SOME RECENT APPROACHES TO TIDAL PROBLEMS

by W. Horn
Deutsches Hydrographisches Institut

There was a time when rivers were rather shallow, and navigation
greatly subject to depths as well as currents. There followed a period of
increasing dredging of rivers and more powerful engines, when ships had
to worry more, if at all, about tidal streams than about tides. Now that ships
are becoming bigger and bigger and of ever-increasing draughts, the question
of an accurate prediction of the available depths has regained importance.
This requires very accurate predictions of the astronomical tide and the
best possible forecasts of additional meteorological effects, which have been
forecast daily by the German Tide Service for more than 30 years already.

2. The tides, as we know, occur in different forms that depend upon
the place. Fig. 1 : tides of Immingham, shows the semidiurnal type, with
spring tides following the full and new moon, neap tides following the
first and last quarters of the moon. Fig. 2 : tides of Do-Son, Indochina,
shows the diurnal type, with spring tides following the greatest declina-
tions to the north and south of the moon, and neap tides following her
passages through the equator. With both types, a decrease of the moon’s
distance from the earth has an increasing effect on the range of tide, so
that this range is greater on the average near the perigee than it is near
the apogee of the moon. Fig. 3 : tides of Bangkok, Thailand, shows the
mixed type. A smal diurnal inequality of subsequent high or low waters,
indicating the influence of a small diurnal tide, is visible also in Fig. 1.

3. The harmonic analysis of the tides is usually explained as follows.
It is taken for granted that the tide-generating potential P, considered as
a function of the time {, can be developed in a series

P zpzﬁf s,t,

where the s,, the enumerable angular speeds correspond to certain periods
which are known numbers, such as half a lunar day, half a solar day, one
sidereal day, etc. It is then deduced from the hydrodynamical equations and
from the equation of continuity that the height of tide ¢, referred to mean
sea level, can be similarly developed in a series

g _— 2 Z;,h cOSs (Skt"* 1k)
k

where S, either equals certain s, (« astronomical » constituents), or S, is
a multiple of certain s, (« over-constituents »), or S, = 2C,s, is a linear

(*) Condensed from a paper read at Liége on the foundation of the Belgian Centre
of Oceanography and Undersea Research, 24 February, 1958.
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combination, with integers C,, of two, three, or more s, (« compound »
constituents). The latter two groups, originating from the non-linear terms
in the equations I have referred to, bear the common name of « shallow-
water constituents ». The set of constants ¢, «, are called the harmonic
tidal constants of the place.

It may occur that the speed of a shallow-water constituent equals that
of an astronomical constituent, or comes very near to it. Also, the number
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of shallow-water constituents that need be taken into account greatly
increases the shallower the water becomes, and the inore the influence of
friction makes itself felt. As can easily be imagined, a considerable confusion
of constituents then arises, and it has been stated as a general rule that the
whole method becomes impracticable as soon as the eighth-order consti-
tuents gain importance. On the other hand one can easily verify that in
rivers, and especially in those of the German Bight, which is the innermost
and shallowest part of the North Sea, shallow-water constituents of the
14th or even higher order are not negligible. For when the times of high
and low waters are required, we have to differentiate with respect to time,
and in the derivative the amplitudes of the constituents appear augmented
proportionally to their respective order.

Fig. 4 is a photograph of one of the German tide-predicting machines.
It is the biggest that exists, with installations for 62 constituents, amongst
which are some eighth-diurnals. It has equally equipped front and rear
sides for the simultaneous computation of two tidal functions, such as the
tide and its derivative, and an automatic printer, so that no one need be
present while the machine is being run. Hourly values, times and values
of the maxima and minima, and/or times of zero values can be printed.
Also, curves representing the two tidal functions can be drawn simulta-
neously. The practical navigator, however, prefers figures to curves. The
machine was built in 1938 when no international exchange agreement yet
existed for predictions. | still do not know of any electronic computer that
would be a serious rival in the continuous predicting of tidal functions.
We are therefore still very glad to have the machine, and it is used
increasingly also for new kinds of tasks, such as gravity predictions. Never-
theless, in the field originally thought of, viz. the prediction of water tides,
the whole method is applicable only to a limited extent, as | have said, and
in fact the machine has never served to predict the tides in German ports.

