IMPROVED METHOD OF CONSTRUCTION OF A HYPERBOLIC LATTICE CHART

by Andrew C. Campbell, U.S. Navy Hydrographic Office

Paper received in March 1961

Introduction

The problem of the construction of hyperbolic lattice charts for use in hydrographic surveying is considered in this article, and an improved method known as Hyperbolic Intersections on a Constant Grid Line will be presented. The new method replaces the Beta Increment Method which was developed by the Hydrographic Office about fifteen years ago, shortly after the adoption by the Navy of hyperbolic systems. Both methods enable the computation of coordinates of points along hyperbolae, which subsequently enables the draftsman to plot these points and connect them thereby constructing a hyperbolic lattice chart. The computational procedure of the Beta method has not been entirely satisfactory, but up to the present time it has served in lieu of a better method. One of the major drawbacks to the Beta method is that it causes considerable drafting inefficiency. The draftsman is required to leaf through many pages of computations, in order to select a sufficient number of points to enable the construction of the hyperbolae. Only a fraction of the computed points is ever used; of those that are used, it is necessary to plot them with respect to an X and then a Y direction. A more satisfactory solution would be the use by the draftsman of the computed points in consecutive order, and the subsequent plotting of the hyperbolic intersections with respect to only one dimension. The new method achieves the desired results. Both methods are illustrated in this article, and the reader may judge for himself as to the quality of the improvement.

Electronic surveying systems

The positioning of vessels engaged in hydrographic surveying is largely accomplished by electronic surveying equipment. The major radio positioning systems fall into two categories, ranging and hyperbolic. The ranging systems use a minimum of two transmitting stations in known locations, and the signals from these stations are interpreted by the survey
vessels as arcs of concentric circles having origins at the two transmitting stations.

In a hyperbolic system, three transmitting stations comprise a net. The centre and one end station generate a family of hyperbolae having as common foci the positions of the two stations involved. The centre and opposite end station generate another family of hyperbolae which is independent of the first.

In either the ranging or hyperbolic, intersecting curves will determine a position. Frequently the intersections will determine two positions; this presents no problem, since one of the positions can be rejected by inspection, as one point will lie on the opposite side of the net and usually will be many miles away.

Beta Increment Method

Following is a brief description of the computational and drafting procedure of the Beta Increment Method. This method employs a classical solution. The coordinates of the points along the hyperbolae are first expressed in terms of a local system, and then the coordinates are rotated and translated into the final frame of reference, the UTM grid.

In the construction of a pair of hyperbolic lattices, each of the two systems of hyperbolae is computed separately by identical methods. For simplicity, only one system of hyperbolae will be considered.

For most hydrographic work a plane coordinate projection is desirable, because of its simplicity, and it meets the needs for accuracy out to one hundred miles. For hydrographic work which utilizes electronic measurements in excess of one hundred miles, formulae which relate the electronic measurements to the spheroid are required. In the method illustrated here, a plane projection is employed. The projection is that of the Universal Transverse Mercator grid, and the coordinates of the transmitting stations as well as all of the points on the hyperbolae will be expressed on this grid.

In determining the coordinates of points on a hyperbolic lattice, the points are first expressed in terms of a local system with the mid-point of the system's baseline as the origin. The semi-major axis is equal to +1 at the master and -1 at the slave, and K is the scale factor equal to one-half the length of the baseline (see figure 1).

The parametric equations of the local system are expressed by :

$$
\begin{aligned}
& \mathrm{X}^{\prime}=K a \cosh \mathrm{~B} \\
& \mathrm{Y}^{\prime}=K b \sinh \mathrm{~B}
\end{aligned}
$$

where :

$$
\begin{aligned}
& a=1-\mathrm{L}(\Delta a) \\
& b= \pm \sqrt{1-a^{2}} \\
& -1 \leq a \leq+1 \\
& \mathrm{~L}=\text { lane number } \\
& \mathrm{B} \supseteq 0 \\
& \Delta a=\frac{2}{\text { number of lanes in baseline }}
\end{aligned}
$$

Observe that for every value of (a), two values of (b) result which are symmetric with respect to the baseline.

