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AUTOMATIC DETECTION OF PUNCTUAL ERRORS 
IN MULTIBEAM DATA 

USING A ROBUST ESTIMATOR

par N. DEBESE \  H. BISQUAY 1

Abstract

The Oceanographic and Hydrographic service of the Navy (SHOM) has 
been using two MultiBeam Echo-Sounders (MBES) since 1988. These systems 
enable swath coverage of the sea floor along a survey line.

Compared with single beam Echo-sounder systems, the resolution of the 
data provided by these systems has been considerably increased. Nevertheless, 
errors still remain and they must be detected and eliminated to meet the 
international standards of bathymetric charts.

The high volume of data, particularly in the case of very shallow water 
Echo-Sounder systems, makes manual validation of the data inappropriate. In order 
to reduce the operating costs of the data cleaning step, SHOM has developed 
algorithms to automatically detect huge datasets generated by MultiBeams.

The algorithm described in this paper is based on a local modelization of 
the seabed. The fitting of a quadratic surface over the raw data is carried out using 
a robust estimator. We retained Tukey robust estimator as the most effective choice 
due to its adaptative capabilities. Possible outliers are soundings with high residual 
values between measured depths and depths estimated from the local model. 
Retained outliers are deduced from this first outliers set, by computing local cross 
validation.

This algorithm has been tested on different bathymetric data sets. Its 
efficiency has been demonstrated whatever the depth or type of seabed. Moreover, 
its application only requires two parameters to be set, thus making it the obvious 
choice. It has currently been adopted and installed on board all the SHOM’s ships.
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1. INTRODUCTION

SHOM has been using MultiBeam Echo-Sounders (MBES) for 10 years to 
carry out bathymetric surveys. These systems apply the beamforming sonar 
technique to obtain several measurements from one acoustic ping. An acoustic 
pulse is sent to the bottom and depth measurements are computed from the travel 
times of the echos reflected by the sea bottom. The measurements are not limited 
to a vertical one, as is the case for Single Beam Echo-Sounders, but on either side 
of the vessel’s course.

The use of a MultiBeam Echo-Sounder to carry out bathymetric charts 
gives more accurate measurements and greater resolution. Nevertheless, 
experience shows that these data contain sparse erroneous soundings. Errors can 
result from surface reflection, low signal to noise ratio in bad weather conditions or 
turbulent flows with bubbles that cause interference with the transducers. Even if the 
error rates still remain generally low, the cleaning step is essential, if accurate 
bathymetric charts ensuring navigational safety are to be drawn up. For example, a 
study carried out by SHOM (Debese , 1997) shows that the error rate is less than 
0.5%, in the particular case of the SIMRAD EM12-dual Echo-Sounder.

Removing erroneous soundings from the dataset is a crucial post­
processing step. Two approaches are generally encountered for this cleaning step:

• The first one is entirely manual. A trained operator has to visualize, 
one by one, all of the soundings of a survey. The identification of the 
erroneous soundings, which are based on local validations of the 
bathymetry, is the responsibility of a trained operator.

• The second one is, on the contrary, entirely automatic. The 
identification of the potentially erroneous soundings is obtained 
through the application of algorithms. It is a question of validating a 
set of a priori defined rules.

SHOM has chosen an intermediate solution by combining features from 
both approaches. The validation of the data is the responsibility of the trained 
operator who decides to validate or invalidate the doubtful soundings pointed out by 
an algorithm or a set of algorithms.

This hybrid approach was chosen to ensure the homogeneity of the 
various processings which were inevitably performed by different trained operators. 
Such an approach also gives a good ratio between the processing time and the 
quality of validation.

All the algorithms concerning the automatic detection of erroneous 
soundings that result from several studies directed by SHOM are based on the 
assumption of a local continuity of the bathymetry. However, these algorithms can 
be divided into two classes. The first one consists of algorithms deduced from an a 
posteriori defined classification of a set of approximately five million manually 
cleaned soundings. This study (Debese , 1997) has given rise to a protocol of three



algorithms specifically dedicated to data acquired by the SIMRAD EM12-dual, a 
deep water Echo-Sounder.

