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The development of computing machines and their increased applica
tions will cause great changes to take place in the numerical computation 
methods that have gradually been perfected for solving numerous practical 
problems in the observational sciences field.

It is no longer sufficient to use the machines for operations heretofore 
carried out by logarithms; computing procedures must be completely re
vised and adapted to the new possibilities offered by the machines. The 
reduction of equal-altitude observations is an especially simple and 
characteristic instance of this development.

EQUAL ALTITUDE METHOD

We shall begin with a rapid review of the principle of the equal altitude 
method, which is used for the simultaneous, accurate determination of 
latitude and local time by observations of the same type. Suggested by 
G a u s s  in 1808 to remedy imperfections of the sextant, it was not 
extensively applied until the early years of the twentieth century, when 
instruments specially adapted to use of the method were devised, with 
particular reference to the equilateral prismatic astrolabe of C l a u d e  and 
D r i e n c o u r t .

The method consists in noting the times of transit of stars at a strictly 
constant altitude, which need not be known with accuracy. This altitude is 
considered as a supplementary unknown quantity, added to the two actual 
unknown values of latitude and local time, or latitude and longitude, if 
the observation times may have been connected with the international 
meridian by means of radio time signals.

G a u s s  was satisfied to note the passage of three stars, which was 
theoretically sufficient, since the number of observations was equivalent to 
the number of unknowns. Since that time, however, the custom has arisen, 
as in all the observational sciences, of taking a much larger number of 
observations than required in theory for determining the unknowns, in 
order to free the results from random errors affecting the measurements 
and the data. Owing to the method of observation, which consists in 
matching the. direct image of the star with its image reflected in a mercury 
bath, the conventional prismatic astrolabe enables only one sight per star 
to be obtained, with an accuracy appreciably under that afforded by the 
excellent maintenance of instrumental altitude. Many stars must hence be



observed in order to decrease the effect of random error in pointing, and 
precise determinations made with the instrument include series of thirty 
or forty stars or more. When an instrument such as D a n j o n ’s impersonal 
astrolabe is used, enabling several sights of the same star, an accurate 
result is obtained by observing a much smaller number of stars. Eight or 
ten stars per series should however be observed, as random errors also exist 
in relation to the stars’ positions.

The known elements of the problem are the coordinates of the star 
observed, the declination 8, right ascension a, and time t of the observation 
expressed in sidereal time of the international meridian; these elements 
reduce to two, as only the hour angle H intervenes, referred to the interna
tional meridian and given by H =  t —  a. We shall designate the three 
unknowns by <p : latitude, by G : west longitude, and by h : constant altitude 
of observation.

The observational equation expressing the known and unknown values 
is supplied by the basic formula of spherical trigonometry :

sin h =  sin <p sin 8 -j- cos ç cos 8 cos (H —  G) (1)

Each star observed leads to a similar equation in which the known 
values 8 and H each time assume individual values. The unknown values 
are obtained by solving the system formed by the observational equations.

G a u s s , who, as we know, considered only three observations, indicated 
a relatively simple trigonometric method for solving the three-equation, 
three-unknown system to which he was led. In 1812, D e l a m b r e  suggested 
another, which may be somewhat simpler.

G a u s s  also showed that the elegant solution discovered by C a g n o l i  to 
the problem of determining the position of a solar spot and of the heliacal 
equator by means of three heliocentric observations of the spot could be 
applied to the equal-altitude problem.

But when there are more than three observations, the number of 
observational equations is larger than required, and owing to the errors 
affecting the known values, the system to be solved is incompatible. The 
method of least squares must then be applied for the most probable solu
tion of the system to be obtained.

METHOD OF LEAST SQUARES

We know that the least squares method, which requires that the 
observational equations appear in linear form, enables us to take advantage 
of all the observations made by determining values for the unknowns 
which, without strictly satisfying each equation, best satisfy the system as 
a whole.

This consists in deducing from the observational equations a system 
of normal equations equivalent in number to the number of unknowns, 
and that are linear. The solution of the system of normal equations 
supplies the solution to the problem.

To form the normal equation relating to one of the unknown values, 
all the coefficients and the constant term of each observational equation 
are multiplied by the coefficient of the unknown being considered, and all 
the equations thus transformed are then added member by member. In the 
normal equation thus obtained, the coefficient relating to the unknown in



question is the sum of the squares of the coefficients of this unknown in 
the observational equations, and consequently is of high value. The other 
coefficients of the normal equation, which are formed from the coefficients 
of any sign of the observational equations in the usual manner, are 
generally of much lower value.

