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Abstract  
 

 
Résumé 

 
 

Resumen 

 

In the late 1980s, significant differences in positions derived from the OMEGA station at Porto Santo 
were reported by navigators. The Portuguese Division of Material and Methods of Navigation of the 
Hydrographic Institute were concerned with the quality of the corrections broadcast by the OMEGA 
differential stations in the Portuguese territory and undertook a detailed investigation into the broad-
cast information. The OMEGA stations were located in Lagos (mainland), Porto Santo (Madeira Is-
lands) and Horta (Azores Islands). To determine the issues, a series of observations were undertak-
en for each station. Using specialised software written by the author to analyse the results, an error 
was identified in the Porto Santo station and consequently rectified. 
 
Keywords: OMEGA, geodesy, statistics, error ellipse, accuracy  

Vers la fin des années 1980, il a été nécessaire d’effectuer un contrôle de qualité des corrections 
diffusées aux navigateurs, parce qu’à Porto Santo, ces derniers signalaient des différences             
importantes. Ainsi, les autorités portugaises de l’époque,  à savoir la division des matériaux et des 
méthodes de navigation du service hydrographique du Portugal, étaient préoccupées par le contrôle 
de qualité des corrections fournies par les stations OMEGA différentiel sur le territoire portugais. Ces 
stations étaient localisées à Lagos (continent), à Porto Santo (îles de Madère) et à Horta (îles des 
Açores). Un logiciel a été spécifiquement développé pour recueillir une série de données de chaque 
station. Ainsi, il a été possible d’identifier une erreur dans la station de Porto Santo, qui a été dûment            
corrigée. 

 
Mots clés : OMEGA, géodésie, statistiques, ellipse d’erreur, exactitude 

A finales de los años 80 del siglo pasado, fue necesario hacer un Control de Calidad de las                 
correcciones enviadas a los navegantes, porque estos indicaron diferencias significativas en Porto 
Santo. Por tanto, en aquella época las autoridades portuguesas, a saber la División de Material y 
Métodos de Navegación del Instituto Hidrográfico del Portugal, estaban preocupadas por el Control 
de Calidad de las correcciones proporcionadas por las estaciones diferenciales del Sistema OMEGA  
en el territorio portugués. Estas estaciones estaban situadas en Lagos (continente), Porto Santo 
(Islas de Madeira) y Horta (Islas Azores). Un programa informático fue expresamente elaborado y se 
llevaron a cabo una serie de observaciones para cada estación. De este modo fue posible identificar 
un error en la estación de Porto Santo, error que fue debidamente corregido.  
 
Palabras clave: OMEGA, geodesia, estadística, error de elipse , precisión  
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1. Introduction 
 
This investigation was a practical application 
of the well-known inverse problem of geodesy 
- using the great long line geodesic formulae 
to determine the station’s position and ensure 
that the accuracy requirements for the            
OMEGA signal could be met. OMEGA is a 
Very Low Frequency (VLF) hyperbolic system 
with world coverage, where for a Line of Posi-
tion (LOP) is defined as being the line along 
which the difference of distances of each point 
to the pair of stations used in the system is 
constant Using the known wave length of the 
system, the difference of distances can be 
converted into a correction reading using            
appropriate formulas. 
 
The OMEGA wave length was 29478.087     
meters and a constant of 900 was added for 
obtaining each reading. The same parameters 
were used in reverse to obtain the difference 
of distances from a reading. In the proposed 
observation design, each series of observa-
tions consisted of a set of three pairs of            
readings recorded hourly for the stations of 
Lagos (Mainland), Porto Santo (Madeira           
Islands) and Horta (Azores Islands). 
 
The distances between OMEGA stations are 
several thousands of kilometers. To determine 
the positional errors, distance calculations   
between the stations used long line geodesic 
solutions with the inverse problem of geodesy. 
This could be achieved once the positions of 
the OMEGA stations were known along with 
the differential positions of those stations. The 
goal was to obtain calculated distances to 
compare with those obtained by the readings. 
To determine each observed point, the           
method of “variation of coordinates” was used 
with compensation by mean squares               
calculation. For each month, a statistical     
treatment was undertaken. The known            
positions of the OMEGA stations were then 
compared with the station’s observed               
coordinates.  
 
