
17

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

HUDDL:
THE HYDROGRAPHIC UNIVERSAL DATA DESCRIPTION LANGUAGE

G. MASETTI and B. CALDER
Center for Coastal and Ocean Mapping & Joint Hydrographic Center

University of New Hampshire, Durham, New Hampshire, USA

Abstract

Résumé

Resumen

Since many of the attempts to introduce a universal hydrographic data format have
failed or have been only partially successful, a different approach is proposed. Our
solution is the Hydrographic Universal Data Description Language (HUDDL), a
descriptive XML-based language that permits the creation of a standardized
description of (past, present, and future) data formats, and allows for applications
like HUDDLER, a compiler that automatically creates drivers for data access and
manipulation. HUDDL also represents a powerful solution for archiving data along
with their structural description, as well as for cataloguing existing format specifica-
tions and their version control. HUDDL is intended to be an open, community-led
initiative to simplify the issues involved in hydrographic data access.

Etant donné que de nombreuses tentatives d’introduction d’un format universel de
données hydrographiques ont échoué ou n’ont que partiellement été couronnées
de succès, une approche différente est proposée. Notre solution est le langage
hydrographique universel de description des données (HUDDL), un langage
descriptif basé sur la norme XML qui permet une description normalisée des
formats de données (passés, actuels et futurs) et à partir duquel peuvent être
développées des applications comme HUDDLER, un compilateur qui crée automati-
quement des pilotes pour l’accès et la manipulation des données. HUDDL constitue
également une solution puissante pour l’archivage des données avec leur descrip-
tion structurelle, ainsi que pour le catalogage des spécifications de format actuelles
et le contrôle de version. HUDDL se veut une initiative communautaire ouverte pour
résoudre les difficultés d’accès aux données hydrographiques.

Dado que muchos de los intentos de introducir un formato universal de datos
hidrográficos han fracasado o han sido sólo un éxito parcial, se propone un enfo-
que diferente. Nuestra solución es el Lenguaje Universal de la Descripción de los
Datos Hidrográficos (HUDDL), un lenguaje descriptivo basado en el XML, que
permite la creación de una descripción normalizada de formatos de datos
(pasados, presentes y futuros), y que permite aplicaciones como HUDDLER, un
compilador que crea automáticamente controladores para el acceso a y la manipu-
lación de datos. HUDDL también representa una solución muy potente para el
archivo de datos, junto con su descripción estructural, así como para la cataloga-
ción de las especificaciones de formato existentes y el control de sus versiones.
HUDDL pretende ser una iniciativa abierta, dirigida por la comunidad para simplifi-
car las cuestiones relacionadas con el acceso a los datos hidrográficos.

18

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

1. Introduction

Data acquired during a hydrographic survey
may be stored in a number of different
formats. Essentially, every manufacturer has
developed their own format specification.
Ongoing development during the lifetime of
existing or new acquisition systems usually
requires a sequence of file format releases.
Trying to keep abreast of all of the different
formats, their change-points, and idiosyncra-
sies, can be a time-consuming and problem-
atic endeavor for anyone who has to read
multiple different data formats, or deals with
archival data.

One potential solution to this problem is to
convert each data type into a ‘universal’
format for archive or processing. Many of the
attempts to introduce such a format for hydro-
graphic data have however failed or have
been only partially successful. This is because
such formats either have to simplify the data
to such an extent that they only support the
lowest common subset of all the formats
covered, or they attempt to be a superset of
all formats and quickly become cumbersome.
Neither choice works well in practice.

This issue is exacerbated by a lack of a com-
mon repository for hydrographic data formats.
Each manufacturer documents their own
format in a different way, and often in different
locations, with different release schedules,
and, often, only partially consistent release
announcements. To find details of a particular
data format requires a user to navigate many
different websites - often driven by having at-
tempted and failed, to read survey lines in a
new variant of the format. This also means
that data conversion parsers or tools for differ-
ent data formats are only available for a lim-
ited number of format pairs (some for free, the
largest part with a cost).

