

points, derived from the other methods, is of the order of the modulus of Me, a 

wave which the other methods did not separate.

Separation of waVes K 2 and S2. — The wave K 2 not having been introduced 

in the artificial tide, the residual of K 2 left in S2 is important since the speeds of 

these waves are very close to each other. In order to compute the residual, we 

shall proceed as in IV-C, in which j is attributed tô K2 and i to S2.

Vector A* is practically coincident with Y  0°, since B =  0.25°; in the 

present case n =  114, therefore P =  28°, and to™ is located (see Figure 23). 

Thus, it is seen that residual (<&ÿn on any segment O Y  . will be the projection

on this segment of vector Y.w” ; this vector is parallel to vector A  . taken at the 

centre

is measured on Figure 23, and found to be equivalent to 0.95. It is now assumed 

that the tide due to (S2 + K 2) at Dakar is similar to the tide due to these same

(1) See Information Bulletin of « Comité Central d’Océanographie et d’Etiide 
des Côtes», Year VI, No.: 9. ::

(2) See Analyst d’nne■ courte période dJobservations (Analysis of a short 
period of observations), by .;M. R o l l e t  d e  l ’ I s l e ,  « Annales Hydrographiques », 1896.

of the period of observation, but of modulus

The ratio ——  
A 1( ; ) - ?



waves at Ziguinchor, which is a logical hypothesis in view of the nearness of both 

places and the close equivalence of the speeds (see I-B). Hence :

r )  = (x1 ) = 034
■ i ' Dakar ' i ' Ziguinchor

(account being taken of astronomical factor / =  1.18 for the period of observ­

ation).

Therefore :

=  U-\ =  0.34 x 0.95 =  0.323
i Dakar t Ziguinchor

Fig. 22.

Point representing Ma according to results of Least Squares Method : A ; 

of Conventional Method : O  

I. Straight line corresponding to H W  of Ma.

II. do 3 hours of M2 following HW.

III . do 6 hours of Mg following HW .

IV. do 3 hours of Ms before HW.



< 3^—

10'

It will then be recalled that Y # w” is parallel to vector A  . taĴ en at the centre

of the period of observation, and die triangle of Figure 24 is constructed for Dakar,
AB

for angle y =  154° and the ratio — =  0.323 are known.
UA

Sens posit// 
d es j>rcs



The triangle corresponding to Ziguinchor is similar (see I-B). Now O ’B’ 

represents the vector resulting from (S2 + K 2), which was obtained from the direct 

utilization of the approximate constants (IV-D); we found that:

H  =  67 mm

a = 54°
* 0 (s2 + Ks)

The harmonic constants of S2 and K 2 are therefore obtained without 

difficulty, i.e. at Ziguinchor :

S2( H  = 91 mm K 2 ( H  =  26 mm

I go =  66° j g0 =  64°

Separation on the basis of results from the least squares method was not 

carried out. Separation in accordance to the conventional method give slightly 

different results, for the following reasons :

A i
a) In the conventional method the ratio —  is always taken as being

i

equivalent to 0.273 regardless of local conditions.

b) The residual is calculated by taking A .̂ at the centre of the observation 

period, but with its integral value. This practice gives rise to an error that increases 

with the length of the period of observation ; thus it may be seen in Figure 23 that

lù1}
1

for three months of observations -.- =  0 .6 .
A 1

j

Separation of waves K\ and P  i. V-1- These waves were separated by the 

same method as the one just described. The divergence with respect to the 

conventicmàl method as regards P i may be explained by the fact that this method 

assumes a priori that Pj and Ki are equal in phase, whereas they have been given 

the phase-difference obtaining at Dakar, which is the more logical assumption.



Least Squares Conventional Described 
Waves Method Method Method

ONDES

MÉTHODES
D E S  MOI N D ii E S  C A IU itS

MÉTHODE
C L A S S IQ U E

METHOD'
D EC  n i T E

9l ■H"/» !/o H-L !)o

285 17,2 281 i 0,1 280 17.7

s5 + K ,........................... 63 5 '1,9 67 54,6 67 54,0

s,.................................... Non séparée 95 69 91 66

K*................................... Non séparée 20 69 26 64

N,................................... 31 5 18 359,5 32 6

K i................................... Non séparée r»o 61 62 59

Non séparée 20 61 • 10 41

o , ................................... 14 297,7 18 303,7 15 300

.................................. 30 232 29 231,8 31 230

M6....... -........................ Non séparée Non séparée 10 274

'oir dans fe texte pour l'explication des divergences.

See text for explanation of divergences.