The time series of the readings were taken 
and converted into difference of distances       
between the differential stations and those of 
the stations of the OMEGA system. The      

calculated distances were computed with the 
long line geodesics using the rigorous method 
of Wallis Integrals. These positions were then 
compared with the positions given by the 
readings in the stations and deviations were 
computed. 
 
Part of the analysis resulted in a number of 
statistical parameters being computed and 
displayed. This included a Scatter Plot with 
the 95% dispersion ellipse and the Relative 
Frequency Diagram for the several frequency 
ranges of each group of distances between 
the calculated and observed points in the             
stations. This analysis took into consideration 
the various physical parameters that affect 
accuracy of the overall OMEGA system.  With 
this study, it was then possible to confidently 
determine the appropriate correction factors to 
be broadcast. 

 
 
2. Calculation Methods 
 
The fundamental method consists of                
calculating the differential of the difference of 
distances, considering possible environmental 
errors associated with VLF continuous wave 
electromagnetic signals (e.g. propagation, 
noise, instrumentation, signal correlation, etc.) 
In one reading for a distance, we have the     
observation equation: 
 

dD + Dc - Do = r   (1) 

 
Where: 
 
dD - differential of the distance 
Dc - calculated distance (real distance to the  
       stations of the system)  
Do - observed distance from a reading 
r    - residual 
 
If we measure the difference of distances of 
the stations in the system, a and b to the         
differential station f, we have: 
 

dDa - dDb + (Dca - Dcb) - (Doa – Dob) = ra - rb = rf    (2) 

 
This is the basic observation equation. 
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The difference of the observed distances can 
be obtained from the reading Lab as:  
 

Doa – Dob = (Lab - 900) * 29478.087  
 

The difference of the calculated distances is 
obtained from the long line geodesic calcula-
tions between each of the stations in the                  
system and the reading station, whose            
coordinates are all known. The coordinates 
were referenced to the WGS72 ellipsoid. 
 
In conjunction with the long line geodesics, 
precise solutions as those of the Wallis            
Integrals (Pasquay, 1972) and (Rapp, 1981) 
are adopted. These are defined in the                  
Jacobi´s sphere or parametric sphere, which 
implies a representation of respective angles 
(azimuths) rather than distances, latitudes or 
longitudes. However, the geodesics match 
point to point. The spherical latitudes or                
reduced latitudes can be obtained through the 
formula: 
 

    (3) 

 

Where: 
  
 L  - geographical latitude (in the ellipsoid) 
L' - spherical or reduced latitude (in the 
      sphere) 

a - semi-major axis of the ellipsoid 
b - semi-minor axis of the ellipsoid 

 
The longitudes calculation is difficult to                
resolve. The computation starts from the                 
difference of longitudes and is corrected by an 
iterative method. This process determines the 
correction (p), variation of the difference of 
longitudes between the two extremities of the 
geodesic, when you pass from the ellipsoid to 
the sphere and using the difference of the 
elongations wa and wb as the value for the first 
approximation. This is then corrected by the 
iterative method. 
 
We have then: 
 

DG' = DG + p   or 
 

   p = DG' - DG    (4)  

Where: 
 
DG'       - difference of longitudes in the sphere 
DG          - difference of longitudes in the ellipsoid 
p                    - correction obtained by the iterative        

          method 
 
Clairaut’s Equation establishes the constant 
relationship: 
 

cos L'(a)*sin A(a) = cos L'(b)*sin A(b)  (5) 

 
Where: 
 
A(n) – azimuth of the geodesic in the point n 

(either a or b) 
 
As mentioned later in this paper, the azimuths 
are now the same in the ellipsoid and in the 
sphere.  
So: 

 A'(n) = A(n). 

