HARMONIC ANALYSIS OF THE TIDE BY THE SEMI-GRAPHIC METHOD

by Vice-Admiral A. Dos Santos Franco

1. — Introduction

In 1959, the British Admiralty introduced a method of harmonic analysis of the tide using the hourly heights registered over 30 consecutive days.

On a sheet of squared paper (fig. 1.1) on which the vertical lines represent the days and the horizontal lines the hours, one plots the hourly heights at intervals of 2 squares (1 cm on the original of the diagram), in decimetres or in feet, in such a manner that the position of the decimal point corresponds exactly to the reading recorded. Then the points of equal reading are joined by contours. In this way one obtains the impression of a continuous topographical surface. The contours may be traced at intervals of 20 cm or 1 foot (or closer if needed), as the case may be.

Fig. 1.1 also includes one interesting detail : we see that the heights are plotted for the hours -1 and -2 of the 2nd, 3rd, 4th, etc., days, and for the hours 24 and 25 every day. It is evident that the heights recorded at the hours -1 and -2 of a given day are the repetition of the heights relating to the hours 23 and 22 of the previous day. This is to facilitate the interpolation of contours in the upper and lower parts of fig. 1.1 (*).

With the help of a geometrical explanation together with very simple arithmetical calculations, the Admiralty Tidal Handbook N° 1 (H.D. 505) shows the possibility of making the analysis using particular sections of the surface, the construction of which we have just described, and which we shall call " the tidal-surface". The principal advantage of the process rests in the minimizing during the tracing of the contours, of the effect of accidental errors which manifest themselves by irregularities in contours, irregularities which may be reduced by eye.

Having confidence in the efficiency of the method we have decided to study it in minute detail, using a more general mathematical procedure, based on the equation of the "tidal-surface". In addition, we will generalise the method in order to be able to obtain all the constituents furnished by the method of the *Tidal Institute*.

^(*) Tide of Aratú harbour (Brázil), 1948.

2. — Study of the "tidal-surface"

The height of the tide above the zero mark of the tide-gauge may be expressed by :

$$y = S_0 + \sum_{a} fH \cos (V_0 + u + qt + \varrho d - g)$$
(2a)

In this expression we shall define only q and φ , because the other symbols are well known. It is evident that q is the hourly phase variation and φ its daily variation (t being the standard time counted from 0 to 24 and d the number of days elapsed since the start).

To facilitate the writing of the equation let us make :

$$f\mathbf{H} = \mathbf{R} \tag{2b}$$

$$\mathbf{V}_0 + \boldsymbol{u} - \boldsymbol{g} = -\boldsymbol{r} \tag{2c}$$

thus we shall have :

$$y = S_0 + \Sigma R \cos (qt + \rho d - r)$$
 (2d)

If we consider t and d as independent variables, y becomes a continuous function which represents a surface referred to 3 axes of rectangular coordinates Ot, Od, Oy. This is the "tidal-surface" we have defined above. It must be pointed out that this surface is not the surface of the tide, but an artificial surface representing the phenomenon with the help of 3 parameters. Only the values of y obtained on this surface in the vertical planes parallel to Ot and for which we have d - 1 = 0, 1, 2, 3 ... are the true heights of the tide. It is evident that the intersection of the surface (2d) with a network of vertical planes parallel to Od and at intervals of one hour, and a network of vertical planes parallel to Ot and at intervals of one day, will give the observation points of fig. 1.1.

The method of harmonic analysis of the tide which we are going to describe is based on particular sections of the "tidal-surface" which are not sections parallel to Od and Ot, which we are generally accustomed to using.

We shall establish the mathematical expression for such sections of the "tidal-surface" and demonstrate that their use is legitimate for making the harmonic analysis of the *tide*.

Simplifying, let us suppose that the tide is made up of a single constituent the height of which above the mean level is expressed by :

$$y' = \mathbf{R} \, \cos \, (qt + \varrho d - r) \tag{2f}$$

Allowing that this expression is the equation of a surface referred to 3 axes of rectangular co-ordinates Ot, Od, Oy, the graphic representation of this surface is that which we see in fig. 2.1 (for which the chosen values of q and e are those of M_2).

Let us suppose that this surface is cut by a plane perpendicular to tOd for which the expression is

$$at + bd = c \tag{2q}$$

The common points to the plane (2g) and to the surface (2f) will satisfy simultaneously (2f) and (2g). Consequently, their locus will be obtained by substituting in (2f) one of the variables taken from (2g). From