If for instance the observational equations are written as follows, X,
Y and Z designating the unknown values :

X - J-  Y ct Z  =  dt 
0-2 X -(- Y  ~\~ Z =  C?2

the system of normal equations is the following, the summations being 
designated by the symbol []

[aa] X +  [ab] Y -f- [ac] Z =  [a d ]
X —|— Y —J— [frc] Z =

[oc] X —|— Y —|— [ccj Z — [cc?]
The quality of the observations is characterized by the the size of the 

residuals R2 ... obtained by substituting the solution of the system of 
normal equations in each of the observational equations. It is moreover 
shown that [R2] is minimum in relation to the sum of the squares of the 
residuals supplied by any other solution; from this property derives the 
name of the method.

CONVENTIONAL METHOD 
OF REDUCING EQUAL-ALTITUDE OBSERVATIONS

In 1832 K n o r r e , at Nicolaief, then in 1835 A n g e r , at Dantzig, hit upon 
the idea of applying the least squares method to the reduction of equal- 
altitude observations. In order to make the observational equation linear, 
they had recourse to the general method, which consisted in selecting an 
approximate solution, <p0, G0 and h0, and in taking as new unknown values 
the differences A<p, AG, Ah between the approximate values of the unknowns 
and the values sought. If the approximate solution is sufficiently close to 
the result, the products and squares of the new unknowns may be regarded 
as negligible, and the change in variables is carried out by simple differen
tiation. This renders the observational equation linear with respect to these 
unknowns, such as in the case of equal-altitude observations :

A<p cos Z —  AG cos <p0 sin Z —  Ah  =  h0 —  /ix (2)
where Z designates the azimuth of the star at the time of observation, and 
/ix the value of the altitude of observation computed strictly by means of 
equation (1) in which approximate values are given to latitude and lon
gitude; h x must be computed to an accuracy at least equivalent to that 
expected from the observations, i.e. with 6 or 7 significant figures.

As, by assumption, the unknown values are small, since they are 
corrections to approximate values of the initial unknowns, the relative 
errors that may be tolerated in their determination are fairly large. Their 
coefficients, whether in the observational equations or in the normal 
equations formed by the least squares method, need not necessarily be



known with high accuracy. Generally two or three significant figures will 
suffice, which enables use of C r e l l e ’s multiplication table or the slide rule 
to form the usual products of the coefficients of the observational equations 
in order to obtain those of the normal equations.

The choice of the approximate solution, which forms the basis of the 
computation, is sometimes a lengthy one. Certainly astronomical observa
tions of equal altitudes require, to be carried out, foreknowledge of data 
concerning the setting, azimuth and time of passage of the stars to be 
observed. The computation of these data is also based on an approximate 
position of the station, but in the case of this determination, an approxima
tion of one minute of arc in the latitude and altitude of observation, and 
of a few seconds of time in longitude, is amply sufficient. When the obser
vations are reduced, however, the approximate solution must be to within 
a few seconds of arc and a few tenths of second of time. To attain this 
accuracy, it is usually necessary to obtain an initial solution, with roughly 
approximate data, by means of four or five carefully observed stars well 
distributed in azimuth. The result of this computation supplies a suffi
ciently accurate solution to be used as a starting point for the reduction 
of the series by the least squares method.

To sum up : when the observation series consists of more than three 
stars, which is generally the case, the principal operations to be carried 
out are the following :

—  a broadly approximate solution for a group of four or five observa
tions in order to obtain a sufficiently accurate approximate solution;

—  computation with seven significant figures of the value of 
supplied by equation (1), for each observed star, in order to form the second 
members of the linear observational equations;

—  computation with three significant figures of the coefficients of the 
new unknowns in these equations, i.e. sin Z and cos Z, since the unknown 
taken is actually AG cos ç0 and not AG;

—  formation of the squares and usual products of the coefficients of 
each equation in order to obtain by summation the coefficients of the 
normal equations with three significant figures;

—  solution of the normal equation system, also with three significant 
figures.

Simplifying by use of diagram

In 1890, by an ingenious extension of the position line introduced in 
1875 by M a r c q  d e  Sa i n t -H i l a i r e  in computing position at sea, P e r r i n  

devised a graphic method avoiding the formation and solution of normal 
equations. In this method, a straight line corresponding to each observa
tional equation is drawn on a large-scale diagram in a direction perpendi
cular to that of the star. Its distance from the origin of the diagram 
representing the approximate position of the station is equal to the known 
term h0 —  hx of the observational equation. The straight lines relating to 
the various observations closely envelop a circle : the centre, deter
mined to the greatest possible accuracy, supplies the geographical position 
of the station in reference to the approximate position, and the radius 
represents the correction required for the approximate altitude. When a 
large number of stars are observed, the diagram can be simplified by re



placing the sets of straight lines corresponding to adjacent azimuths by 
mean values of groups of these lines.

