A METHOD OF SIMULTANEOUS DETERMINATION OF ASTRONOMICAL LATITUDE, AZIMUTH AND TIME FROM OBSERVATIONS OF AN UNKNOWN STAR

by J. C. Bhattacharji, F.R.A.S.

Abstract

This paper endeavours to evolve a method of simultaneous determination of astronomical latitude, azimuth and time from the observed vertical angles and differences of recorded times and horizontal angles of an unknown star about an hour before and after the time of elongation, either east or west.

The special feature of the method is that it does not require actual identification of the star of observation.

The determinations being of an order better than third order precision, the method may have ample applications in both topographic and hydrographic surveys including navigation.

INTRODUCTION

To provide a geodetic framework in a country is the main responsibility of a geodetic organisation. What is required therefore of a topographer or a hydrographer is just to fill up the big gaps inside the existing geodetic setup falling within his jurisdiction of land or sea surveys, by fixing therein a more dense network of minor control points for the purpose of producing accurate maps of his area. Both topographic and hydrographic surveys are thus concerned with second or third order determinations only.

Since ordinary topographers and hydrographers generally have difficulty in identifying stars correctly, an attempt has been made in this paper to modify the existing methods of observation so that there is practically no need for actual identification of the stars of observation.

SELECTION OF STARS

Any isolated star which can easily be distinguished with a theodolite is chosen for observation about an hour before its time of elongation either east or west, so that it may reappear in the field of view neither much later nor much earlier than two hours afterwards, for observations for the second time, after altering only the vertical circle reading of the theodolite. The following practical procedure may, however, be adopted for selecting these stars without much difficulty.

Intersect any distinctly visible star at the centre of the theodolite, note its apparent path of motion on the diaphragm by holding the theodolite in the same position for some time and make sure that the apparent path of motion of the star makes an angle of about 10° with the vertical wire of the theodolite as shown in figures 1 and 2 below, so that the star of observation may be able to reappear in the field of view neither much later nor much earlier than two hours afterwards.

Fig. 1

Fig. 2

If, however, the above angle is found to differ significantly from 10°, the vertical circle reading should be increased in the case of a star near its east elongation or decreased in the case of a star near its west elongation, and the horizontal circle readings should be conveniently altered either way in both the cases till after a little trial and error a star is soon obtained whose apparent path of motion is found to make the desired angle with the vertical wire of the theodolite.

OBSERVATION EQUIPMENT AND PROCEDURE

A theodolite of the standard of Wild T_{2} for both horizontal and vertical circle readings and a chronometer and a stopwatch for recording instants of intersections are all that are required during observations.

Provided the theodolite is carefully levelled, no bubble reading is actually needed except slight adjustments at the time of taking either horizontal or vertical circle readings. Observations, however, should be taken on both faces of the theodolite so that any slight error in the collimation or the trunnion axis tilt will not affect the observational results appreciably. The following procedure may be followed with advantage during observations :

First Set

Star: E/W
Circle reading
Horizontal \quad Vertical

Second Set

Same as in the first set except that observations are to be taken only after about an hour so that it becomes possible for the star observed in the first set to reappear in the field of view after altering only the vertical circle reading of the theodolite.

Latitude formula

Referring to figure 3 and using the usual notations, we have :

$$
\begin{aligned}
\cos A & =\frac{\cos \Delta-\sin h_{1}^{\prime} \cdot \sin \varphi}{\cos h_{1}^{\prime} \cdot \cos \varphi} \\
& =\frac{\cos \Delta-\sin h_{1} \cdot \sin \varphi}{\cos h_{1} \cdot \cos \varphi}
\end{aligned}
$$

or $\cos \Delta\left(\cos h_{1}-\cos h_{1}^{\prime}\right)=\sin \varphi\left(\cos h_{1} \sin h_{1}^{\prime}-\sin h_{1} \cos h_{1}^{\prime}\right)$
or

$$
\begin{gather*}
\sin \varphi=\frac{\cos \Delta \sin \frac{h_{1}^{\prime}+h_{1}}{2} \cdot \sin \frac{h_{1}^{\prime}-h_{1}}{2}}{\sin \frac{h_{1}^{\prime}-h_{1}}{2} \cdot \cos \frac{h_{1}^{\prime}-h_{1}}{2}} \\
\sin \varphi=\frac{\cos \Delta}{\cos \frac{V}{2}} \cdot \sin \frac{h_{1}^{\prime}+h_{1}}{2} \tag{11}
\end{gather*}
$$

where

$$
\mathbf{V}=\boldsymbol{h}_{\mathbf{i}}^{\prime}-\boldsymbol{h}_{\mathbf{1}}
$$