4. The exposition of the harmonic analysis as | have given it here
following the usual practice is not incorrect, but is incomplete to some
degree and may therefore lead one astray. For instance, Paul Lévy, certainly
a great mathematician, has applied to the tides the theory of almost periodic
functions, very properly indeed. This theory is of an extraordinary beauty,
and connects a great variety of fields of mathematical research. Lévy consi-
ders the fraction fk= k : SA and on the assumption that fk possesses a
finite limit as k tends to infinity, deduces a number of theorems, which of
course are quite correct. He concludes that theoretically about two days,
and in practice not more than one month, of observations should suffice to
determine empirically the harmonic constants of a place. This is a little
surprising for the tidal expert, and in fact it can be shown that the tides
exactly correspond to the case that Levy deliberately leaves aside, viz. that
fk exceeds any finite limit with increasing k. In that case, he says, an
infinite time interval would be required to obtain a full knowledge of the
behaviour of the tides (Annales Hydrographiques, Paris 1946). Now tide
gauges, the first type of automatically registering instrument, as far as
I know have not existed for more than about 130 years, and one may ask
what recourse anyone predicting tides would have in these circumstances.

5. Fortunately, the difficulty can be overcome by a different approach,
investigating more closely the nature of the speeds Sn For that purpose,
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it will be necessary to start from the foundations of celestial mechanics.
Before we do so, I wish to recall certain formulae, the first of which is
Euler’s equation,
e = cos x -+ isinx,

from which it follows that cos x = (ei* -~ e—#2) : 2, sin x = (eir — ¢—iz): 2],

Further, let f(x) denote a function of a real variable x, with period 27,
such that f(x) = f(x + 2x). (When the period differs from 2, a trans-
formation of the coordinate will reduce the period to that value). Then for
a very wide class of such functions the series

=4 o
> fn ei:m’

n=—oc

2n
fo= 5 f) f(r) e~ dr,

converges to the function f(x). The theorem is generally ascribed to Fourier,
but in essence Clairaud and Lagrange had it (as an interpolation formula),
and one may recognize its geometrical equivalent in the Ancients’ theory
of epicycles, as first developed apparently by Eudoxos.

Analogous theorems are valid for functions of two or more real varia-
bles; e. g. if we have

fa, ) =f@x+2ny) =f@y+ 27 =flx+ 25 y+ 20,

f@, y) =Zfe",
L

where

1
w

then

where L denotes any linear combination Ax -+ By, with — «© < A,B < + o,
the summation being extended over all combinations of the kind, and

1 2n [‘2:1 .
L == (r,s) e~ dr ds,
fo= s f [

L standing for Ar | Bs.

The following remark has some bearing on the much discussed problem
of the search for unknown periodicities. Suppose (Fig. 5, 6) that the
functions f(x) or f(x,y) are known only in a part of the interval (0, 2x),
or the square of side length 2x, respectively. We may then arbitrarily either
prolong the curve representing f(x), or assume values of f(x,y) in the
area not hatched, taking care only that the continuations fit in sufficiently
smoothly and make the resulting functions periodic, and in either case there
exists an infinite variety of Fourier series all representing in full detail the
« observations » that have been obtained in the hatched interval, or area.

6. We now come to celestial mechanics. Consider n mass points, moving
in Euclidean absolute space under the influence of gravitation. It is very
natural for us to think of mutual attraction or forces as causes of the
accelerations that the individual mass points undergo. However, in theo-
retical mechanics, which are concerned with the mathematical description
of motions, and nothing more, the notion of force is but an abbreviation
for the acceleration vector multiplied by the mass, so that it can be dis-
pensed with; what is really important is coordinates and energy. We shall
speak therefore of a kind of motion in ‘which the accelerations depend upon
the configuration of the mass points. The positions of the masses we may
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describe by any kind of generalized coordinates, rectangular, polar, or other.
Let K and U denote the kinetic and potential energies of the system, and

dgq;