The algorithm described in this paper belongs to the second class. The 
detection of punctual errors relies on local modelization of the seabed. The retained 
model is a quadratic surface. As introduced in (D e b e s e , 1998), the building of the 
model is directly applied to raw data using a robust estimator. The weighting 
estimators, also called W-estimators, are robust and straightforward to implement. 
In this class of robust estimators, we have retained the Tukey because of its 
adaptative capability. Like most robust methods, the estimator uses a residual 
measurement of the information to identify potentially erroneous soundings: a high 
residual value indicates a sounding which is largely deviated compared to the 
presupposed model. Soundings detected as outliers are deduced from this first set 
of doubtful soundings through local cross validation.

The algorithm dealing with the automatic detection of punctual errors in 
bathymetric data is described in the paragraph hereafter. Its evaluation was carried 
out on five sets of real data acquired by several MultiBeam (shallow and deep 
water) EchoSounders. Retained datasets were chosen because of the diversity of 
their reliefs. These datasets are presented in paragraph 3, criteria and results of the 
evaluation are provided in paragraph 4.

2. DESCRIPTION OF THE ALGORITHM

2.1 General principle

The algorithm is based on the assumption that at least one representation 
scale of the seabed exists, and its topography can be modelized using a quadratic 
(1) surface. As this goal could not be achieved over all the geographic area, it is 
necessary to subdivide it into sub-areas. In this case, we propose a division into 
squared cells of identical size (L). If a local quadratic model is statistically verified, 
the residual between measured depths and depths estimated from the model can 
be used to check the consistency of each sounding with its neighbourhood.

z = ayx2 + a4y 2 + a-,.tv + ci2x + a,y + a0 = A ■ X (1 )

When the problem addresses the detection of erroneous soundings in 
bathymetric data, measured residuals are due to two types of noise (G a u d in , 1996), 
that is to say:

• the MBES noise, which we suppose to be gaussian,
• the noise of punctual errors, coming from erratic phenomena where 

the distribution function is unknown, but non-gaussian.

As data contain sparse erroneous soundings, as is the case here, a 
standard estimation procedure, such as the least squares one (2), cannot be used 
because all the soundings are taken into account in the same way, to estimate the 
parameters of the model.
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As described in Fig.2-1 (a), valid soundings are pointed out as non-valid 
as the surface is adjusted according to erroneous soundings.
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FIG. 2-1 (a).- Comparison of a least-squares surface with one obtained by a robust estimation. The
Tukey robust estimator was used.

To be able to determine the parameters of the model, the use of a robust 
estimation procedure is required. Unlike a least squares estimation, a robust 
procedure does not take into account all of the soundings (Cf. Fig. 2-1 (b)).

As described in figure Fig. 2-1 (b), erroneous soundings located far away 
from the surface defined by validated ones, will consequently possess high residual 
values with respect to the robust fit (R o u s s e e u w , 1987).There must be less than 
50% of erroneous soundings in the initial dataset, to superimpose a robust estimator 
surface over the valid soundings.



FIG. 2-1 (b).- Soundings marked with a square are pointed out as outliers by the Tukey estimator, 
those with a diamond are used to estimate the parameters of the model. The presented area is a 
squared cell of 1000 meters wide, that contains approximately 290 soundings (with almost 15%

erroneous soundings).

2.2 Tukey robust estimator 
Main features

The robust estimators which are straightforward to implement are the W- 
estimators (R o u s s e e u w  1987), also called the IRLS-Estimators (as Iterative 
Reweighted Least Squares). Their iterative construction scheme is based on the 
generalized least squares technique. The first step allocates the same weight to 
each point. The residual values provide the information to compute the sounding 
weights that will be used in the following step.