After expressing X^{\prime} and Y^{\prime} in the local system, the coordinates are rotated and translated onto the UTM coordinate system by the following expressions :

$$
\begin{aligned}
& \mathbf{X}=+X^{\prime} \cos \psi+Y^{\prime} \sin \psi+h \\
& Y=-X^{\prime} \sin \psi+Y^{\prime} \cos \psi+\boldsymbol{k}
\end{aligned}
$$

Figure 1
$\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}=$ local coordinate axis and points
$\mathrm{X}, \mathrm{Y}=\mathrm{UTM}$ coordinate axis and points
$h, k=$ UTM coordinates of mid-point of baseline
$\psi=$ counter-clockwise angle of rotation
$L=$ lane number of a hyperbola
$a=$ distance from mid-point to L along baseline.
The computation of X and Y is usually performed by an electronic computer, and the results are presented to the draftsman in the form shown in figure 2. With each subsequent increment of B the computed point moves farther away from the baseline.

The draftsman receives a considerable quantity of material similar to that shown in figure 2, which is known as a tab run. Every lane or fractional lane which has been computed and which may be plotted is included in the tab run. The volume of paper required for these computations frequently weighs in excess of one hundred pounds. All of the points along one lane are plotted, in the sequence indicated in figure 2 . Since the baseline normally lies along a sea coast and the area of interest is in the water, both sets of coordinates, that is the +b and - b , are seldom plotted, and of the remaining points about every other B value will be used. The result is that about 25% of the coordinates will be used; however, the increment of B cannot be increased since sometimes the extra points are needed for sheets of large scale projections.

LANE 30	+b		-b			+b	
B	Easting	Northing	Easting	Northing	B	Easting	Northing
0.0	337654	4586083	337654	4596083	0.1	337490	4585900
0.2	336923	4585586	336770	4586061	0.3	335945	4585137
0.4	334546	4584548	334234	4585517	0.5	332715	4583814
-							
\cdot							
2.4	156302	4520567	152149	4533462	2.5	133365	4512420
LANE 40							
0.0	337660	4586085	337660	4586085	0.1	337502	4585884
0.2	336940	4585551	336764	4586099	0.3	335968	4585083
0.4	334577	4584475	334217	4585594	0.5	332752	4583721
. ${ }^{\text {a }}$							
2.4	156655	4519580	151860	4534469	2.5	133755	4511328
		$\underset{\text { where }}{\text { F }}$	2. - An is increm	le of a ta from 0.0.	$\mathrm{n} \text { by }$	Beta Incre ements	Method, Beta val

The points are plotted visually in a plane, on a grid sheet that has ten subdivisions for every two centimetres. A draftsman can plot to an accuracy of about one-quarter subdivision. For each point that is plotted, it is necessary to proceed in an X direction for the easting and then in a Y direction for the northing.

Objectives for improvement

1. To develop exclusively a specific area.
2. To reduce the large volume of computer paper, as this frequently imposes hardship in transporting and storing the tab runs.
3. To increase the percentage of the points plotted with respect to those computed. The 25% usage represents a considerable waste, especially of expensive electronic computer time.
4. To make the plotting of coordinates simpler, and to improve the speed and accuracy at which this can be accomplished.

Hyperbolic intersections on constrant grid line

Following is an explanation of the new method.
The parameters employed are as follows:

$$
\begin{align*}
& \mathrm{R}=\sqrt{\left(\mathrm{X}_{p}-\mathrm{X}_{m}\right)^{2}+\left(\mathrm{Y}_{p}-\mathrm{Y}_{m}\right)^{2}} \tag{1}\\
& \mathrm{D}=\sqrt{\left(\mathrm{X}_{p}-\mathrm{X}_{s}\right)^{2}+\left(\mathrm{Y}_{p}-\mathrm{Y}_{s}\right)^{2}} \tag{2}
\end{align*}
$$

See figure 3.

Figure 3
$\mathrm{P}\left(\mathrm{X}_{\mathrm{p}}, \mathrm{Y}_{\mathrm{p}}\right)=$ coordinates of any point P on L_{4}
$\mathrm{M}\left(\mathbf{X}_{m}, \mathbf{Y}_{m}\right)=$ coordinates of focus, also master station
$\mathbf{S}\left(\mathbf{X},, Y_{2}\right)=$ coordinates of focus, also slave station
$2 \mathrm{~K}=$ length of baseline
$\mathrm{L}_{i}=$ hyperbolic lane number
$\begin{aligned} L_{i} & =\text { hyperbolic lane number } \\ = & \text { any number from the minimum to the maximum lane value of a system. }\end{aligned}$
Definition of hyperbola : a hyperbola is the locus of a point which moves so that the difference of its distances from two fixed points is a constant.