H=K 4 U. We introduce the generalized velocities = ¢;, and the

generalized momenta p;, = . Then according to Hamilton and Jacobi

the following « canonical equaztions » hold :
dg; o 3H dp; 3H

dt  3p, dt  3q

It is easy to prove that the equations are true for absolue motion, but
remarkablv enough a system of the same form is valid also for the motion
relative to any of the accelerated mass points, and in that case, i. e. after
the elimination of the centre of mass and of angular momenta, the remain-
ing number of degrees of freedom is 3n—>5 (see e.g. A. Wintner, The
Analytical Foundations of Celestial Mechanics, Princeton 1947). So, when
we consider the general three-body problem, four generalized coordinates
will suffice to describe the motions relative to one of the mass points. We
shall call these mass points the earth, sun, and moon, and shall be con-
cerned in what follows with motions relative to the earth.
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. . . . .. ¢H
A coordinate ¢, is called ignorable, or cyclic, if 8—2 0, and conse-
qi
quently the corresponding momentum p; is constant. It is not too difficult

to prove that there exists in general at least an instantaneously valid system
of coordinates that are all ignorable. Then all coordinates will be linear
functions of the time, ¢, = ¢;f 4 q,,. The difficulty is to actually construct
such a system of coordinates. The case of n =2 presents no obstacles; it
is treated, in the way I have indicated, in advanced courses of analytical
mechanics. An ingenious solution of the three-body problem, where the
main difficulty consists in the possibility of collisions, has been found, on
a different basis, by Sundman in 1907, but it cannot be generalized to n > 3,
and is useless for the practical astronomer because about 103 terms of the
expansions would be required to obtain one coordinate of a planet with
an accuracy of perhaps one degree.

Practical astronomy uses instead, for the description of the apparent
motions of the sun and moon relative to the earth, a set of coordinates that
has essentially already been invented intuitively in antiquity, and since
then refined by the advancement of science, viz. the mean longitudes,
measured in the ecliptic from the First Point of Aries, of the moon, the
sun, the perigee of the moon’s orbit, and the ascending node of the moon’s
orbit, respectively. We shall denote them by s, h, p, N, in that order, and
replace N by N’ = — N, because all but N are increasing. We may consider
s, h, p, N’ as coming very near at present to a system of ignorable coor-
dinates.

7. Next we replace the mass point representing the earth by a sphere
partly covered with a thin skin of water, let the sphere rotate around an
axis chosen in the nearest possible conformity with reality, and assume
that the resulting motions of the water masses do not practically affect
the rotation of the earth or the motions of the moon and sun. We measure
the orientation in space of the earth by 6, the angle between the meridian
of Greenwich and the First Point of Aries, or Greenwich sidereal time,
and may consider it as a fifth coordinate in which the amplified system is
periodic.

Now Thomson and Tait, in their treatise on Natural Philosophy,
extended the application of the theory of ignorable coordinates not only
to the motions of rigid bodies, in particular to the theory of engines, but
also to certain kinds of fluid motion that are governed by the motion of
rigid bodies. They promised to give further examples in a second volume,
which unfortunately never appeared. I am inclined to believe that they
would perhaps have included the tides (height of tide, and tidal streams
freed from turbulence) as a free-surface motion of the oceans that is
governed by the positions relative to the earth of the moon and sun, i.e.
as a function that is periodic in each of the five variables 6, s, h, p, N".

From that definition it would immediately follow that e. g. the height
of tide, and similarly the north and east components of the tidal stream,
can at any place be developed in a series of the form

L= D¢ e’
L

where
L= A6 + Bs + Ch + Dp }+ EN,
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A, B, G, D, E denoting integers varying independently of each other between
— o and 4 o,
1 2n 2n _
/. [ %(ry, ro, Iy, Iy, I'5) e~ dry dry dry dr, drs
@m)3. e o

and L. = Ar, + Br, -~ Cry -+ Dr, + Er,.

To carry through in all rigour the deliberations I have outlined would
certainly be a prohibitive task, for it would include the solution, though
in the restricted form of the lunar theory, of the three-body problem. Yet
these deliberations may perhaps serve at least as a guide through the jungle
or arithmetic that is so characteristic of most of the papers dealing with
the harmonic analysis of the tides.

Hamilton, Jacobi, Thomson, Tait, Routh, Helmholtz are long dead,
but not the slightest reference to what I have sketched is still to be found
in textbooks of oceanography, even of tides. I hope this does not mean
that I am promoting wrong ideas. The situation appears to me to be typical
of present-day oceanography. On the one hand, oceanography, which not
too long ago was merely a chapter of geography and cannot but continue
to give full weight to a number of descriptive branches, presents entirely
new problems to the more advanced sciences, and on the other hand it has
still to learn a good deal from them. So there still remains, and probably
for a long while yet, a lot to do for go-betweens.