Â® =arg min ^
i

with (3)

A given W-estimator \s associated with a mathematical function called the 
influence function of the estimator (Ha m p e l , 1986). This function allocates a weight 
to each point which depends on its residual value point. As the aim of this paper is 
not to design a robust estimator (Ha m p e l , 1986), we will simply point out that W- 
estimators are classified into three classes according to the behaviour of their 
influence function. Common W-estimators have a descending influence function, 
which is strictly positive. In other words, from one step to the next, there are no 
rejected points. The Tukey robust estimator is a particular case as regards W- 
estimators (S o m o g y l , 1996). Its influence function, which is one of the two main 
features of the estimator, can reject soundings from one step to the next. Soundings 
having a weight equal to zero at the last step are detected as possible erroneous 
soundings. Secondly, we chose the Tukey robust estimator because of its 
adaptative capabilities (H u a n g , 1995). The rejected threshold of the soundings 
changes from one step to the next one (4). It depends linearly on the median value



'mldian comPuted over all the absolute residuals and on a the inverse-sensitivity 
factor of the estimator.
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In our case, it is precisely this feature that will be used to distinguish 
punctual-error noise from MBES noise.

2.3 Parameters of the algorithm

The proposed algorithm simply requires the setting of two parameters,
which are:

• The inverse-sensitivity of the estimator : a
• The size of the cells (i.e. area) : L

The inverse-sensitivity factor of the estimator, a, is a parameter used to 
compute the rejection threshold. As mentioned in paragraph 2.2, soundings having 
an absolute residual value a times greater than the median value of the absolute 
residuals are not taken into account to estimate the surface at the next step : these 
are considered as the current outliers set.

The size of the cells L (cf. 2.21) has to be chosen so as to statistically fit a 
quadratic surface over each cell.

The Tukey robust estimator behaviour was evaluated using an artificial 
data set obtained by adding a white noise to constant depth values. This test clearly 
demonstrates that in the presence of a white noise, which is supposed to represent 
the MBES noise, even if the size of the cells is correctly set - as is the case in a 
featureless seabed - soundings are still extracted from the dataset as potential 
outliers, mainly because of the adaptative qualities of the estimator.

Consequently, even in the case of an optimal setting of the cell size L, the 
soundings of the zero-centered mode of the histogram computed by the residual 
values of the detected soundings are not rejected as punctual errors. This is an 
inevitable part inherent to the adaptative behaviour of the detection process. It is 
therefore essential to introduce, independently of the process, a global parameter 
defining the minimal residual value of the punctual erroneous soundings. This 
threshold can be defined, in a more accurate way, from the intrinsic characteristics 
(i.e. resolution) of the MBES.



FIG. 2-3 (a).- The automatic detection of the zero-centered mode of the histogram of the residual 
value of the detected soundings is used to extract the erroneous soundings from the potential ones. 

In the example above, the lobe width is fixed at 2/3 of its height.

As illustrated in figure Fig. 2-3 (a), it is also possible to accurately fit this 
threshold, by visualizing the histogram of the residual values of the detected 
soundings. Nevertheless, this can only be achieved if the sampling interval of the 
histogram is correctly chosen (cf. FIG - 2-3 (b)). This step must be great enough 
compared to the intrinsic uncertainty of the sounder in order to obtain a zero- 
centered histogram mode.
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FIG. 2-3 (b).- Normalized histograms of the residual values of the detected soundings, with 10 and 
2 meter steps, are obtained in the case of an artificial dataset. This dataset was built by adding a 

white noise N(0, a2) to constant depth values.

If the trained operator requests it, this threshold could also be added, in 
an automated way, as an option, from a modelization of the central histogram (such 
a modelization is shown by the dotted line in figure Fig. 2-3 (a).



2.4 Running modes of the algorithm

The described algorithm has two running modes, which are:

• the fast running mode, in which a sounding is observed once only,
• the cover mode, which allows each sounding to be tested several 

times.