One of the biggest (and negative) conse-
quences of the current situation is that each
data handling application has its own data
parsers (coded mostly from scratch) for every
supported data format. These parsers must be
kept up to date. This is a significant resource
soak that could be reduced, and entails the
danger of allowing variant data content inter-
pretations in different software packages. Sur-

vey data access becomes more complicated if
the source files are stored in legacy data for-
mats, where negotiation of multiple versions of
even one format may be required if historical
trend analysis is the primary goal. A useful
solution to survey data access should offer
access to mixed-format historical data, provid-
ing a mechanism to describe data collected
and archived in sometimes ‘exotic’ data for-
mats (e.g., developed by defunct manufactur-
ers). Solving this issue implies the definition of
a reliable way to access the data collected
today by our descendants, with obvious ad-
vantages in the adoption of these methods by
hydrographic data archiving centers.

Our long-term solution to this issue is a
descriptive language flexible enough to
describe past, existing, and likely future hydro-
graphic data formats: the Hydrographic
Universal Data Description Language
(HUDDL). This can also be readily extended to
convert new data format concepts that might
appear in the future. The key point of the
HUDDL approach, is to describe the existing
formats as they are, rather than define
another chimeric format able to encapsulate
the information present in all the existing data
formats (with all the related semantic issues in
case a conversion is attempted) (Masetti and
Calder, 2014).

A HUDDL File Description (HFD) is a machine-
readable description of the content of a data
format that can be used in multiple ways. For
example, it is possible to use an HFD for auto-
matic generation of data drivers, validation of
the content of survey lines claiming to be con-
sistent with a particular format release, recov-
ery of partial information from corrupted data,
storage and reference of the description of
how data are organized in a given data for-
mat, or for incremental update of data format
specifications. Since HFDs are implemented
as XML files, they can also be uniformly and
consistently converted to produce documenta-
tion in different formats (e.g. HTML). A simple
metadata link to an online repository of HFDS
represents a robust way to uniquely identify
the data organization.

A uniform collection of data format descrip-
tions represents a powerful resource for data

19

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

format conversion, a step that has been
described as “the soft underbelly of process-
ing scientific data,” consuming immense
amounts of time for those who work in a
heterogeneous software environment
(Georgieva et al., 2009). At the same time, the
collection of information in one place, and the
simplicity of the descriptive mechanism,
provides a tool for inspiration, definition, and
testing of new data formats and updated
releases before being made public to the
hydrographic community.

Given the many different fields of interest, we
believe that the final overall result of HUDDL
will be to drastically reduce the resource bur-
den focused on accessing the information
stored in hydrographic data formats.

2. The Description Language

Language requirements and features develop-
ment

A number of different solutions have been de-
veloped to describe data files over the last 30-
40 years. None of them provides the full set of
requirements of a hydrographic format de-
scription language (Masetti and Calder, 2014).
In essence, the language must be:

- Readily adoptable (e.g., using XML-based
syntax, familiar to a large number of poten-
tial users);

- Well-maintained (some languages, e.g.
ESML (Ramachandran et al., 2004), do
not have any time schedule for standard
development);

- Widely accepted (there is a common lack
of this requirement in any of the existing
solutions, which may represent a weak-
ness of available methods);

- Flexible, with a low-cost implementation
(e.g., JSON requires data conversion in
different structures (Nurseitov et al., 2009),
while manufacturers likely want to maintain
their own data formats);

- Based on a simple syntax, while still re-
taining enough expressivity to describe
hydrographic binary data formats (the in-
tent, for example, of DFDL (Powell et al.,
2011; Westhead and Bull, 2003) to be uni-

versal increases the overall complexity);
and

- Available with an open-source and open-
community implementation (the hydro-
graphic community is narrower than the
communities targeted by each existing
solution, which may speed up the adoption
and the contribution to develop a working
approach). For instance, Protocol Buffers,
while open source, is not open in the
development process (Kaur and Fuad,
2010; Varda, 2008).

None of the existing proposed data descrip-
tion methods explicitly focus on hydrographic
use cases, which are dominated by data
streams of sensor data, and arrays and lists of
floating point numbers. The more structured
nature of these data streams allows for some
simplification in the implementation of a data
description. Useful features from each of the
existing solutions have, however, been
adopted into HUDDL.

The HUDDL development was focused on a
language that can:

- Provide a common set of many basic
validation and computation functionalities;

- Explain the structure of binary files to
users (readability);

- Automatically generate a parser directly
from a schema;

- Provide a convenient basis for building ar-
bitrary transformations between binary
data formats (data conversion/
transformation) and data file indexing; and

- Extend applications with content-aware
functionalities (e.g., tools that can inspect
any binary file given a schema, file com-
parison, etc.).