The model I have constructed does not fully correspond to reality. For
instance, we have ignored the flattening of the earth, from which precession
and nutation originate. We shall consider as negligible both nutation and
polar variations, but shall refer our five variables to what is called the
mean equinox, thus introducing small accelerations in them. The influence
of the other planets acts to the same effect, and brings in a sixth variable
q, the mean longitude of the perigee of the sun’s orbit. Also, the obliquity
of the ecliptic and the eccentricity of the sun’s orbit do not remain constant.
The complications arising from these circumstances can be partly met by
introducing more variables such as g, partly by expanding in power series
the coefficients in the Fourier series, but we have already reached the limi-
tations of the complete procedure, and fortunately we may ignore most of
these effects in practice.

If we draw energy from the tides artificially, this diminishes the total
energy of the mechanical system by transforming a portion of it into heat
or electricity, and as a consequence the mean motion of the moon will be
retarded, and its distance from the ecarth increased. The rotation of the
earth will also be retarded. Tidal friction works to the same effect.

G ==

8. We may also obtain our result in a more pedestrian way. The earth
and moon monthly revolve around their common centre of mass, which
annually describes an elliptic orbit, with slowly turning axis, around the
sun. In this motion, the distances of the earth and moon from their centre
of mass are almost inversely proportional to their respective masses, and
the centre of mass always remains within the earth’s surface, but does of
course never coincide with the earth’s centre. The moon and earth orbits
are inclined by about 5° to the ecliptic. Then the true longitudes 1}, true
latitudes §, and the ratios of the true to the « mean » distances r : ¢ of the
moon and sun, relative to the earth’s centre, can, when we let
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X=QG6—p +RO—q) + V(s—h) + W(s—h).
Y=Q(s—p +Rh—q) +@V+1)(s—N) 4+ W(s—h),
QR VW=0=1 32, +3,..,
be expanded in the form

A = mean longitude s or h 4 ¥ C, sin X
&z
r/c =2 C,/ sin X, p=2C,sinY.
T v

In the case of the moon, a few hundred terms per equation are required
to obtain the necessary accuracy. In the case of the sun, very few suffice,
and in the expansions of its longitude and distance the terms with argu-
ments R(h — q), representing the inequality of elliptic motion, predomi-
nate. These formulae scem, with the exception of a paper in the German
Hydrographic Review (1948) in which I quoted them, to bave appeared in
print for the last time about half a century ago, in E. W. Brown’s famous

treatise on his new lunar theory. They were first given by Delaunay in
1860.

From them it can easily be deduced that the tide-generating potential
P of the moon and sun is periodic in 8, s, h, p, N/, q, so that it is developable
in a six-dimensional Fourier series,

P = 2P, e,
L

and that actually all arguments of the form

L = A6 + Bs 4 Ch 4+ Dp 4+ EN' 4 Fgq
occur in this expansion.

Consequently, the differential equations of the tides, linear as well as
non-linear, can be satisfied by expanding in similar series the height of
tide, and the north and east components of the tidal stream. In the linear
case we have term-to-term correspondence with the tide-generating potential.
In the non-linear case, any term in the development of the tides directly
corresponds as well to the term of equal speed in the tide-generating poten-
tial, as it indirectly originates in an infinite number of ways from mutual
interference : in fact, the set of e? is complete, the derivatives with respect
to time and space are of the same form, and the product of any pair of
such exponentials also is. Whether direct correspondence with the tide-
generating potential and/or certain numberless shallow-water combinations
prevail, depends upon the place. As a general rule, the higher the order of
a term, the more likely does it originate from shallow-water effects.

It is impossible in principle to separate by observation lunar from solar
contributions to either the tide-generating potential or tides. It is only in
their order of magnitude that corresponding terms of these contributions
usually differ. But there are exceptions, such as the lunar and solar consti-
tuents K;.