For any lane L_{i} :

$$
\begin{equation*}
\mathbf{D}-\mathbf{R}=\mathbf{a} \text { constant } k \tag{3}
\end{equation*}
$$

This condition defines a hyperbola.
Along the baseline for any lane L_{i} :

$$
\begin{equation*}
\mathrm{D}+\mathrm{R}=2 K \tag{4}
\end{equation*}
$$

and

$$
\mathrm{R}=\mathrm{L}_{i}(\mathrm{GLW})
$$

where a lane number (L_{i}) times one unit of grid lane width (GLW) along the baseline is equal to R on the baseline.

Subtracting 2R from (4) :

$$
\mathrm{D}-\mathrm{R}=2 K-2 \mathrm{R}
$$

Substituting for R on the right hand side :

$$
\mathrm{D}-\mathrm{R}=2 K-2 \mathrm{~L}_{i}(\mathrm{GLW})
$$

Solving for L_{i} :

$$
\begin{equation*}
\mathrm{L}_{6}=\frac{2 K+\mathrm{R}-\mathrm{D}}{2(\mathrm{GLW})} \tag{5}
\end{equation*}
$$

which is the general equation for the determination of lane value.
Lane increment ($\Delta \mathrm{L}$) will be such that:

$$
1.25 \text { centimetres } \leq \Delta \mathrm{L} \leq 2.5 \text { centimetres }
$$

which will determine lane spacing.
Only the following multiples of ΔL are ever used :

.05	1	20
.1	2	50
.2	5	100
.5	10	

Hyperbolic lanes intersect a constant grid line in one of four ways (see figure 4).

In A and B, hyperbolic lanes are making grid intersections such that a constant northing would be selected upon which to compute intersections. In A the lanes are incrementing and in B they are decrementing. In C and D , a constant easting is selected upon which to compute intersections. Lanes are incrementing in C and decrementing in D .

The explanation which follows will be with respect to the case of 4 A , where it is desired to compute the eastings of the lane crossings along a constant northing. The computation for the determination of the intersection points is not precise nor is it iterative, although iteration is employed whenever the rate of change of lane spacing becomes such that accuracy is jeopardized. The computational error is about one-half the magnitude of that produced by the draftsman.

The computation proceeds as follows : coordinates ($\mathrm{X}_{p}, \mathrm{Y}_{p}$) are selected, where :

$$
\begin{aligned}
& \mathrm{X}_{p}=\mathrm{X}_{a}=550000 \\
& \mathrm{Y}_{p}=\mathrm{Y}_{a}=3200000
\end{aligned}
$$

Parameters (1) and (2) are used for the determination of R and D. Employing equation (5), the precise lane value (L_{i}) is computed for P_{a} and is called L_{a}. The L_{i} value for P_{b} is determined by taking :

$$
\begin{aligned}
& \mathbf{X}_{p}=\mathbf{X}_{a}+\Delta \mathbf{X}=\mathbf{X}_{b} \\
& \mathbf{Y}_{p}=\mathbf{Y}_{a}=\mathbf{Y}_{b}=\mathbf{Y}_{n}
\end{aligned}
$$

Figure 4
Parameters (1) and (2) and equation (5) yield for P_{b} :

$$
\mathrm{L}_{i}=\mathrm{L}_{b}
$$

Determine ΔL such that is the largest value less than $\left(L_{b}-L_{a}\right)$. The value $\left(L_{b}-L_{a}\right)$ is the lane difference for a known value of ΔX, where ΔX equals 2.5 centimetres on the grid sheet. Assume that 5 is equal to ΔL in the problem illustrated here.

The first value of L_{i} that it is desired to compute is an intercept which will be a multiple of $\Delta \mathrm{L}$ which is just larger than L_{a}. In the problem illustrated, this will be lane $35\left(\mathrm{~L}_{35}\right)$.

Take :

$$
\mathrm{L}_{35}-\mathrm{L}_{a}
$$

which is the lane fraction from Point P_{a} to the intersection point of $\mathrm{L}_{3 \bar{\jmath}}$. Determine approximate easting for L_{35} :

$$
\frac{\left(\mathbf{L}_{35}-\mathbf{L}_{a}\right)(\Delta \mathbf{X})}{\left(\mathbf{L}_{b}-\mathbf{L}_{a}\right)}+\mathbf{X}_{a}=\mathbf{X}_{u} .
$$