HUDDL describes the physical representation,
the overall structure and the semantics of
various existing data formats used in the
hydrographic field. The language relies on a
set of core schemas that make available
various description tools such as array data
structures and primitive data types. New
elements may be added each time a new un-
known structure is encountered. This solution

20

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

was preferred to an attempt to a priori define
all the possible required elements (e.g., rare
middle-endianesses or some uncommon IEEE
formats for representing floating point num-
bers) and their exponentially growing combi-
nation. Doing otherwise might make HUDDL-
aware technology too complex and difficult to
adopt.

HUDDL is focused on describing most types of
hydrographic data formats in a simple syntax,
rather than attempting to be a generic and ar-
bitrary spatial acquisition format. The main
reason for this is the desire to maintain imple-
mentation libraries that are lightweight and as
simple as possible, providing order rather than
adding complexity to the existing scenario of
hydrographic data formats.

This solution also provides an inexpensive but
robust way to deal with many legacy data for-
mats. When required to access old datasets in
an arbitrary binary format, an ad hoc HFD
may be created that can deal with the particu-
lar vagueness of some legacy formats or
some rare variant implementations.

Conceptual and Physical Data Modelling

HUDDL was developed as a community-
specific, format-oriented data description lan-
guage. These characteristics provide a certain
level of simplification since existing data for-
mats are different answers to the same prob-
lem: fast storage of data acquired in real-time.
All of the data format specifications targeted

by HUDDL have three components which
formed the requirements for the abstract con-
ceptual model and physical implementation
reported here:

- The semantic: what a given value col-
lected in the data format actually means
(e.g., the unit of measure);

- The physical description: how the bits
and the bytes are stored on disk (e.g.,
endianess, memory alignment); and

- The logical structure: what data struc-
tures are used to organize the data (e.g.,
an array)

The analysis of existing data formats
suggested a natively tree-structured model:
a top-level container, called a ‘Schema’ that
may hold several different descriptions of
data formats, each of which has both a
‘Prolog’ and a ‘Content’ element (Figure 1).
The ‘Prolog’ represents a collection of meta-
data related to the described data format,
such as the organization that created it, the
personnel responsible for its maintenance,
or the history of releases (Figure 2). This
information is required to create a homoge-
neous and consistent documentation for
different data formats, although the extent to
which it is implemented can vary between
formats – the better the information, the
more complete, and useful, the documenta-
tion.

Figure 1 : Top-level elements of
the HUDDL format model. A
Schema provides the ability to
host more than one format, each
of which contains a prolog to
provide metadata on the format,
and then a content description
providing the details of data’s
format.

Figure 1

21

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

The ‘Content’ branch is used to describe
both the structure and the format of a binary
data file in a platform-independent way. This
branch has three main containers (Figure
3):

- Blocks: which may contain any number of
fields and available data structures (e.g.,
2D array) (Figure 4). A ‘Block’ represents
a logically related group of information
elements committed to file at the same

Figure 2 : Example of
elements present in the
'Prolog' branch of the HUDDL
format model. Any amount of
metadata on the data format
can be provided. This infor-
mation is not strictly required
for some uses of the HFD
(e.g., to generate source
code to access the data), but
has significant benefits when
documentation is being
generated.

Figure 3 : Four sections of
the 'Content' branch of the
HUDDL format model. Blocks
represent a group of data
elements written to file as a
group (e.g., a single ping’s
worth of bathymetric data),
while Streams represent a
collection of Blocks that can
be read together to provide
in composite the description
of a single version of a data
format. Maps provide the
means to link semantic
representation to the data,
for example, by providing
physical units or the means
to translate encoded values
into physical units.

Figure 3

Figure 2

22

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

time instant. A ‘Field’ is used as a basic
value container (e.g., bytes, two- or four-
byte integers, floating point numbers,
etc.). In order to allow for reading of com-
plex data structures, blocks can also con-
tain other blocks, optionally as one- and
two-dimensional arrays with either fixed
or variable sizes defined in the preceding
data block.

- Streams: which lists all the releases of a
data format. Each release is represented
by a ‘Stream’ containing the overall com-
position of a data file (Figure 5): a
‘Header’ which describes initial shared
data fields present in all top-level blocks,
a ‘TopBlocks’ list with all the blocks that
can be encountered at the top level of the
format, and an optional ‘Tail’ description,
representing a common data element
found at the end of all top-level blocks
(e.g., a checksum). Thus, it is possible to
have, in the same document, multiple
streams that reflect different releases of
the same data format, and hence updates
are only required to be incremental (this
characteristic makes them smaller, sim-
pler, and faster than would be required
for a single-release format description
approach).