9. The derivatives with respect to time of the six variables § (= mean
sidereal time), s, h, p, N, g are of course known only to a finite, and in
fact rather small, number of decimals. Yet, if we consider them as con-
stants, we have to assume them as incommensurable with each other, simply
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because this probability is infinitely greater than the alternative one. Then,
if we write

() = T g ety
L

an infinite time interval of observations will be required to determine the

coefficients
1

~ 2o

in complete conformity with Lévy’s statement : the set of speeds S, =

2n 2n 7
149 f f §(ry, ro, 1y, Iy, I's, Tg) e—L dr; drs drg dry drg drg
0 0

dL
dt
is enumerable, and the fraction f, = k: S, exceeds any finite limit as k9.
Consequently, when only one year of observations is available, and if the
full set of functions e can be made use of, there exists an infinite variety
of sets of constants ¢;, that all have the property of leading to a represen-
tation in full detail (including swell and waves) of the observations, but
that will generally have no relation to the tides beyond the interval of
observation. This is both more and less than we require, and it is only by
confining ourselves to an approximate expression, using but a finite selection
of constiluents of minor order, that the task of the harmonic analysis and
prediction of the tides can be reduced to a reasonable form.

Now, the periods during which the variables 6, s, h, p, N’, ¢ increase
by 2z (or 360°) are 1 sidereal day, 1 tropical month, 1 tropical year, about
8.6 years, about 18.6 years, and about 21 000 years, respectively. The latter
three are too long to be significantly felt within one year’s observations, yet
at least the first two cannot be ignored when predictions are to be made
on the basis of an analysis carried out years before. It is then convenient
to write

t(tk) =2]n Cn COS(V,W—-I— Dn+ Sﬂ, tk_gn)s .
where ¢,, g, denote the harmonic constants of the place, V,, the value of
the astronomical argument L on the meridian of Greenwich at 00.00 hours
G.M.T. on January 1st of the year in question, ¢, the time reckoned in mean
solar hours from the beginning of the year, and where further V,, depends
only on §, s, h, occasionally p or q, S, depending correspondingly on the
derivatives of these three or four variables, while j,, v, are annual correc-
tions expressing the influence of in general p, N’, and q. Tables of the j,, v,,
and V,, - v, can be computed for any astronomical constituent, and for
any individual shallow-water constituent, when a numerical development
of the tide-generating potential is available. Such a development has been
given by Doodson in 1921 (Proceedings of the Royal Society, Series A,
London). Tables of the three sets of values for the years 1900 to 1999 for
about 80 constituents were presented by the German Hydrographic Institute
at the International Hydrographic Conference in May 1957, and have been
accepted for international use. They will be printed shortly.

As I have said before, there are astronomical and shallow-water cons-
tituents of identical speeds S,. It is possible to separate them from a long
series of annual analyses owing to their long-period behaviour as expressed
by the respective j,, v, differing. So it is usual to determine in the course
of more elaborate analyses a constituent that has so far been considered
as astronomical and called L, (it represents part of the influence of the
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moon’s motion in an elliptic orbit). But we have, by a more refined and
unorthodox analysis of 19 years of observations, found that the constituent
of that speed must in German waters be interpreted mainly as the shallow-
water constituent 2MN,, a constituent that amounts to no less than 15 per-
cent of the total mean range, whilst L, is almost negligible.

Since Legendre and Gauss the most natural method of analysis would
be the application of the least-squares method. In fact, it is only by
prescribing a minimum condition, such as

2 [Ck —_ C(tk)]z = Min.,
k .

where ¢, denotes the observed values, that the task of harmonic analysis,
understood as an approximation by a finite expression, can be rendered a
mathematically determinate one. This would lead, in the case of 369 days
of hourly observations, and of 64 constituents plus the height of mean sea
level, to 8 857 equations of error with 129 unknowns, to be reduced to 129
normal equations, and to their solution. Such a task has so far been consi-
dered as impracticable, and since the time of Thomson and Darwin a
number of less rigorous methods have been devised, some of which are
very ingenious and fairly effective. They can, however, be judged only as
approximations to the least-squares method, and it is easy to invent a
more or less probable scatter, that makes them fail in this or that respect
with a finite series of observations.