The fast running mode consists of a sequential and separated scan of the 
LxL adjacent cells.

FIG. 2-4 (a).- Fast running mode algorithm.
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FIG. 2-4 (b).- Cover modes algorithm.
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In the cover mode, the succession of the LxL cells is drawn up so that 
they partially overlap (i.e. 2/3 along x-axis and 2/3 along y-axis). Each 
sounding is observed several times, each time in a different 
neighbourhood. This mode partially compensates for the weakness of 
the quadratic model when local seabed shapes may have 
necessitated a higher order model. Accordingly, the probability of 
finding a seabed shape which includes most of the soundings 
increases, in other words, the probability of fitting (to the seabed) a 
local quadratic surface. Consequently, the probability of finding an 
erroneous sounding in bumpy subareas increases too. Moreover, the 
cover mode gives a score to each possible outlier. This score is used 
to convey the doubtful feature of a sounding. The greatest score is 
given to the soundings observed N times and pointed out N times as 
outliers by the estimator. In practice, the implementation of this idea 
is to subdivide the observed area. Each cell, whose size defines the 
estimated area, is created by bringing together nine sub-cells 
obtained from a thinner grid (Cf. FIG- 2-4 (b)).

Several alternatives of the cover mode are proposed. They depend on the 
weighting scheme assigned to each cell. By taking into account only the outliers of 
the central cell, the false alarm rate is minimised (Cf. definition in 3) : only the 
soundings for which an isotropic distribution of the information is available are 
retained. In contrast by taking into account all the soundings detected over the nine 
cells, the detection rate is maximized because the observed erroneous soundings 
increase.

3. DESCRIPTION OF THE DATASETS

The algorithm was evaluated on five swaths (i.e. set of bathymetric data 
acquired along a vessel course) selected in a reference set of data acquired with 
three different MBES:

• deep water (200m - 12000m) SIMRAD EM 12-dual : with 162 beams 
and an opening angle of 128°,

• shallow water (5m - 300m) Thomson-Lennermor with 16 beams and 
an opening angle of 75°,

• very shallow water (0 - 150m) SIMRAD EM3000 : with 127 beams 
and an opening angle of 140°.

These data sets of soundings were previously cleaned manually to obtain 
the reference data set : all soundings were systematically visualized.

Figure 3 represents the error rates versus the beam index, for each of the 
three MBES.

Concerning the EM12-dual and EM3000 swaths (Cf. Fig. 5), errors mainly 
belong to the central beams where the detection mode changes from amplitude to 
phase detection.



Table 3
Description of the swaths of the reference data set 
_________obtained from manual cleaning._________

MBES Period Characteristics 
of the observed 

seabed

Depth
range

(meters)

Number of 
soundings

Number of errors - 
manual data 

cleaning -

1 EM12-dual 4h 40 mn Abyssal plain 3500 to 700 108 257 768 (101 doubtful)
2 EM12-dual 1h 10 mn Sea mount 2400 to 3900 46 592 142 (39 doubtful)
3 EM12-dual 1h 40 mn Undulated

shape
1800 to 3000 88 574 410 (238 doubtful)

4 Lennermor 5mn 20s Sand dune 30 to 35 38 764 327

5 EM 3000 1mn 52s Levee and 
channel

3 to 9 178 287 774

For the Lennermor MBES, the error rate is, on the contrary, at its 
maximum for the lateral beams. Automatic and manual detection were carried out 
over a set of five parallel swaths with overlapping areas, due to the undersampled 
data across the swath.

The evaluation of the algorithm is based on the following criteria:

• the detection rate is defined as the ratio of the number of detected 
erroneous soundings to the total number of erroneous soundings.

• the false alarm rate is defined as the ratio of the number of valid 
detected soundings to the total number of detected soundings.

These definitions are relative to the results of the manual data cleaning 
which is considered as the reference.
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FIG - 3 Error rates versus beam number.
Numbers in brackets refer to swath number used to compute these error rates.