- Maps: for explicitly describing relations
among fields and other available data
structures for a given ‘Stream’ such as,
adding sensor-specific semantic context.

Among the wide range of possible solutions
for the physical implementation, the Extensi-
ble Markup Language (XML), with the support
of strictly linked XML Schemas, was selected.
XML provides a representation standard that
is convenient because it is both human- and
machine-readable, easily and quickly extensi-
ble, has wide adoption, and is a mature
technology.

In HUDDL, XML is used to give a structural
description of the contents of a file format
(rather than the content of a particular file).
Coupling one or more of the proposed
descriptive XML schemas with a given hydro-
graphic dataset, as metadata, provides a
detailed definition on how data have been
actually stored. For the structural representa-

tions HUDDL follows the main data structures
(e.g., data streams) present in the most used
hydrographic data formats (eXtended Triton
Format, Generic Sensor Format, Kongsberg
EM series, etc.) as well as the work done for
XDR and BinX (variable and fixed length ar-
rays, simple structures, strings, unions, etc.)
(Eisler, 2006; Kongsberg Maritime AS, 2013;
SAIC, 2012; Triton, 2013; Westhead and Bull,
2003).

XML already has a key role in the representa-
tion of metadata associated with a hydro-
graphic dataset since it represents the
accepted means to describe information re-
lated to the data collector, acquisition parame-
ters, meteorological conditions, etc. At the
same time, hydrographic applications that
once were tightly-coupled and monolithic are
now becoming more modular, with collaborat-
ing components spread across diverse
computational elements (Calder, 2013). In
such a distributed environment, open meta-
data systems are increasingly important and
useful to communicate substantial amounts of
structured data (Widener et al., 2001). The
increasing popularity of XML in the field of ma-
rine science and engineering is also driven by
its role in the ISO 19000 series metadata
standard (Georgieva et al., 2009; Hua and
Weiss, 2011; ISO, 2008; Yongguo et al.,
2009).

While relatively simple, the implementation of
the HUDDL Format Model is quite expressive.
For example, since blocks can contain other
blocks and arrays of blocks, a data unit which
contains a header segment (e.g., the parame-
ters for a given ping’s depth detections), along
with a record of the depths detected per
beam, can be easily represented by, block for
each detection, and a block that contains the
header information as elemental fields, with
an embedded 1D array of the detection
blocks. The HUDDL Core Schemas also allow
for variable length arrays (e.g., if the number
of beams reported is variable per ping), for
two dimensional arrays of fields or blocks, and
other common features of typical hydrographic
data formats. It is therefore typically a fairly
simple matter to translate a given data format
into a HUDDL description given the appropriate
documentation.

23

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

Figure 4 : 'Blocks' internal
structure. Each block may
contain any number of basic
data objects (e.g., integers of
different signedness and
sizes, floating point values,
etc.) as Fields, other Blocks to
provide for composite and
complex data types, and 1D
and 2D fixed and variable
arrays of Fields or Blocks.

Figure 5 : 'Streams' inter-
nal structure. Each Stream
consists of a special Block
that appears at the start of
each data object in the file
(typically, this contains a
length and identification
integer to indicate what
data is being stored),
along with a list of all of
the Blocks that can occur
at the outer-most level of
the data file (TopBlocks),
and an optional Tail block
for a common data struc-
ture that appears at the
end of each Block (e.g., a
checksum).

24

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

The HUDDL Format Descriptions are based on
the HUDDL Core Schemas (which are also
XML schemas) so that they describe the
physical and logical implementation of a data
format. They can also be used to create docu-
mentation to explain the semantic meaning to
a human through the use of a suitable XSLT
(Extensible Stylesheet Language Transforma-
tions) translator, which are widely available.
The latest generation of web browsers is able
to use XSLT stylesheets directly, so that XML
documents can be viewed easily by a human
(e.g., HTML pages, PDF files), as well as be-
ing understandable by machines. Extant tools
for XML creation can also be used to structure
HFDs. These tools are intelligent, disallowing
invalid data entry, and suggesting that which
is valid. Programs can also read HFDs
through any of a variety of parsers. Some
XML parsers are already built into program-
ming languages (e.g., Java, Python), and
there are a variety of external parsers (e.g.,
Xerces, libxml). HUDDL schemas can also be
easily translated to other formats using XSLT.