We have resolved, after careful consideration, to introduce the least-
squares method in full rigour, using our punched-card machines. If series
of observations of the same length, viz. of 8 857 consecutive hourly heights,
are always analysed, one may solve the normal equations indeterminately
by computing the inverse of their matrix, and to read the observations then
takes much more time than to carry through an analysis by means of the
machines. Also, the computétions for a number of analyses can be performed
simultaneously. It is convenient to transform for practical computations
the formula expressing ¢ () into

n==a

4
() = X juA,cos (Vo4 v, + S, t)

0
n=—64

+ Z juBysin(Vy, 0, 4+ S, 8)
n=1

Voo = Sy = 0, and to introduce a central time origin. Then the matrix of
the normal equations splits into two, one for cosine and one for sine. Table 1
gives the identification numbers, symbols, coefficients in the arguments V,,,
and speeds in degrees per mean solar hour (1950), of the 64 constituents
we use. Table 2a gives the coefficients in the (symmetric) normal equations
for cosine ande sine, Table 2b the respective inverse matrices. About 60 anal-
yses of annual observations have already been carried out by this method.
Some matrices for shorter periods of observation are also available, and
these have been inverted in a way that consecutively supplies the solutions
for 1, 2,...., n unknown constituents.

10. I now shall consider the particular type of semidiurnal tides, i.e.
the case when the constituent with argument 2t = 2(§ — s) predominates,
such that the number of all maxima and minima of that individual term
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equals the number of high and low waters of the total tide. By simply
rearranging the variables we may then introduce instead of
L= A6 4 Bs + Ch 4+ Dp + EN’ + Fgq
the arguments
L,=A®—s) 4+ (B—A)s 4 Ch+ Dp ++ EN’ 4 Fgq,
1 being the mean lunar time, which indicates the orientation of the earth
relative to the mean moon. Again, the set of the functions ei- is complete,
and for the tides at any place there holds an cxpansion
(=20, e
L‘r
If we attribute to ¢ a constant value <, {(zy) reduces to a periodic function
of s, h, p, N’ q only, such that expansions of the form

Crp) = 2 Loy 1 €V,
=

with L’ = as 4- bh 4- cp 4- dN’ 4- eq, are valid for every 74, and the sequence
of isolated lunar daily values %(z,) will fluctuate less than the total tide
curve that we may, but need not, imagine to pass through them. Diminished
fluctuation however means that a much smaller number of terms is required
to sufficiently represent the respective values of {(z,), at the price, it is
true, of having to develop separately the value of ¢ for every 7, Yet a step-
by-step computation of { will generally meet the practical requirements,
and this explains the disadvantage of the classical harmonic method : it
aims at a continuous representation of the tide, and consequently cannot
avoid introduction of the variable §, which is the root of the trouble.

In the case of mixed tides, with alternating periods of semidiurnal and
diurnal character, no periodic approximation to the tides except mean sea
level exists, and the classical method cannot be dispensed with, at least for
the purpose of a first approximation.

That the classical method is inadequate becomes particularly evident
when a table of high and low waters must be computed for a shallow-
water port where the tides are of a semidiurnal character : one would a
priori regard as uneconomical the prediction of a continuous infinity of
points just to find the coordinates of two of them. Taking advantage of the
obviously near-periodic character of these tides, we shall therefore try to
compute the times and heights of the high and low waters directly. In fact,
when we denote by L , the value of L. at the mean moon’s meridian passage,
by S; the increment of L., per half mean lunar day, and by A#; and Af,
the time intervals between the mean moon’s meridian passage, upper or
lower, and the following high and low water, Af, and Af{, must be solutions
of the equation

dy, .
el = i 3 o Sr il o+ 8T8 = (),
dAt L,
and since the value of 7 in L;, is a constant, by the definition of L., Af,
and Af, must be periodic functions of the values sy, hy, po, Ny, ¢, the latter
being taken at the mean moon’s meridian passage. Consequently separate

expansions of the form At = X Ay, e,
L%

with L’y = asy -+ bhy + cpy -+ dN’, + eqy, hold for Af; and Af,, and simi-
larly for the high and low water heights.
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The time difference between the true and mean moon’s transits is a
function of sy, g, po, N, o, expressible in the same form. We may there-
fore interpret At; and Af, also as the lunitidal high and low water intervals
with respect to the true moon’s transits, which diminishes their amounts,
while the arguments L/, are still to be taken at equal time intervals of half
a mean lunar day. If finally we discriminate between the cxpansions with
even and odd values of A in L, ,, there follow separate developments of the
high and low water intervals and heights corresponding to the upper and
lower transits of the true moon, in total eight series per port. The step-by-
step computation of the values that these series assume at equal time
intervals of one mean lunar day can be performed simultaneously by
punched-card machines, and it is in this way that the official tide tables
for German ports have been predicted since the issue for 1954.