The L_{i} value is determined by taking:

$$
\mathrm{X}_{p}=\mathrm{X}_{u}
$$

Parameters (1) and (2) and equation (5) determine L_{u}. The difference
between L_{35} and L_{u} will be a small lane difference which will be translated into an easting correction to be applied to X_{u}, so that X_{u} approaches X_{35}. Determine X_{35} :

$$
\frac{\left(\mathbf{L}_{35}-\mathbf{L}_{u}\right)(\Delta \mathbf{X})}{\left(\mathbf{L}_{b}-\mathbf{L}_{a}\right)}+\mathbf{X}_{u}=\mathbf{X}_{35} .
$$

where X_{35} is the easting of lane 35 along constant northing 3200000 .
Take :

$$
\frac{5(\Delta \mathbf{X})}{\left(\mathbf{L}_{b}-\mathbf{L}_{a}\right)}+\mathbf{X}_{35}=\mathbf{X}_{u}
$$

where X_{u} is now the approximate easting for lane 40.
Take :

$$
\mathrm{X}_{p}=\mathbf{X}_{u}
$$

a value of L_{u} is determined.
Determine X_{40} :

$$
\frac{\left(\mathbf{L}_{40}-\mathbf{L}_{u}\right)(\Delta \mathbf{X})}{\left(\mathbf{L}_{b}-\mathbf{L}_{a}\right)}+\mathbf{X}_{u}=\mathbf{X}_{40}
$$

After the first two lane intersections have been determined, each subsequent determination will be identical.

Take :

$$
\begin{equation*}
\mathrm{X}_{40}-\mathrm{X}_{35}=\mathrm{X}_{n-1}-\mathrm{X}_{n-2}=\Delta \mathrm{X} \tag{6}
\end{equation*}
$$

where ΔX is the difference between the two preceding eastings.
Take :

$$
\begin{equation*}
\mathbf{X}_{40}+\Delta \mathbf{X}=\mathbf{X}_{n-1}+\Delta \mathbf{X}=\mathbf{X}_{u} \tag{7}
\end{equation*}
$$

where $\Delta \mathrm{X}$ when added to the preceding X is the approximate easting for lane $n\left(\mathrm{~L}_{n}\right)$ and will be identified as L_{u}.

Determine X_{n} :

$$
\begin{equation*}
\frac{\left(\mathbf{L}_{45}-\mathbf{L}_{u}\right)(\Delta \mathbf{X})}{5}+\mathbf{X}_{u}=\mathbf{X}_{45}=\frac{\left(\mathbf{L}_{n}-\mathbf{L}_{u}\right)(\Delta \mathbf{X})}{\Delta \mathbf{L}}+\mathbf{X}_{u}=\mathbf{X}_{n} \tag{8}
\end{equation*}
$$

where X_{n} is the easting of L_{n}.
When equation (8) has been completed, proceed to (6) to next intersection. Figure 5 lists a tab run based upon the method illustrated above.

With reference to figure 5, the draftsman will plot each point in the order in which it appears. Each intersection will be spaced at an optimum distance, and each intersection will be plotted, with the possible exception of an extra point at each end of a group. Additionally each intersection will be plotted with respect to only one dimension, that is the points will be plotted along a constant grid line.

Completion of objectives

1. In the development of a specific area, the new method delineates precisely the number of computations required. Formerly, it was not practical to develop exclusively a specific area.
2. By comparing figure 5 with figure 2 , it will be observed how economical the new format is. The volume of paper required for a tab run by the new method will be about 10% of the volume of the Beta Increment Method.
3200000 (constant northing)

Figure 5
Example of tab run by Hyperbolic Intersection on Constant Grid Line. to maintain proper lane spacing).
3. Almost every intersection will be plotted by the Hyperbolic Intersection on Constant Grid Line versus about 25% by the former. This represents a considerable saving in electronic computer time.
4. By enabling the draftsman to plot the intersection points along a line, as opposed to plotting points in a plane, the draftsman's speed is more than doubled. The accuracy of the plotted point should also be somewhat improved, inasmuch as only one dimension need be considered for the plotted point.

Conclusion

The Hyperbolic Intersection on Constant Grid Line Method was designed specifically to meet the needs of the Hydrographic Office. However, a number of users of hyperbolic systems in the past adopted the Beta Increment Method as standard computational procedure for the development of a hyperbolic lattice chart. The same users will probably be interested in the new method, for the reasons presented in this article. The application technique need not be confined to that of a hyperbolic lattice computation. A number of other problems under consideration at the Hydrographic Office can, and do, yield to similar treatment.

Bibliography

(1) H. G. Bitting : Office procedure for computation of Lorac rates, U. S. Navy Hydrographic Office.