There are also advantages in using a data-
description language such as HUDDL versus
using diagrams (e.g., UML). HUDDL is more
formal than diagrams (leading to less ambigu-
ous descriptions of data formats) and easier to
understand (allowing software developers to
focus on other issues instead of the low-level
details of bit encoding). Also, there is a close
analogy between the types used by HUDDL
and a high-level language such as C/C++ or
Python. Finally, the language specifications
themselves are XML files that can be passed
from machine to machine to perform on-the-fly
data interpretation.

A web repository for HFDs was created at the
Center for Coastal and Ocean Mapping
(CCOM) to provide an initial safe and easy-to-
check common point for data format specifica-
tions. Widely used systems (e.g., RSS, or an
open-subscription mailing list) could assist in
staying current with the last release of data
formats for all of the interested players. The
repository is part of a community-oriented
website to access, catalogue, and dissemi-
nate hydrographic data formats resources and
HUDDL-specific information that has been
developed and is now publicly available

3. The Format Driver Compiler

HUDDLER is an implementation of one of the
many advantages of having available machine
-readable HUDDL Format Descriptions: a com-
piler that automatically creates drivers for data
access and manipulation (Calder and Masetti,
2015).

HUDDLER implements the HUDDL-philosophy of
constraining the description of the data format
to the schema, so that the user has to touch
the minimal amount of code to reflect any
change in the data format specification
(Masetti and Calder, 2014). Instead of having
to change the user’s application code directly
to reflect the format changes, changes to the
schema are translated automatically by
HUDDLER into the library that represents the
data format, and this can be readily auto-
mated in most software build systems. In
practice, updating the software to support a
new data format version is as simple as
changing the schema and then recompiling
the library or application, as appropriate,
leaving the programmer to work on the appli-
cation logic to use the new facilities added by
the new version of the format.

The compiler is based on an XML parsing
library that loads into memory the format
description (frontend), and a code generator
(backend) that creates code able to access
the data in three different types of computer
languages: procedural ANSI C, object-
oriented C++, and multi-paradigm Python. The
system is designed to admit other languages
readily (e.g., Matlab).

The creation of a new format driver is
structured in four steps (Figure 6):

- HFD validation: which automatically
checks that the description follows the
HUDDL Core Schemas;

- HFD parsing: which loads the format de-
scription into memory;

- Format processing: which performs addi-
tional checks on the format description
and solves internal block and field cross-
references; and

- Code generation in one of more of the
available code generators.

25

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

Generating code directly in the target
language allows the code generator to take
advantage of particular language features that
would simplify the generated code, or better
express the idiomatic nature of the target
language usage. However, particularly for
some interpreted languages, performance
issues dictate that it is preferable to automati-
cally generate a language-specific wrapper
around a C/C++ library. This was the
approach followed for the Python backend. It
would be possible to build a pure Python
backend driver if required, for pedagogical
purposes, but the performance would gener-
ally be sufficiently constrained as to make its
practical application limited. As a common
factor, the output code from the language-
specific generators attempts to provide data
types that are as transparent as possible in
order to reduce the complexity of manipulating
routines in the master application.

To better illustrate the simplicity and the
potential of this approach, an example that

accesses and plots attitude data from a real
file is shown in Figure 7. The left pane shows
the part of a HUDDL Format Description used
to describe the specific blocks containing atti-
tude data, and the stream that provides
access to them as top-blocks. The right pane
displays the code snippets specifically created
by HUDDLER to read the format version, which
internally calls a helper function to retrieve the
top-block containing the attitude measure-
ments. Once the generated code is compiled,
a simple script (Figure 8, left pane) can be
used to import the HUDDLER-generated library
and use the generated methods to open the
data file, access the attitude data, and ma-
nipulate the data (e.g., to plot roll, pitch, heave
and heading as shown in the right pane of
Figure). The Python script is a simple dem-
onstration of the many advantages of HUDDL,
since it provides a means to easily access hy-
drographic data taking advantage both of the
flexibility and ease-of-use of Python and the
speed of C code for data reading. The full
working code for this example, and the con-

Figure 6 : HUDDLER steps to create a new format driver: HFD validation, checking that the description follows
the HUDDL Core Schemas; HFD parsing, loading the format description into memory; Format processing,
performing additional checks on the format description and solving internal Block and Field references; Code
generation in one of more of the available code generators.