Fig. 3

Also

$$
\cos \mathbf{V}=\cos ^{2} \Delta+\sin ^{2} \Delta \cdot \cos \mathbf{T}
$$

where

$$
T=t_{1}^{\prime}-t_{1}
$$

or

$$
\cos \mathrm{V}=\cos ^{2} \Delta+\sin ^{2} \Delta-2 \sin ^{2} \Delta \sin ^{2} \frac{\mathrm{~T}}{2}
$$

or

$$
2 \sin ^{2} \Delta \sin ^{2} \frac{T}{2}=1-\cos V
$$

or

$$
\begin{equation*}
\sin \Delta=\frac{\sin \frac{V}{2}}{\sin \frac{T}{2}} \tag{12}
\end{equation*}
$$

Relation (12) can be used to obtain the computed value of Δ or δ.
Thus on comparing the computed value of δ with the values of declinations of stars given in the Nautical Almanac, it is easy to identify the star of observation and to derive the actual value of δ and R.A. of the star of observation from the Nautical Almanac.

Hence, from (11) we have:

$$
\begin{equation*}
\sin \varphi=\cos \Delta \cdot \sec \frac{V}{2} \sin \frac{\boldsymbol{h}_{1}^{\prime}+h_{1}}{2} \tag{13}
\end{equation*}
$$

Azimuth formula

Referring to figure 3 and using the usual notaitons, we have:
and

$$
\begin{align*}
& \frac{\sin A}{\sin \Delta}=\frac{\sin \left(Z S_{1} P \text { or } Z S_{1}^{\prime} P\right)}{\cos \phi} \tag{14}\\
& \frac{\sin \left(Z S_{1} P \text { or } Z S_{1}^{\prime} P\right)}{\sin \Delta}=\frac{\sin T}{\sin V} \tag{15}
\end{align*}
$$

Hence, from (14) and (15) we have:
or
or

$$
\begin{align*}
& \sin A=\frac{\sin ^{2} \Delta}{\cos \varphi} \frac{\sin T}{\sin V} \\
& \sin A=\frac{\sin ^{2} \frac{V}{2}}{\sin ^{2} \frac{T}{2}} \frac{\sin T}{\sin V} \sec \varphi, \tag{12}\\
& \sin A=\tan \frac{V}{2} \cdot \cot \frac{T}{2} \sec \varphi
\end{align*}
$$

or in the case of close circumpolar stars :

$$
\begin{equation*}
\mathbf{A}=\mathbf{A}_{1}+\mathbf{R}, \text { neglecting smaller terms, } \tag{17}
\end{equation*}
$$

where

$$
A_{1}=\frac{V}{2} \cot \frac{T}{2} \sec \varphi
$$

and
$R=\left(\frac{A_{1}^{3}}{6}+\frac{A_{1} V^{2}}{12}\right) \sin ^{2} 1^{\prime \prime}$, a tabular quantity as given below in the table.
Table of R in secs
For different values of A and $\frac{V}{2}$

$A \quad \frac{V}{2}$	1000 "	2000 "	3000 "	$4000^{\prime \prime}$	$5000^{\prime \prime}$	6000 "
$2000 \prime$	$0^{\prime \prime}$	0 "	$0^{\prime \prime}$	0 "	0"	$1{ }^{\prime \prime}$
3000	0	0	0	0	1	1
4000	0	0	0	1	1	1
5000	0	1	1	1	1	2
6000	1	1	1	2	2	3
7000	1	2	2	2	3	3
8000	2	2	3	3	4	4
9000	3	3	3	4	5	5
10000	4	4	5	5	6	7
11000	5	6	6	7	7	8
12000	7	7	8	8	9	10
13000	9	9	10	10	11	12
14000	11	11	12	12	13	15
15000	13	14	14	15	16	17
16000	16	16	17	18	19	20
17000	19	20	20	21	23	24
18000	23	23	24	25	26	28
19000	27	27	28	29	31	32
20000	31	32	33	34	35	37
21000	36	37	38	39	40	42
22000	42	42	43	44	46	48
23000	48	48	49	51	52	54
24000	54	55	56	57	59	61
25000	61	62	63	64	66	68