The graphic solution, which is faster than solving by the least squares 
method, offers the added advantage of a synoptic view of the observations 
and brings out abnormal discrepancies. Many geodesists, however, consider 
it inadequate and use it only as an adjunct to the least squares method, in 
order to check results supplied by the latter.

NEW METHOD OF REDUCING EQUAL-ALTITUDE OBSERVATIONS

Actually it is unnecessary to resort to an approximate solution in 
order to make the observational equation linear and subject the numerous 
observational equations to treatment by the least squares method. The 
equal-altitude equation can be put directly in linear form in terms of 
three auxiliary unknowns X, Y, Z, which are themselves simple functions 
of the unknowns.

If we put :

cos <p cos G cos © sin G sin ©
X = ----- --------- Y =  — —--------  Z = ------— (3),

sin h sin h sin h
relations from which we inversely derive * :

Y  Z 1
tan G =  —  tan © =  —  cos G sin h =  —  sin © (4),

X * X z Y
the observational equation ( 1) is written :

X cos § cos H +  Y  cos 8 sin H -f- Z sin § =  1 (5)
When only three observations of stars have been made, it suffices to 

solve in X, Y, Z the system of three linear equations with three unknowns 
formed by the three observational equations. This type of solution is far 
more direct and far easier to obtain than the trigonometrical solutions 
given by G a u s s  and his contemporaries, but offers no additional advantage 
insofar as length of computation is concerned. It is curious to note, however, 
that it was not indicated at the time.

In the case of extra numbers of observations, the system of obser
vational equations put in the form under (5) may thus be dealt with 
directly by the least squares method. The unknowns, however, unlike the 
case of the approximate values, must here be determined with a very small 
relative error and hence be obtained with six or seven significant figures. 
This means that the same accuracy conditions apply to their coefficients 
in the normal equations and the observational equations. The computation 
of the normal equation coefficients by the formation and addition of the 
usual products of the observational equation coefficients therefore becomes 
an arduous process by ordinary computation methods, as does the solving 
of the normal equation system. The existence of rapid, powerful calculating 
machines, however, now makes this easy, and the type of solution considered 
thus seems to be more advantageous than the conventional method. For 
if the formation and solution of normal equations with coefficients having

( * )  Of course, as in the conventional reduction method, the value 0.021 s sin h 
(i.e. 0.018 s for the equilateral prismatic astrolabe) must be subtracted from the west 
longitude G in order to allow for the effect of diurnal aberration.



seven significant figures is longer than with three, the laborious search 
for an approximate solution is however avoided, as well as the computation 
with seven significant figures of the values of 7ix by means of the relation ( 1) 
for each star observed.

It should nevertheless be noted that the proposed method also includes 
the relatively brief calculation of the coefficients cos 8 cos H, cos 8 sin H 
and sin 8, of the observational equation put under form (5), as well as the 
change in variables defined by the relations in (4) and enabling the actual 
unknowns <p, G and h to be derived from the auxiliary unknowns X, Y  and 
Z supplied by the solution of the normal equation system.

The operations to be carried out may be summarized as follows :
—  computation of the coefficients of each observational equation (5 ) 

with seven significant figures;
— formation of squares and usual products of such coefficients in 

order to obtain by summation the coefficients of the normal 
equations with seven significant figures;

— solution of normal equation system with seven significant figures 
to obtain auxiliary unknowns X, Y, Z;

—  passage from unknowns X, Y, Z to unknowns G, h by relations 
under (4).

An example was worked out under the direction of Ingénieur Hydro
graphe en Chef P. M a n n e v y , and a series of twelve stars observed with an 
SOM geodetic-type prismatic astrolabe was dealt with by this method and 
the conventional method. The computations, carried out to seven significant 
figures, gave the same tenth of a second of arc for latitude, a difference of 
a hundredth of a second of time for longitude, and of .15" for the instru
mental altitude.

Interpretation of residuals

When X, Y, Z, in an observational equation (5), are repaced by their 
values supplied by the solution of the normal equations, a residual :

R =  X cos 8 cos H -j- Y sin 8 sin H -f- sin 8 —  1 
is obtained, and its significance easily determined.

