COMPUTATION OF HYPERBOLIC LATTICE FOR NAVIGATION CHART

Japanese Hydrographic Office

1. - Introduction

In 1959, the Japanese Hydrographic Office published tables and charts of Loran position lines (2 S 1 and 2 S 2) in the East of Japan, prepared from data computed with an IBM 704 electronic computer. Recently, the Office has completed the computation for a hyperbolic chart for a Hi-Fix survey system Type A in Tokyo Kaiwan, with a HIPAC 103 electronic computer. The Transverse Mercator projection being employed in this computation, the solution of hyperbolae was obtained on the grid of the projection and the longitude λ and latitude φ were transformed from x and y on the grid. Though x and y should be directly plotted on a UTM grid chart when such a chart is available, in this case they were plotted on one of the charts published by the Office in ordinary Mercator projection.

2. — Grid coordinates of the Master and two Slave stations

If the meridian through the master station is taken as the central meridian, then the Transverse Mercator coordinates, x and y, the scale k and the convergence γ , are given by the following equations of Thomas (1952) (*):

$$x = N \left[\Delta \lambda \cos \varphi + \frac{1}{6} \Delta \lambda^{3} \cos^{3} \varphi \left(1 - \tan^{2} \varphi + \delta \cos^{2} \varphi \right) + \frac{1}{120} \Delta \lambda^{5} \cos^{5} \varphi \left(5 - 18 \tan^{2} \varphi + \tan^{4} \varphi \right) \right]$$
(1)

$$y = S_{\varphi} + N \left[\frac{1}{2} \Delta \lambda^{2} \sin \varphi \cos \varphi + \frac{1}{24} \Delta \lambda^{4} \sin \varphi \cos^{3} \varphi \left(5 - \tan^{2} \varphi \right) \right]$$
(2)

$$k = 1 + \frac{1}{2} \Delta \lambda^{2} \cos^{2} \varphi \left(1 + \delta \cos^{2} \varphi \right) + \frac{1}{24} \Delta \lambda^{4} \cos^{4} \varphi \left(5 - 4 \tan^{2} \varphi \right)$$
(3)

^(*) THOMAS, Paul D.: Conformal projections in geodesy and cartography. U. S. Coast and Geodetic Survey Special Publication No. 251, Washington, 1952.

$$\gamma = \Delta \lambda \sin \varphi \left[1 + \frac{1}{3} \Delta \lambda^2 \cos^2 \varphi \left(1 + 3 \delta \cos^2 \varphi \right) + \frac{1}{15} \Delta \lambda^4 \cos^4 \varphi \left(2 - \tan^2 \varphi \right) \right]$$

$$e^2$$

$$(4)$$

$$\delta = \frac{e^2}{1 - e^2} \tag{5}$$

 $\varphi = \text{geographical latitude from the equator}$

 $\Delta \lambda = \lambda - \lambda_0$ = the longitudinal difference from the central meridian λ_0 (6)

$$N + a (1 - e^2 \sin^2 \varphi)^{-\frac{1}{2}}$$
 = the radius of curvature normal to the meridian at latitude ω (7)

a =the equatorial radius of the spheroid used

e =the eccentricity of meridian

 $\mathbf{S}_{\!\scriptscriptstyle \phi} = \mathrm{length}$ of the meridian arc from the equator to the latitude ϕ

$$S_{\varphi} = \int_{0}^{\varphi} a (1 - e^{2}) (1 - e^{2} \sin^{2} \varphi)^{-\frac{3}{2}} d\varphi$$

$$= a (1 - e^{2}) \left[A \varphi - \frac{1}{2} B \sin 2 \varphi + \frac{1}{4} C \sin 4 \varphi - \frac{1}{6} D \sin 6 \varphi \right]$$
(8)

In the case of Bessel's spheroid:

A = 1.0050373060

B = 0.0050478492

C = 0.0000105638

D = 0.0000000206

The values employed in this computation are shown as follows, all of them being based on the Bessel spheroid:

	Master (Tsurugi Saki)						Slave (Kannon Saki)						Slave (Okino Shima, Tateyama)						
φ	35°	08'	17'	٠.	0	N		35°	15'	00"		5	N	34°	59°	17"		0	N
λ	139	40	50		0	\mathbf{E}		139°	45'	01"		3	N	139	49	42		0	E
x				0	met	re			6	352		21	m		13	391		72	m
y	3	889	552		57	m		3	901	958	•	47	m	3	872	893		04	m
	Distance d between the master and the slave stations						13	964		33	m		21	413		56	m		
	Azimuth angle θ*						+	65°	561	92"		0		- 50°	56'	57"		5	

^(*) The angle θ is reckoned from the grid axis through the Master station, the angle northward from the grid axis being positive, and southward negative.

3. — Computation of hyperbolae

Computation becomes rather complicated, since the traverse axis of a hyperbola generally intersects the axis of coordinates at an arbitrary angle θ . Therefore, in order to make the computation feasible a new orthogonal (right hand) coordinate system (ζ, η) , having the Master M as origin, is established, the ζ axis being taken through the origin and the Slave S. Then we have only to obtain the (ζ, η) of points on a hyperbola in these new coordinates, and to transform (ζ, η) back to (x, y) merely by rotating the axis through angle θ (Fig. 1).

Putting:

P = an arbitrary point on the hyperbola

d = MS

 $r_m = MP$

 $r_{\scriptscriptstyle R} = SP$

then,

$$r_{\rm m} - r_{\rm s} = C = {\rm Constant}$$
 (9)

due to the nature of the hyperbolae, and

$$(\zeta^2 + \eta^2)^{\frac{1}{2}} - \left((\zeta - d)^2 + \eta^2\right)^{\frac{1}{2}} = C$$
 (10)

From (10) we have:

$$\zeta = \frac{d}{2} \pm \frac{C}{2} \left(1 + \frac{4 \eta^2}{d^2 - C^2} \right)^{\frac{1}{2}}$$
 (11)

or:

$$\eta = \pm \left[\frac{d^2 - C^2}{C^2} \left\{ \left(\zeta - \frac{d}{2} \right)^2 - \frac{C^2}{4} \right\} \right]^{\frac{1}{2}}$$
 (12)

C in the above equations is connected with the lane number as follows: let the lane number on the base line extension from the Master towards the opposite side of S (i.e. on the line $\zeta < 0$, $\eta = 0$) be 0, and then determine the lane number by the following formula, so that the lane number may increase in value towards the Slave from the Master:

$$d + r_m - r_s = \Lambda L \tag{13}$$

where:

L = lane number, and

 Λ = wave length

Then from (9) and (13), we have:

$$C = \Lambda L - d$$
 or $L = \frac{C + d}{\Lambda}$ (14)

In the computation, Λ corresponds to 165.128 metres, which is the wave length established at the Hi-Fix frequency of 1815 kc/s.

x and y are given by the coordinate transformation:

$$x = \zeta \cos \theta - \eta \sin \theta y = y_0 + \zeta \sin \theta + \eta \cos \theta$$
 (15)

where y_0 means y for the Master station, which is 3 889 522.57 metres in the actual case described in section 2.

4. — Geographic coordinates of the points on a hyperbola from grid coordinates

The following inverse formulae (THOMAS, 1952) were applied:

$$\varphi = \varphi_{1} + \tan \varphi_{1} \left[-\frac{1}{2} \frac{x^{2}}{R_{1} N_{1}} + \frac{1}{24} \frac{x^{2}}{R_{1} N_{1}^{3}} (5 + 3 \tan^{2} \varphi_{1}) \right]$$
(16)
$$\lambda = \lambda_{0} + \sec \varphi_{1} \left[\frac{x}{N_{1}} - \frac{1}{6} \left(\frac{x}{N_{1}} \right)^{3} (1 + 2 \tan^{2} \varphi_{1} + \delta \cos^{2} \varphi_{1}) + \frac{1}{120} \left(\frac{x}{N_{1}} \right)^{5} (5 + 28 \tan^{2} \varphi_{1} + 24 \tan^{4} \varphi_{1}) \right]$$
(17)
$$k = 1 + \frac{1}{2} \left(\frac{x}{N_{1}} \right)^{2} (1 + \delta \cos^{2} \varphi_{1}) + \frac{1}{24} \left(\frac{x}{N_{1}} \right)^{4} (1 + 6 \delta \cos^{2} \varphi_{1})$$
(18)