Longitude formula

Referring to figure 3 and using the usual notations, we have :
or

$$
\begin{gather*}
\frac{\sin t_{1}^{\prime}}{\cos h_{1}}=\frac{\sin A}{\sin \Delta} \\
\sin t_{1}^{\prime}=\frac{\sin A}{\sin \Delta} \cdot \cos h_{1}^{\prime} \\
\sin t_{1}^{\prime}=\frac{\sin \frac{T}{2}}{\sin \frac{V}{2}} \cdot \sin A \cdot \cos h_{1}^{\prime} \\
\sin t_{1}^{\prime}= \tag{18}\\
\frac{\cos \frac{T}{2}}{\cos \frac{V}{2}} \cdot \frac{\cos h_{1}^{\prime}}{\cos \varphi}
\end{gather*}
$$

whence we obtain the value of t_{1}.
Now on knowing t_{1}^{\prime} by formula (18) and the R.A. of the star of observation from the Nautical Almanac, as stated before, we can easily obtain the L.S.T. of the observation and the chronometer error in order ultimately to derive the longitude of the place of observation by using wireless time signals.

Obviously the formulae (13), (14) and (18) are applicable only when S_{1} and S_{1}^{\prime} lie on the great circular are through Z, and for the sake of accuracy it is desirable to have repeated observations on both faces of the theodolite near both S_{1} and S_{i}^{\prime} as already indicated while describing the procedure of observations. But the positions S_{r} and $S_{r}^{\prime}(r=1,2, \ldots)$ may not all lie on the great circular are through Z, in which case the observations at S_{r} or S_{r}^{\prime} have to be reduced to those at S_{r}^{\prime} or S_{r}^{\prime}. so that $\mathrm{S}_{r^{\prime}}$ and S_{r}^{\prime} or S_{r} and $S_{r^{\prime}}^{\prime}$ may lie on the great circular arc through Z, either with the help of the differential relations : $\frac{d A}{d t}$ and $\frac{d h}{d t}$ deduced from the relevant formulae, or simply by the method of linear interpolation as described below.

Let the observed star be intersected at S_{r} and $S_{r}^{\prime}(r=1$ or 2$)$ and the corresponding values of horizontal and vertical circle readings as instants of intersections be H_{r}, H_{r}^{\prime}; $h r, h r^{\prime}$ and t_{r}, t_{r}^{\prime}. Now in order that $\mathrm{S}_{1}, \mathrm{~S}_{1}^{\prime}$ and S_{2}, S_{2}^{\prime} may lie on the great circular arc through Z, H_{1} and H_{2} are required to be equal to H_{1}^{\prime} and H_{2}^{\prime} respectively, either by applying corrections of $\mathrm{H}_{1}-\mathrm{H}_{1}^{\prime}$ to H_{1}^{\prime} and $\mathrm{H}_{2}-\mathrm{H}_{2}^{\prime}$ to H_{2}^{\prime} in which case the values of t_{1}^{\prime}, t_{2}^{\prime} and $h_{1}^{\prime}, h_{2}^{\prime}$ have to be reduced to those of $t_{1}^{\prime}, t_{2}^{\prime}$, and $h_{1}^{\prime}, h_{2}^{\prime}$, by applying corresponding corrections of Δt_{1}^{\prime} to $t_{1}^{\prime}, \Delta t_{2}^{\prime}$ to $t_{2}^{\prime}, \Delta h_{1}^{\prime}$ to h_{1}^{\prime} and Δh_{2}^{\prime} to h_{2}^{\prime} where