The method of analysis again is the least-squares method, applied to
19 years of observations, more accurately : to eight series of each 6 689
consecutive daily high and low water intervals or heights, with central
time origin. Table 3 gives the identification numbers, coefficients in the
arguments L’;, and argument increments per mean lunar day, of the 45
terms we have found to guarantee a sufficient representation of the high
and low water in German ports. N’; and p, are left in the arguments, so that
there is no need for annual corrections similar to the j,, v,; q, has been
assumed as constant. About 60 analyses also of this kind have been carried
out already. When preparing the observed lunitidal high and low water
intervals for the analysis, we plot them and correct meteorologically dis-
turbed values as indicated by Fig. 7. Without such corrections, which are

applied only to reduce very obvious disturbances, the standard error would
be insignificantly augmented. We have tested the method by applying it
also to the tides in the Dutch port of Flushing (Vlissingen), and further
to the Indian port of Bombay, where the tides show a great diurnal ine-
quality, and in every case the results were very satisfactory. In the Tables 4a
and 4b there are given the results for Bombay, with the kind permission
of the Survey of India, Geodetic and Research Branch. Tables 5a and 5b
give the coefficients in the normal equations for cosine and sine, and the
inverse matrices.

The preceding method of predicting high and low waters directly is
in essence a translation into analytical form of the method of J. W. Lubbock,
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who in 1832 systematized what a number of known and unknown prede-
cessors had already been practising for a long while. Lubbock, like his
predecessors, considered the lunitidal intervals and heights as depending
upon the positions relative to the earth of the moon and sun at the moments
of the moon’s meridian passages at Greenwich. Only he expressed these
positions by the equatorial coordinates of the heavenly bodies, in which it
is impossible to satisfy the differential equations of the tides, except for
the equilibrium tide, as first studied in detail by D. Bernouailli. Lubbock
consequently resorted to statistics. But it is impossible to reconstruct from
statistical tables the particularities of the individual case. When, in about
1868, W. Thomson and W. Ferrel independently of each other introduced
the classical harmonic method, the possibility of which had been clearly
envisaged already by Laplace, this was naturally considered as funda-
mentally superior to Lubbock’s method, for it was of analytical character,
and made it possible for the first time to predict tides of the mixed type.

Yet to insist on this point of view would not do full justice to Lubbock’s
method. In fact, it is still in use for a number of European ports, because
the classical harmonic method practically fails, and the principle of Lub-
bock’s method, though not the original technique, is profoundly sound, as
I have tried to show. We have simply combined what is best in both
methods, viz. the analytical procedure of the harmonic method, and the
principle of computing isolated values directly, which characterizes Lub-
bock’s method.

I am grateful that circumstances have allowed carrying out the work
I have described from 1948 onward (it was devised much earlier). In parti-
cular I am thankful to Dr. Bohnecke who gave me freedom as far as the
nature of an official service permits, and to the excellent team without.
whose skilful and almost sportive cooperation the undertaking, always
running parallel to a good deal of routine work, could never have been
completed. I wish to mention by name at least W. Habich and Dr. K.
Munkelt.

To say more about the way we use our I BM machines would be of
little value for non-experts, for this largely depends upon the types of
machines that are available.

11. I have also little to say about the problem of the distribution in
space of tides. The most important theoretical contribution of the last
decades, at least in my opinion, is due to J. Proudman, now retired, who
in 1916 commenced with some weighty papers dealing with the foundations
of the differential equations of the tides, and thence, among other things,
built up, theorem by theorem, a general theory of these equations in
analogy to the theory of elliptic equations. This work, which was necessary
because of gyroscopic effects, especially of the unorthodox form of the
boundary condition, has rarely been adequately appreciated, and unfor-
tunately never been presented as a whole. Even from Proudman’s book on
Dynamical Oceanography no one could guess to what extent its author has
been active in the field I have indicated.