$$\gamma = \tan \varphi_1 \left[\frac{x}{N_1} - \frac{1}{3} \left(\frac{x}{N_1} \right)^3 (1 + \tan^2 \varphi_1 - \delta \cos^2 \varphi_1) + \frac{1}{15} \left(\frac{x}{N_1} \right)^5 (2 + 5 \tan^2 \varphi_1 + 3 \tan^4 \varphi_1) \right]$$
(19)

where:

$$N_1 = a \left(1 - e^2 \sin \varphi_1\right)^{-\frac{1}{2}} \tag{20}$$

$$R_1 = a (1 - e^2) (1 - e^2 \sin \varphi_1)^{-\frac{3}{2}} = N_1^3 \frac{1 - e^2}{a^2}$$
 (21)

 $\lambda_0 = longitude$ of the Master station

 $\phi_1 = foot$ point latitude, which is obtained by the following equation (*)

$$\varphi_1 = Ay + B \sin 2 Ay + C \sin 4 Ay + D \sin 6 Ay + E \sin 8 Ay$$
 (22)

where:

$$A = \frac{1}{a} \left(1 + \frac{1}{4} e^2 + \frac{7}{64} e^4 + \frac{15}{256} e^6 + \frac{579}{16384} e^8 \right)$$
 (23)

In the case of the BESSEL spheroid, we then have:

 $A = 1.5706619151 \times 10^{-7}$ rad.

B = 0.00251127324 rad.

C = 0.00000367879 rad.

D = 0.0000000738 rad.

E = 0.00000000002 rad.

5. - Computation and chart construction procedure

The entire computation for a pair of Master and one of the Slave stations, was carried out in the following steps:

- a) Determine the grid coordinates x and y for each of the Master and Slave stations through equations (1)-(2) and compute the mutual distance d and the inclination θ of the ζ -axis to the grid axis through the Master station. Thus we have the basic values for the computation.
- b) Next compute the coordinates of the points on a hyperbola in the (ζ, η) system through equation (9). Here the numerical computation was carried out for values of C corresponding to every five lanes and for every 500 metres for either ζ or η . For the parts of the hyperbolae farthest from their foci, computation was made for every two lanes.
- c) Transform the coordinates from (ζ, η) to (x, y) through the equation (15); thus we have the coordinates (x, y) of each point on a hyperbola.
- d) From x, y and φ_1 , the foot point latitude given by equation (22), we finally obtain the geographic longitude λ and latitude φ of the points on the hyperbola following equations (16) and (17). We can also obtain the scale k and convergence γ from equations (18) and (19) respectively.

All these computations have been carried out with an electronic automatic computer for the final results λ and φ , with the final decimal reducto 0'.001, and the errors contained in the final results are expected to be about \pm 0'.001.

Using λ and ϕ of each lane obtained as mentioned above, hyperbolae were drawn and printed on the chart with a scale of 1/52 000, each range of hyperbolae for a respective pair of Master and Slave stations being distinguished from the other pair by different colours.

^(*) The equation is due to Kuroiwa (1952), Asia Koku-Sokuryo Co. (Private communication).

6. - Remarks

This computation and chart construction is only experimental, and it has been found that our present method is rather inconvenient for mapping, since the final results λ and ϕ are given at unequal intervals and this makes the drawing of hyperbolae quite complicated. This point is to be studied in the future.

In future, a chart with a scale of 1/10 000 giving one lane interval is to be prepared for special survey projects.