26

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

 Figure 7 : On the left pane, the part of a HUDDL Format Description that describes the specific blocks containing
attitude data and the stream that provides access to them as top-blocks. On the right pane, the code snippets created
by HUDDLER to read the specific format release and the top-block containing the attitude measurements.

27

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

 Figure 8 : On the left pane, a simple script that imports the HUDDLER-generated library that provides all the methods to
open and access the attitude data. On the right pane, the output generated by the Python script that can be used to
quickly inspect the attitude data before manipulation and/or use in processing algorithms.

28

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

version software to compile it, is available on
t h e p r o j e c t w e b s i t e (h t t p s : / /
huddl.ccom.unh.edu).

The compiler is accessible via the command
line or through a GUI application (using Qt for
cross-platform support), named HUSH (HUDDL
Schema Handler), which provides additional
tools and information to the user. The com-
piler has been demonstrated with a variety of
data formats from sonar manufacturers (e.g.,
Kongsberg EM Series) and acquisition soft-
ware companies (e.g., HyPack) both legacy
and in active development, both binary and
ASCII (Calder and Masetti, 2015).

4. Discussion

The HUDDL framework provides a simple and
relatively low-effort solution to harmonize and
catalogue the wide (and sometimes wild)
range of hydrographic data formats, with their
multiple revisions and releases. It also
provides the opportunity to generate a cata-
logue of HUDDL Format Descriptions written in
XML, each containing the description for a
given data format (with its subsequent
upgrades) that can be used as a set of in-
structions for an application on how to
manipulate a data file in a specific format/
version. The automation inherent in HUDDLER
provides a low cost means of adding new data
formats to an application, at least at the basic
syntactic level of data access, leaving the
coder to focus on the higher-level semantics
of what to do with the data after the syntax
problem is resolved.

The code in the HUDDLER project is only one
means to translate an HFD into source code
for use in a data reader: the HUDDL Core
Schemas are available directly from the
HUDDL community website, and can be used
by anyone to develop additional services for
HFDs. The code currently generated by
HUDDLER is already relatively efficient for data
handling, having derived in part from a cruder
code generator that has been in use for over a
decade. Many optimizations can still be made
to improve the performance, and there is
significant benefit to doing this in a community
supporting a common code generator infra-
structure. For example, if code to generate an
index for files on first-read were to be added

to HUDDLER, or if the frontend reader were
multi-threaded, it would then be automatically
available to every data format for the cost of a
re-compile of the application software.

From the point of view of software manufac-
turers, HUDDL provides a new tool to build
applications that are more data format inde-
pendent. A single reader component could be
developed in isolation and then these modules
combined for the various data formats. If a
sonar system manufacturer, or software
developer, provided an HFD for their data
format (which is the ideal case for a strong
community), hosted either on their website or
that of the project itself (Figure 9), it would
significantly ease the effort involved in imple-
menting the format in a data processing appli-
cation. This would allow all readers to have
the same understanding of the intended
syntax and semantics of the data format. This
will reduce some of the efforts required to
maintain a set of data readers, usually one for
each different format, during subsequent
updates to the format, and will help to avoid
problems with variant reading of data formats
between different applications.

Wherever they are hosted, having the HFD
web accessible has significant benefits. For
example, when a new version is released, one
of the commonly available mechanisms (e.g.,
RSS) may be used to notify interested users.
This push notification allows for alerting of
software maintainers as soon as a change is
made, so that users do not have to search for
changes when there is a sudden problem in
reading a data format, or report this as a bug
to software vendors. An HFD valid with
respect to the HUDDL Core Schemas also
allows for automated creation of standardized
documentation through the use of XML style
sheet technology. The HFD provides a single
source for creation and documentation of
code, always up to date and consistent.

These publicly available HFDs may be used
as ‘trusted’ references for archived data. As
long as a binary data file is paired with a HFD,
the data content is described and the informa-
tion can be recovered. The main benefit of this
is that it is more likely that users will be able to
read the data in the future, and have adequate

29

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

documentation, essentially for the price of a
metadata link. As long as a version of
HUDDLER is available, it can use these HFDs
to (re-)create data format drivers to access the
archive data with the same simplicity and
consistency as for new data format versions.
Additionally, once a valid HFD is constructed,
the data in that format can be accessed on
any platform regardless of the native configu-
ration of the file system.