 
The element of the meridian in the ellipsoid 
and in the sphere is: 

 
R * dL = ds * cos A    and   dL' = dw * cos A 

 
The element of the parallel is also: 

 
r * dG = ds * sin A  and  cos L' * dG' = dw * sin A 

 

Where: 
 
r                    = a * cos L' (radius of the parallel in the 
           reduced latitude L') 
dw            - element of the arc of the great circle in  
           the sphere  
ds           - element of the geodesic 
R            - curvature radius of the meridian  
dG          - element of longitude in the ellipsoid 
dG'       - element of longitude in the sphere 
 
Considering the square of the 2nd eccentricity: 
 

  

 
And also: 

 
V2 = 1 + e'2 * cos2 L' 
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We have:   

     
 differencing the formula (3) 

 
As we have also along the meridian: 

    

 
And also:  

                                               

 
                                               

We have: 

 
    ... (6) 

 
And:  

 

 
or 

 

           … (7) 

 
                                               
To obtain the required accuracy in the              
distance, we have to integrate the element of 
the arc of the great circle dw in the sphere 
through formula (7). Integrating this formula 
from point a to b along the geodesic and using 
the Wallis Integrals, we calculate a precise 
value for the distance s, limiting the calculus to 
the sixth order through the following formula: 

 
s = b * (w' + V2 * I'2 - V

4 * I'4 + V6 * I'6) ...   (8) 
 
Where: 
 
w' = (wb - wa), first approximation of the dis-
tance 
wa - elongation in the point a (from the Equator 

to point a) 
wb - elongation in the point b (from the Equator 

to point b) 
 

V2=   

 

A(e) - azimuth of the geodesic in the Equator 
I'n - difference of the Wallis Integrals between 

b and a, of order n 
 
 

So:                    I'2 = I2b - I2a 

 I'4 = I4b - I4a 

 I'6 = I6b - I6a 

 
And from the Wallis Integrals, and limiting to 
the sixth order: 

 
I2 = wn + A 

 

I4 =  

 

I6 =  

 
Where: 

 A = -sin wn * cos wn 

 E =  sin2 wn  

 

For differentiating the difference of distances, 
we use the distance from the first approxima-
tion from the polar triangle of the Figure 1, 
with the well known formula for w': 

cos w' = sin L'(a) * sin L'(b) + cos L'(a) * cos L'(b) 

* cos DG'      ... (9)  
 
Where: 
 
w'  - first approximation of the distance s 
DG’ - difference of the longitudes  
          [G'(b) - G'(a)] 
 
The formula (9) is not appropriate to compute 
the correct value for w' in the remaining       
calculus because it does not have the           
accuracy in the case of a small difference of 
distances. However, it can be used for          

Figure 1. Polar triangle 
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obtaining the differential of the distance for the 
Variation of Coordinate’s method. 
 
To obtain the two azimuths A(a) and A(b) and 
the first correct approximation for w’ as being 
valid for any distance, the Delambre formulas 
give an excellent precision in all cases 
(Pasquay,1972): 

 
 

 
 

  

 
Where: 
 

L'(m) - mean latitude is:    
 

 
DL' - difference of latitudes:   [L’(b) – L’(a)] 

 
A(m) - mean azimuth is:    

 
DA - difference of azimuths:  [A(b) – A(a)] 

 
We have then: 

 
 and       

 
A(a) and A(b) are obtained and also a precise 

value of w' for any geodesic, through: 

 

 
 

For instance: 

 
 

    
 
 

 

and 
 
      ...(10)  
 
 
To obtain the azimuth in the Equator, use the 
Clairaut’s equation (5), where cos L' = 1: 

 
sin A(e) = sin A(a) * cos L'(a) = sin A(b) * cos L'(b) 

 
And from equation (10): 

 
...(11) 
 

Finally, p from equation (4), is obtained by the 
integration from a to b along the great circle of 
the sphere with the formula: 

 
  once  

 

  
 
And from Clairaut’s equation for any lati-
tude L': 

 
 

We have then: 

 
 

  and 

 
and 

sin L' = sin wn * cos A(e) 

 

Limiting the computation to the sixth order, 
the integration from wa to wb gives: 
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Taking the flattening: 
 

 

 
 
And also: 
 

 

 
We get finally: 
 

p = sin A(e) * (f * w' - t * V2 * I'2)   (12) 

 
This value is going to correct the value of DG' 
in the formula (4). The iterative process con-
tinues until we have a difference between two 
consecutive steps lower than a certain value 
pre-defined (0.5-14 radians in this case). Then, 
the process stops and the distance is obtained 
through formula (8) with an accuracy of an 
order of a few meters, depending on the angle 
of the geodesic with the Equator. 
 