$$
\begin{array}{ll}
\Delta t_{1}^{\prime}=\frac{\left(t_{2}^{\prime}-t_{1}^{\prime}\right)\left(\mathrm{H}_{1}-\mathbf{H}_{1}^{\prime}\right)}{\left(\mathbf{H}_{2}^{\prime}-\mathbf{H}_{1}^{\prime}\right)}, & \Delta t_{2}=\frac{\left(t_{2}^{\prime}-t_{1}^{\prime}\right)\left(\mathbf{H}_{2}-\mathbf{H}_{2}^{\prime}\right)}{\left(\mathbf{H}_{2}^{\prime}-\mathbf{H}_{1}^{\prime}\right)} \\
\Delta h_{1}^{\prime}=\frac{\left(h_{2}^{\prime}-h_{1}^{\prime}\right)\left(\mathbf{H}_{1}-\mathbf{H}_{1}^{\prime}\right)}{\left(\mathbf{H}_{2}^{\prime}-\mathbf{H}_{1}^{\prime}\right)}, & \Delta h_{2}^{\prime}=\frac{\left(h_{2}^{\prime}-h_{1}^{\prime}\right)\left(\mathrm{H}_{2}-\mathbf{H}_{2}\right)}{\left(\mathbf{H}_{2}^{\prime}-\mathbf{H}_{1}^{\prime}\right)} \tag{20}
\end{array}
$$

or by applying corrections of $\mathrm{H}_{1}^{\prime}-\mathrm{H}_{1}$ to H_{1} and $\mathrm{H}_{2}^{\prime}-\mathrm{H}_{2}$ to H_{2}, in which case the values of t_{1}, t_{2} and h_{1}, h_{2} have to be reduced to those of $t_{1}^{\prime}, t_{2}^{\prime}$ and $h_{1}^{\prime}, h_{2}^{\prime}$ by applying corresponding corrections of Δt_{1} to $t_{1}, \Delta t_{2}$ to t_{2}, Δh_{1} to h_{1} and Δh_{2} to h_{2} where

$$
\begin{array}{ll}
\Delta t_{1}=\frac{\left(t_{2}-t_{1}\right)\left(\mathrm{H}_{1}-\mathrm{H}_{1}^{\prime}\right)}{\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)} & \Delta t_{2}=\frac{\left(t_{2}-t_{1}\right)\left(\mathrm{H}_{2}-\mathrm{H}_{2}^{\prime}\right)}{\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)} \\
\Delta h_{1}=\frac{\left(h_{2}-h_{1}\right)\left(\mathrm{H}_{1}-\mathrm{H}_{1}^{\prime}\right)}{\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)}, & \Delta h_{2}=\frac{\left(h_{2}-h_{1}\right)\left(\mathrm{H}_{2}-\mathrm{H}_{2}^{\prime}\right)}{\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)} \tag{22}
\end{array}
$$

The evaluation of formulae (19), (20), (21) and (22) is obviously a simple matter of arithmetical calculations involving hardly more than 2 figures.

ACCURACY

Latitude

Differentiating formula (13) with respect to φ and V and assuming the error in h_{1}^{\prime}, to be equal to that in V, for the sake of simplicity, we have :

$$
\begin{aligned}
\Delta \varphi & =\frac{1}{2} \tan \varphi\left(\cot \frac{h_{1}^{\prime}+h_{1}}{2}+\tan \frac{V}{2}\right) \cdot \Delta V \\
& =\frac{1}{2} \tan \varphi \cot \frac{h_{1}^{\prime}+h_{1}}{2} \cdot \Delta V \\
& =\frac{1}{2} \cdot \Delta V
\end{aligned}
$$

This shows that for an error of $1^{\prime \prime}$ in V or h_{1}^{\prime}, there is a corresponding error of the order of only $\frac{1^{\prime \prime}}{2}$ in φ, a relation which is very satisfactory for the determination of φ.

Azimuth

Differentiating formula (16) with respect to A, V, T and φ and assuming that the errors in h_{1}^{\prime} and t_{1}^{\prime} are equal respectively to those in V and T (with opposite sign), for the sake of simplicity, we have :

$$
\begin{aligned}
\Delta A & =\frac{\tan A}{\sin V} \cdot \Delta V+\frac{\tan A}{\sin T} \Delta T+\tan A \cdot \tan \varphi \cdot \Delta \varphi \\
& =\frac{\tan A}{\sin V} \cdot \Delta V, \text { in the case of close circumpolar stars. }
\end{aligned}
$$

It is obvious from the example, appended at the end of this article, where $\mathrm{A}=4^{\circ}, \mathrm{V}=2^{\circ}$ and $\mathrm{T}=31^{\circ}$, that for an error of $1^{\prime \prime}$ in V there is a corresponding error of the order of $2^{\prime \prime}$ in A, and the effect of an error of $1^{\prime \prime}$ in T and φ is almost negligible in the case of close circumpolar stars but it becomes more and more significant for larger values of A and at places where latitudes are considerably high.