4. EVALUATION OF THE ALGORITHM

4.1 Parameters fine tuning

The optimum size of the cells (i.e. the maximum scale for which the 
seabed can be modelized with a quadratic surface) was fixed for each of the data 
sets. Figure 4-1 (a) shows that a 1000 meter size cell for swath 2 is statistically 
correct. In fact, for this size, the histogram mode of the residual values of the 
detected soundings is approximately zero-centered and sharper than the others. In 
practice, the trained operator can take into account the diversity of the seabeds 
tested in this study, presented in table 4, to set the a priori size of the cells.

FIG. 4-1 (a).- Histogram of the residual values of the soundings detected by the estimator for several
cell sizes.

As a visual analysis of the histogram allows a posteriori check and 
validation of the cell size, a wider choice of seabed types than the one presented in 
this paper, can be envisaged. Figure 4-1 (a) represents the results of the shape of 
the histogram mode of an unadapted cell size. A smaller cell size increases the 
probability of retaining gaussian noise errors. In contrast, a too large cell size has a 
smoothing effect on the reliefs (i.e. clipping the peaks and partially filling in the 
valleys). A subdivision of the central mode of the histogram shows an inadequate 
mesh. Nevertheless, it is important to emphasize that this heuristic criterion is 
useless when the MBES is the Lennermor because of data undersampling along the 
transversal axis.

The second parameter of the algorithm is the inverse-sensitivity factor of 
the Tukey estimator. Figure 4-1 (b) shows the detection rate versus the false alarm 
rate. The three represented curves, one per running mode, were obtained for 
different values of the inverse-sensitivity factor, a, (i.e. a varies from 6 to 14 with a 
step of 2). The lower the inverse-sensitivity factor, the higher the false alarm (i.e. the 
cleaning process becomes sensitive to small relative perturbation). In practice, the 
value of the inverse-sensitivity is between 6 (for shallow water) and 10 (for deeper 
water).



error detection rate (%)

FIG. 4-1 (b).- Detection rate versus false alarm rate. Vertical dotted lines correspond to results 
obtained from swath 5 (i.e. EM3000 data), numerical values are given in table 4.

The third parameter is a global threshold applied to the magnitude error of 
the detected soundings.

4.2 Results

Table 4 shows the algorithm detection rates for the five swaths of the 
reference dataset. Thresholds applied for the residual values of the detected 
soundings were automatically determined from the central-mode of each histogram 
(i.e. the width is set to 2/3 of the height of the lobe); thresholds obtained are nearly 
equivalent to those deduced by visualizing the lobe of the histogram mode.

As regards the EM3000 and EM12 MBES, the choice of the running mode 
only depends on imposed operator constraints.

For swaths 1 to 3, the use of the cover mode increases the detection rate 
by 5%, by keeping a false alarm rate of approximately 25 % (except for swath 3). 
The data set of swath 1 contains 108 000 soundings which were acquired by the 
EM12 over a period of four hours. The algorithm only takes 2mn 25s (on a Sun 
Ultra-spare Station) to detect 93% of the errors of this swath in the cover running 
mode.

For swath 5, the detection rates are the same. In the fast running mode, 
our algorithm takes less than 30s (on a Sun Ultra-spare Station) to detect 96 % of 
the errors included in this data set of approximately 178 000 soundings.

However, for the Lennermor MBES it is crucial to use the cover mode to 
obtain 88% of the errors. In this way, we compensate for the spatial disparity of the 
data.