More recently, the application of the method of finite differences has
become fashionable, and in fact there can be little doubt that the study
of the tides in natural rivers and basins leads to arithmetic. Yet, if we leave
aside tidal hydraulics, or the theory of river tides, in which the influence
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of the earth’s rotation can be ignored, and the resulting equations of the
hyperbolic type do not present too serious obstacles to treatment by the
method of finite differences, the situation is still anything but satisfactory,
and Professor Proudman has justly given his survey, which he read as
presidential adress at the IAPO meeting at Rome in 1954, the title of : The
Unknown Tides of the Oceans. '

Actually, the boundary condition that the tidal streams flow_ parallel
to the coasts is extremely difficult to handle in practice, and if one assumes
as known the coastal values of the harmonic constants of the tides, the
construction of cotidal lines across the oceans is still faced with the obstacle
presented by the edge of the shelves, and with the difficulty that unknown
values are to be assumed along the open boundaries. The method of finite
differences always supplies a « solution ». What is necessary is to prove
that it is true, and this can be done only by constructing manifolds of
solutions for a variety of networks, as well as of the parameters that enter
the equations. We have studied the distribution in space of the semidiurnal
constituent M, in the rather difficult case of the Gulf of Mexico, and, leaving
the values at a number of boundary points indeterminate we found, for
networks of 9, 49, and 117 interior points, solutions that must be considered
as increasingly unlikely. This does of course not mean that the solution
resulting for 9 points can be attributed the highest credit, or that a pro-
gressive refinement of the network would not ultimately lead to the correct
solution. But in the latter case it might well prove inevitable to introduce
the third equation of motion and/or higher-order differences, which would
not only tremendously increase the computational work but also lead to a
break of the cotidal lines where the wave passes from deep water onto the
shelves (a possibility already envisaged by Proudman). At least the question
is still open as to what extent the tides observed on the coasts are repre-
sentative for the tides in the deep oceanic basins.

The problem is not quite so difficult for the seas that cover the shelves.
But there the method of finite differences so far has not led far beyond
what one would dare construct without computation, viz. by simply drawing
lines such as to satisfy the observations. On the contrary, what makes
these computations interesting is that they provide an opportunity for
testing the assumed values of the parameters, such as the law of friction.

Yet a number of problems remain. For instance, the question as to what
extent the coastal observations are representative again arises when the
waters before the coasts are very shallow. Also, the over-constituents in the
eastern part of the English Channel, in contrast to those of the western
part, are the greatest that occur on the European shelf, so that the complex
tide in that channel much more resembles a standing oscillation than the
principal constituent M, does. Conscquently, something must be wrong
energetically with all constructions of cotidal lines for the Channel in which
it is assumed that the tides are sinusoidal everywhere. I should think that
the number of over-simplified charts we have already by now suffices, and
that an attempt should be made to approach reality more closely. Other-
wise I should personally prefer as more stimulating to the imagination
papers dealing with geometric basins, such as G. I. Taylor’s on the reflection
of Kelvin waves, or Proudman’s on the expansion in terms of Poincaré¢
waves of the tides in a straight channel.
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The alternative I have to propose at present is very sober, viz. to
observe the tides and tidal streams on the shelves at so great a number of
stations that the application of the method of finite differences leads to
a largely over-determinate system of equations that has to be smoothed
out according to the rule of least squares. Such « hydrodynamic interpo-
lation », as I should like to call it, could of course be applied only to mean
tides, or to mean spring tides, or mean neap tides. The true tides never
repeat themselves; any complete picture of them can be valid only for a
limited time interval, just as tide tables are. As a summary, if we have
come to resort to arithmetic as the means of constructing cotidal charts, we
must not be too disappointed to find that this way leads to a kind of
surveying. To what degree the boundary values fit in remains to be tested.

And there still remains the task of verifying arithmetically that the
tides as they exist throughout the oceans are produced by gravitation.

However, I am not in a position to present a theory of the distribution
in space of the constants that occur in the expansions of the high and low
water intervals. This task appears almost hopeless.



RECENT APPROACHES TO TIDAL PROBLEMS

TABLE 1

Harmonic analysis of hourly observations : ide