Time

Differentiating formula (18) with respect to $t_{1}^{\prime}, \mathrm{V}$ and φ and assuming the error in h_{1}^{\prime} to be equal to that in V, for the sake of simplicity, we have :

$$
\begin{aligned}
\Delta t_{1}^{\prime} & =-\frac{\left(\tan h_{1}^{\prime}-\frac{1}{2} \tan \frac{\mathrm{~V}}{2}\right)}{\left(\cot t_{1}^{\prime}-\frac{1}{2} \tan \frac{\mathrm{~T}}{2}\right)} \cdot \Delta V+\frac{\tan \varphi \cdot \Delta \varphi}{\left(\cot t_{1}^{\prime}-\frac{1}{2} \tan \frac{T}{2}\right)} \\
& =-\tan h_{1}^{\prime} \cdot \tan t_{1}^{\prime} \cdot \Delta V+\tan \varphi \cdot \tan t_{1}^{\prime} \cdot \Delta \varphi .
\end{aligned}
$$

From the above, it is quite clear that for an error of $1^{\prime \prime}$ in V and p, the corresponding error in t_{1}^{\prime} is large for values of t_{1}^{\prime} near 90°, as in the case of close circumpolar stars, but is significantly small for smaller values of t_{1}^{\prime}, except at places where latitudes are considerably high.

CONCLUSION

The method described in this article may prove to be of value for the simultaneous determination of latitude, azimuth and time required in topographic and hydrographic surveys. But since the determination of time obtained from observations of close circumpolar stars is much less precise, the method may be recommended for general use, provided close circumpolar stars are avoided while determining time.

An example is given at the end of this article in order to make the method of observation and computation more clear.

ACKNOWLEDGEMENT

I owe special thanks to Messrs S. B. Das and K. S. Namdhari of the Survey of India for their kind assistance in computing the results of the table and the example given as an appendix, and also to Mrs. Shanti Bhattacharji for her keen interest in drawing the diagrams included in this article.

REFERENCES

Bhattacharji, J.C. (1959) : Azimuth from observations of close circumpolar stars.
Clark, D. (1951) : Plane and geodetic surveying, Part II, 4th edition. Doolittle, William (1863) : Manual of spherical and practical astronomy. Wyatt, A.G.N. (1938) : Admiralty Manual of hydrographic surveying.

Form 1

Field book

Place				
Instrument Observer	$:$	Dehra Dun, Hunter Observatory		
Wild T_{2}			\quad	Date
:---	\quad	Chronometer		
:---	$:$	S.T. T .62		
:---				

Observer : X

Object Face
Circle readings
Horizontal
Vertical

R.M.	FL	28°	52^{\prime}	$35^{\prime \prime}$
Star	FL	0	$\mathbf{4 2}$	28
Star	FR	$\mathbf{1 8 0}$	$\mathbf{4 1}$	56
Star	FL	0	42	05
Star	FR	$\mathbf{1 8 0}$	$\mathbf{4 1}$	33
R.M.	FR	208	52	24

121°	29	00
58	31	59
121	27	48
58	33	08

Instants of intersections
L.S.T.

FIRST SET

SECOND SET

R.M.	FR	208°	$\mathbf{5 2}$	$\mathbf{2 6}^{\prime \prime}$
Star	FR	180	$\mathbf{4 1}$	19
Star	FL	0	$\mathbf{4 1}$	$\mathbf{5 0}$
Star	FR	180	$\mathbf{4 1}$	$\mathbf{4 1}$
Star	FL	0	$\mathbf{4 2}$	$\mathbf{1 2}$
R.M.	FL	$\mathbf{2 8}$	$\mathbf{5 2}$	$\mathbf{3 4}$

$\mathbf{7}$	53	16.8
$\mathbf{7}$	$\mathbf{5 3}$	$\mathbf{5 2 . 2}$
$\mathbf{7}$	$\mathbf{5 4}$	27.5
$\mathbf{7}$	$\mathbf{5 5}$	$\mathbf{0 2 . 8}$

FORM 2
Computation of latitude, azimuth and time
(In case of close circumpolar stars only)

366.24