Table 4
Detection rates of the algorithm

Running mode Detecttion rates (%)
errors false alarms

Swath 1 : EM12 - Abyssal plain
cell size : 1000 meters - inverse-sensitivity factor : 1 0 -  magnitude threshold 
: 50 meters

Fast running mode 88.1 21.3
Max. of the error rate 93.3 25.6
Min. of the alarm rate 87.8 11.6

Swath 2 : EM12 - Sea mount
cell size : 1000 meters - inverse-sensitivity factor : 1 0 -  magnitude threshold 
: 50 meters

Fast runningmode 81.6 19.5
Max. of the error rate 98.1 25.7
Min. of the alarm rate 94.2 8.8

Swath 3 : EM12 - Undulated shape
cell size : 600 meters - inverse-sensitivity factor : 1 0 -  magnitude threshold : 
40 meters

Fast running mode 86 58.2
Max. of the error rate 91.9 51.9
Min. of the alarm rate 86.1 28

Swath 4 : Lennermor - Sand dune
cell size : 10 meters - inverse-sensitivity factor : 6 - magnitude threshold : 3 
meters

Fast running mode 12.5 29.3
Max. of the error rate 88.1 29.4
Min. of the alarm rate 7.6 10.7

Swath 5 : EM3000 - Levee and channel
cell size : 2 meters - inverse-sensitiv ity  facto r : 8 - m agnitude th resho ld  : 
0.25 meters

Fast running mode 96.1 36.9
Max. of the error rate 97.6 40.8
Min. of the alarm rate 95.5 32.8

5. CONCLUSION

The proposed algorithm is based on the Tukey robust estimator to detect 
erroneous soundings in bathymetric data.

Its advantage is that it only needs two parameter settings, one of which, 
the cell size, can be controlled a posteriori.

The second advantage is its different running modes. With the fast 
running mode, data from shallow water MBES are cleaned four times faster than the 
acquisition. With the cover running mode, it is able to detect a 98 % error rate with a 
25% false alarm rate. While minimizing the false alarm rate, more than 94 % of



errors present in deep water data are detected with less than a 10 % false alarm 
rate. Finally, data from the Lennermor MBES can be cleaned with a 88% error 
detection rate.

Consequently, it has been recently adopted and used in the SHOM post­
processing software.

Acknowledgements

Special thanks to Andre Gaudin from the Canadian Hydrographic Service 
(Laurentian region), who has provided us with EM3000 data.

References

D e b e s e  N., Typologie des erreurs les plus courantes du sondeur EM12-dual. Rapport d'étude du 
SHOM  n° 007/97 (1997).

D e b e s e  N., Application d’un estimateur robuste à la détection des erreurs ponctuelles présentes 
dans les données bathymétriques multifaisceaux : l’estimateur de Tukey. Rapport d'étude 
du SHOM  n° 002/98 (1998).

D eb e s e  N., M e v e l  Ch., F r eu lo n  X., Application d’un estimateur robuste à la détection des erreurs 
ponctuelles dans les données bathymétriques multifaisceaux. Conférence Hydrographique 
du Canada, Victoria 10-12 mars (1998).

G a u d in  A., The calibration of Shallow Water Multibeam Echo-sounding Systems. Conférence 
Hydrographique du Canada, Halifax 3-5 juin (1996).

Ha m p e l  F. R, Ro n c h e tt i E. M, R o u s s e e u w P. J, St a h e l  W. A., Robust Statistics : The Approach 
Based on Influence Functions. Wiley Series in Probability (1986).

Y an  H u a n g , Pa la n ia p p a n  Ka n n a p p a n , Z h u a n g  X in h u a , Ca v a n a u g h  J. E.t Optic Flow Field 
Segmentation and Motion Estimation Using a Robust Genetic Partitioning Algorithm. IEEE  
Transaction on Pattern Analysis and Machine Intelligence, vol 17, n°12, pp. 1177-1190 
(1995).

R o u s s e e u w  Peter J, Ler o y  Annick M., Robust Regression and Outlier Detection. Wiley series in 
probability (1987).

S o m o g y l  J., Za v o ti J., A Comparison of Weight-functions in Robust Regression using Iteratively 
Reweighted Least-Squares. Acta. Geod. Geoph., Vol 31(1-2), pp. 11-24 (1996).