By solving for h equation (1) for the values found for q> and G, we 
get an altitude h2 defined by :

sin h2 =  sin <p sin 8 -f- cos <p cos 8 cos (H —  G).
The residual is hence written

sin h2 —  sin h
R = -------------------- =  (/j2 _  /,) cot h

sin h
whence we derive, expressing h2 —  h in seconds of an arc

R tan h
h2 —  h = -----------  (6)

sin 1"
As the altitude h2 represents the actual altitude of the observation at 

the position of the station and the observed instant of passage, and h desi
gnates the constant instrumental altitude, the difference h2 —  h represents 
the error made in the altitude of observation. It corresponds on the solution 
diagram to the difference existing between the position line relating to 
the star involved and the circle enveloping the position lines.



In the case of the Cl a u d e  and D r i e n c o u r t  prismatic astrolabe we 
get, in seconds : ^  _  h _  3 57.10s r

In the example mentioned above the differences h2 —  h obtained by 
the two methods showed a maximum of .15" for eleven stars, and as much 
as .2"  for a single star.

Consideration of refraction variations

If measurements of temperature and atmospheric pressure show that 
refraction has varied to an appreciable extent during the observation series, 
the variation may easily be allowed for.

The unknown value then taken is h, the observational altitude at a 
given instant, say the mean instant of the series, and h -f- Ah to designate 
the altitude at the time of an observation. As Ah is very small, we may 
write, expressing this quantity in seconds of an arc :

sin ( h +  A h ) =  sin h (1 +  A/i cot h sin 1")

so that the second member of the observational equation (5) must no longer 
be taken equal to 1 but to 1 -f- Ah cot h sin 1", an expression in which Ah 
is computed by means of the observed refraction.

In observations with the equilateral prismatic astrolabe, the coefficient
of Ah is equal to : ^

------- IO -5, or 2.8 • 10- 6
3.57

REMARKS

I. The possibility of directly applying the least squares method to 
prismatic astrolabe observations by computing machine was indicated in 
1954 by a member of the U.S. Navy Hydrographic Office. But the author 
of this proposal, in order to put the observational equation in linear form, 
used a stereographic projection of the given altitude circle on the plane 
of the equator, with the result that the observational equation is written :

8 \ /._ s\ _ . . /._ a
X cos H tan ^45° —  — J  +  Y  sin H tan ^45°—  — J +  Z =  tan2 ^45° —  —

The auxiliary unknowns X Y Z implicitly designate the values :

2 cos © cos G 2 cos © cos G sin <p —  sin h
X =  —;----- 1— ;----- Y  =  --------5— ;----  Z =  —--------- .----

sin <p -(- sin h sin <p -j- sin h sin <p -(- sin h
Computations are hence slightly more complicated than in the method 

indicated above; it is moreover difficult to allow for variations in refraction 
and to interpret residuals.

II. The computation method indicated herein essentially applies to 
equal-altitude observations at temporary observatories. But large astrono
mical observatories which make permanent use of Danjon’s impersonal 
prismatic astrolabe may use to advantage the conventional reduction 
method, computing h0 —  ht by a differential method by means of a table 
of hour angles, carefully obtained for an accurate latitude of the station 
and for adjacent values of declination.



III. Few standard geodetic or geodetic astronomy problems outside of 
the reduction of equal altitude observations offer an observational equation 
that may be rendered linear without recourse to an approximate solution.

In geodesy, the determination of a target by means of directed sights 
originating from known positions meets this requirement, since each sight 
is likened to a straight line.

Similarly, in geodetic astronomy, we have the determination of latitude 
and azimuth by observation of a single unknown star, a problem discussed 
by the author in the International Hydrographic Review, November 1954, 
and the solution of which analytically is identical to that of the equal- 
altitude problem.

Reference to this article in the Review  shows that the observational 
equation is :

sin 8 =  sin <p sin h -(- cos <p cos h cos (V -f- L)
a relationship in which the given values are the altitude of observation h 
and the reading L of the horizontal limb of the instrument. The three 
unknowns are the declination 8 of the observed star, the latitude <p of the 
station and the azimuth V of the zero of the limb.

By analogy with the process followed in the equal-altitude method, 
we put :

cos <p cos V cos <p cos V sin <p
X = --------------  Y = --------------  Z = --------

sin 8 sin 8 sin 8
and the observational equation takes the following linear form :

X cos h cos L —  Y cos h sin L -j- Z sin h =  1
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