Now, we can get the differential of the             
distance for the observation equation (2).           
Differentiating (9) relative to L' and G' with              
D = w' for any station (f), we can have for         
instance for the station (a) of the system: 

 
-sin D*dD= sin L'(a)*cos L'(f)*dL'- cos L'(a)*sin L'(f) 

*cos DG' *dL'- cos L'(a)*cos L'(f)*sin DG' *dG' 

 
or: 

 
 

For an OMEGA differential station, we obtain 
a differential of distances and so, a formula 
function of the two unknowns dL' and dG'.   
Including this formula into the observation 
equation (2), we have for each series of 3 
readings, three equations with two unknowns 
and through resolution and compensation by 
the least squares method, we have for each 
observed set of readings, the two values dL’ 

and dG'. These are added to the spherical   
coordinates to obtain the corresponding         
observed values for (fo): 
 

 
 
Spherical coordinates are obtained by         
resolving the equations which must be trans-
formed through appropriate formulas to obtain 
geographic coordinates. For a statistical treat-
ment, geographic coordinates are not practical 
and it is much easier to work in rectangular 
coordinates. 
 
The geographic coordinates are converted to 
their UTM rectangular coordinates for the        
remaining steps and the results were traced in 
a plotter or in a compatible graphical monitor. 
As the readings are not exempt of perturba-
tions from propagation and other error 
sources, we obtain a cloud of points that         
represent the Scatter Plot for each station. 
With the statistical treatment, a dispersion   
ellipse with a certain confidence level and   
other relevant information is determined. 
 
For the calculated points, monthly, mean,       
covariance σxy, and the standard deviation for 
the coordinates X and Y (σx and σy) were           
computed. The dispersion ellipse was also 
computed with a confidence level of 95%, with 
its center in the mean point, similar to the 
method used in topography and triangulation 
methods (Mikhail and Gracie, 1981) and 
(Fiadeiro, 1989). 
 
The computed distance and azimuth of the 
mean position of the OMEGA differential        
station indicated that a correction to the           
station was necessary. From the observa-
tions, further statistics were calculated and 
presented in a relative frequency histogram 
grouped into frequency ranges of distances 
from each observation to the station, the         
minimum and maximum distances and the 
normal or standard deviation.  
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3. Software 
 
The processing software was written by the 
author in ANSI FORTRAN 77. It is easy to 
use, as it is auto learning and can process 
files already recorded or perform new compu-
tations. Data is saved in a file that can be 
used later for longer periods to compensate 
for seasonal variations. All OMEGA stations 
coordinates are included, along with their 
bandwidths which are used to weight the          
observation equations to improve the accura-
cy. Scale is set automatically to plot the            
results. 
 
The software’s subroutines compute the            
coordinate transformations both ways, prints 

the results, executes repetitive computations 
and matrix resolutions. Dates are converted 
into Julian Days, for a later use.  The graphic 
output can be directed to a graphical monitor 
or to a plotter. 
 
The software was written to run on the HP 
1000/A900 system of the Hydrographic             
Institute, with a HP 7550 plotter, a color 
graphical monitor HP 2397-A Tektronix            
compatible, or a black and white graphical 
monitor Tektronix – such was the equipments 
at that time. 
 
Figure 2 shows the errors for the Porto 
Santo station, with the corrections that were            
broadcast to navigators.  

Figure 2. Scatter plot of the points and dispersion ellipse with a confidence level of 95%  

Figure 2 shows the position of the Radio-
Naval Station of Porto Santo and also the             
position of the center of the error ellipse 
(mean point). The error ellipse indicates the 
magnitude and the azimuth error of the             
OMEGA corrections that were broadcast from 
the station and consequently reported by the 

users as being faulty. Other information           
displayed with the plot includes the mean, 
maximum and minimum values, the standard 
deviation in nautical miles and a plot of the 
relative frequency distribution with frequency 
ranges automatically chosen by the software.  
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4. Conclusions 
 
This investigation revealed a significant differ-
ence in the position of the OMEGA differential 
station of Porto Santo (approximately half a 
mile in the azimuth of 60 degrees). The anom-
aly was corrected and the updated position 
broadcast. The statistical analysis confirmed 
normal positional tolerances for the other two 
stations and did not require any adjustment to 
their position broadcasts. The measurement 
results were consistent all year and with         
expected values for the conditions of the         
stations - either from the distances between 
the OMEGA stations, propagation factors or 
other environmental factors that affect the 
OMEGA positioning solution. 
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