Having a separate description of the format
has the potential for the description (e.g., an
HFD) to become separated from its data.
Future hydrographic data formats may choose
to instead include the HFD as part of the
binary file itself to avoid this risk. Another
approach to this problem could be to use the
first bytes of the file as an integer representing
the unique ID reported in a future XML Hydro-
graphic Formats Catalogue, or to store a URL
referencing the HFD’s location in a well-known
place.

At present, the development of an HFD
necessarily implies the creation of an XML
descriptor for the format. Although there are

many XML editors that support this, they are
general tools rather than specific to HFDs,
and development of the HFD for a complex
format can still require significant effort. Of
course, that effort is only required once, since
the resulting HFD can then be shared by all
members of the community so long as it is
published at an appropriate URL and indexed,
preferably at a clearing house such as the
HUDDL community website. The structure of
the HUDDL format is much more strict than a
general XML file, and could be much more
efficiently constructed, and checked, by a tool
that reads the HUDDL Core Schemas. This
provides the user with a customized interface
that allows construction of XML for the HFD
only within these bounds. Done graphically,
this would significantly ease the burden of
constructing the HFD in the first place, and
their subsequent update. It is also possible to
envision a graphical editing application where
the HFD is rendered in diagrammatic form,
and the user is able to drag-and-drop new
fields and blocks, describing the structure of
the data graphically before it is converted into
an HFD for distribution.

Figure 9 : HUDDL framework: the online repository is used both for publicly providing format specifications (in different
formats) and as a source for HUDDLER, which parses the descriptive schemas, serializes the information and creates an
I/O library. Data processing applications can thus rely on this library for access the binary data.

30

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

5. Conclusions

Currently, the hydrographic community has to
deal with a multiplicity of data formats. Each
format is home grown within its specialty and
in many cases is based on manufacturer tech-
nology. Although generic data formats have
been introduced, there has not been a suffi-
ciently strong reason to rally around one par-
ticular method for containing data, nor is any
one format general enough to accommodate
everyone’s needs. The result has been an in-
vasive sea of data formats. At the same time,
the temptation to convert all collected data to
a selected data format does not appear to be
the optimal solution, since many data formats
are fundamentally incompatible with each
other, and much metadata and information
can be lost during this processing (or even
worse, mistranslated).

The intent of HUDDL is not to describe every
kind of binary data format that people have
ever sent or will ever want to send from ma-
chine to machine. Rather, HUDDL focuses on
the most commonly used hydrographic data
formats in order to simplify the problem so that
the solution can be efficient and sufficiently
easy to use to make it an obvious choice for
most users. It can support the hydrographic
community on at least at three different levels
(Figure 10):

- At the descriptive level, where the user
simply takes advantage of the common
format repository as well as the stan-
dardized templates for documentation;

- At the raw data level, where users can
use the automatically created raw data
parsers. That is, each parser is tailored
for a given data format (with all the
implicit data peculiarities) as described in
the HFDs (as they are compiled by
HUDDLER); and

- At the abstract data level, where an addi-
tional layer of homogenization is
provided with the main aim of simplifying
access to hydrographic data (e.g., the
same function getDepthData() for obtain-
ing the collected depth from various data
formats). The Hydrographic Abstraction
Layer (HABLA) may also be useful for
researchers coming from fields not
directly related to ocean mapping. HABLA
features are currently in active develop-
ment.

Many types of applications could benefit from
this task-oriented approach: data explorers,
conversion tools, metadata archives, etc.
HUDDL represents a solution for both software
and hardware manufacturers to providing a
strong and universal mechanism for version
control of hydrographic data formats.

Figure 10 : The three
expected levels of users for the
HUDDL framework. The basic
Descriptive level provides only
description services for differ-
ent file formats, including docu-
mentation construction. The
Raw Data level provides basic
access to particular data for-
mats through automatically
generated data drivers. At the
Abstract Data level, extra
translations provide for conver-
sion of the data into hydro-
graphically understandable
information, such as depth or
backscatter, without informa-
tion as to the underlying data
format. The HABLA layer is
currently under development.

31

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

Developers will have an abstraction tool for
development of binary data readers and
converters. In addition, the HUDDL Format
Description repository is a powerful solution
for propagating the publication of a format
update to all interested parties (using popular
electronic mechanisms such as tweets, an
RSS, or a mailing list).

Based on these considerations, we believe
that HUDDL represents a concrete way to
reduce, in a relatively short time, existing
problems related to interoperability and
access to hydrographic data.

6. References

1. Calder, B., 2013, Parallel & Distributed Per-
formance of a Depth Estimation Algorithm,
U.S. Hydrographic Conference, (US Hydro
13), New Orleans, LA, USA, pp. 11.

2. Calder, B., and Masetti, G., 2015, HUDDLER:
a multi-language compiler for automatically
generated format-specific data drivers, US
Hydrographic Conference (US Hydro 2015),
National Harbor, Maryland, USA.

3. Eisler, M., 2006, XDR: External data repre-
sentation standard.

4. Georgieva, J., Gancheva, V., and Go-
ranova, M., 2009, Scientific data formats, in
Mastorakis, N.E., Demiralp, M., Mladenov, V.,
and Bojkovic, Z., eds., 9th WSEAS Interna-
tional Conference on Applied Informatics and
Communications (AIC '09), Volume 9: Mos-
cow, Russia, WSEAS Press, p. 19-24.

5. Hua, H., and Weiss, B., 2011, Strategies for
Infusing ISO 19115 Metadata in Earth Science
Data Systems, AGU Fall Meeting Abstracts,
Volume 1, pp. 04.

6. ISO, 2008, ISO/TS 19139-2007 Geographic
information -- Metadata -- XML schema imple-
mentation, International Organization for Stan-
dardization, pp. 111.

7. Kaur, G., and Fuad, M.M., 2010, An evalua-
tion of Protocol Buffer, IEEE SoutheastCon

2010 (SoutheastCon), Proceedings of the, p.
459-462.

8. Kongsberg Maritime AS, 2013, EM Series
Datagram formats - Instruction Manual, p.
126.

9. Masetti, G., and Calder, B., 2014, HUDDL for
description and archive of hydrographic binary
data, Canadian Hydrographic Conference: St.
John's, NL (Canada), pp. 24.

10. Nurseitov, N., Paulson, M., Reynolds, R.,
and Izurieta, C., 2009, Comparison of JSON
and XML Data Interchange Formats: A Case
Study: Caine, v. 2009, p. 157-162.

11. Powell, A.W., Beckerle, M.J., and Hanson,
S.M., 2011, Data Format Description Lan-
guage (DFDL) v1. 0 Specification, Report of
the Open Grid Forum. Retrieved from www.
ogf. org/documents/GFD.

12. Ramachandran, R., Graves, S., Conover,
H., and Moe, K., 2004, Earth Science Markup
Language (ESML): a solution for scientific
data-application interoperability problem:
Computers & Geosciences, v. 30, p. 117-124.

13. SAIC, 2012, Generic Sensor Format
Specification v.03.04, SAIC, pp. 151.

14. Triton, 2013, eXtended Triton Format
(XTF) Rev. 35 Triton Imaging, Inc. , pp. 44.

15. Varda, K., 2008, Protocol Buffers:
Google's Data Interchange Format.

16. Westhead, M., and Bull, M., 2003, Repre-
senting Scientific Data on the Grid with BinX–
Binary XML Description Language: EPCC,
University of Edinburgh.

17. Widener, P., Eisenhauer, G., and Schwan,
K., 2001, Open metadata formats: efficient
XML-based communication for high perform-
ance computing, High Performance Distrib-
uted Computing, 2001. Proceedings. 10th
IEEE International Symposium on, p. 371-380.

32

INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2015

18. Yongguo, J., Lianying, L., and Zhongwen,
G., 2009, Design of Marine Information Meta-
data and Directory Service System Based on
XML, Database Technology and Applications,
2009 First International Workshop on, p. 574-
577.

Author Biography

Giuseppe Masetti received a MS degree in
Ocean Engineering (UNH, USA) in 2012, and
a Master in Marine Geomatics (2008) and a
Ph.D. degree (2013) in System Monitoring
and Environmental Risk Management
(University of Genoa, Italy). His postdoctoral
research at CCOM/JHC is focusing on signal
processing and Bayesian hierarchical models
f o r m a r i n e t a r g e t d e t e c t i o n .
(gmasetti@ccom.unh.edu)

Brian Calder is an Associate Research Pro-
fessor and Associate Director at CCOM (UNH,
USA). He has a Ph.D. in Electrical and Elec-
tronic Engineering, completing his thesis on
Bayesian methods in SSS processing (1997).
He is currently focusing on statistically robust
automated data processing approaches and
tracing uncertainty in hydrographic data.
(brc@ccom.unh.edu)