16 17 12 13 15 14 18 19 20 21 22 23 24 25 26 27 28 29 30 10, 14.9 17.4 190 20.2 19.4 17.5 15.0 12.7 9.9 7.8 5.6 4.0 3.8 4.7 6.3 9.1 12.5 14.2 16.7 18.6 19.1 17.7 13.5 9.7 5.1 2.7 2.3 3.2 10.2 13.1 15.4 18.1 19.1 18.8 17.5 15.7 13.5 11.4 8.5 6.5 5.8 8.6 10.6 4.2 3.6 13.3 4.2 18.6 19.5 19.6 17.0 14.2 9.7 5.6 2.8 1.5 17.3 8.7 19.1 18.6 (7) 14.9 7.4 52 4.7 4.5 5.8 7.6 5.0 11.6 15.5 12.6 10.6 18.1 19.9 20.0-18.6 15.3 4.5 6.9 10: 14.1 3.1 17.0 19.2 20.2 00 19.2 16.8 155 12.1 147 9.0, 11.9 9.3 6.0 5.9 7.4 60 7.4 6.5 6.5 $\dot{\odot}$ 11.3 15.6 18.6 . 1.2 21.9 20.3 121 $(\bar{})$ 17.5, 9.9 (2)5 21.8 20.6 19 6 16.9 14.1 8.2 9.8 12.2 10.0 10.1 12.5 14.5 7.8 7.0 9.2 12.7 15.9 202 23.0 24.2 22 11.9 $(\mathbf{\hat{\cdot}})$ 18.1 13.5 arepsilon10.3 14.8 12.4 14.7 17.7 (20)2 221 22.8 22 21.0 18.9 16.5 102 11.5 9.1 18.1 9.1 12.0 126. 17.3 21.3 25.3 260 9.1 8.1 10.2 23.3 19.4 9.7 9.6 226 23 237 226 206 18.7 15.6 12.2 234 11.5 10.1 11.8 14.4 (1)1 20,1 26.0 27.0 24.5 19.5 16.8 8.2 8.4 9(3.)13.6 17.6 23.7 9.4 10.9 (1)3 163 19.9 20 236 24.0 23.4 44 7 9.4 13.2 19.2 244 27.4 27.2 22.0 19.5 16.0 14.2 11.5 9.1 23.8 21.2 98 13 27.5 9,5 8.0 • 20.7-22.7 239 13,6 11.8 15.6 19.0 (0) 17.0 7.9 7.9 .0 23.7 22.2 8.4 13.5 19/8 24.5 26.8 27.9 26.6 24.8 .9.1 11.5 5.9 86 7.2 10.3 10.9 15.2 18.6 21.8 250 26.8 263 16.2 12/ 9.7 7.7 6.3 .3 23.1 23.0 21.4 148 19.2 22.7 20.1 14.2 10.6 (8) 3.7 8.5 (19) 3,7 3 15 67 (1.5 2.9 0 12.1. 6.10.7 9.8 14.1 23.0 25,0 21.8 19.3 21.5 21.7 3 19.6 15.1 11.3 8.6 4.3 6.0 17.0 17.4 13.4 (20) 16.1 1.7 14.7 17.9 20.1 09.5 03 7.4 0.1 10.7 5.3 8.3 11.7 6.2 12.3 17.9 21.5 226 22.4 20,1 174 13.5 3.7 3.1 19.5 16.3 1.7 0.1 5.1 9.7 6 18 9. 7.3 5.5 6.7 9.7 13.5 161 19.0 20.3 18.9 12.0 16.1 19.4 17.8 20.6 3.0 15.8 13.3 6,6 €0) 18.9 3,2 4.1 10.2 4.9 0.9 10.4 3.4 (15 4.00.9, -42 15.8 8.9 5.5 15.0 13. (.)0.4 18.9 20.1 9.6 2.4 7.2 11.1 17.8 19.4 19.5 18.1 2.1 2.0 3.5 5.1 9.0 12.1 12.7 6.2 14.9 -0.1 4.0 5.8 8.3 34 10.2 16.6.14.4 13.2 9.8 19.0, 15.3, 10.6 6.5, 1.1 19.4 18.3 3.9 14.1 16.9 2.7 2.9 1.8 4.1 16.5 19.5 (0) 0.6 8.0 **79**.4 21.8 203 16. 3.0 5.0 4.5 10.5 13.5 18.4 19.6 19. 18.1 16.5 14.5 6.6 136 17.3 (0.9 4.6 4.8 6.4 64 • (id. 4 13.1 10.7 8.3 11.0 166 19.1 202 20.8 20.4 18.6 9.0 10.0 5.8 7.3 6.2-10.9 223 23.6 22 201 7.6 14.5 (18.) 6.7. 131 • 14.1 16.9, 19 21.4 22.3 21.9 204 17.9 15.6 20.5 24.1 26. 24.5 10.6 9.3 7.80 11.4 9.3 16.5 7.7 13.6 8.2 9.2 11.7 (16.) 0 9.3 14.5 100 19.8 21.9 23.0 23.1 21.7 19.7 17.9 15.6 12.9 11.008.8 12 17.0 21.8 26 27.2 24.6 20.6 21.9 16.4 10.0 8.8 9.1 11.8 14.1 8.8 9.5 (12) (2.9 23.3 22.6 13.6 11.1 19.5 16.6 14.0 10.8 9.8 10.0 11.1 132 16.5 19.0 21.3 12.6 17.5 25.9 21.2 215 9.4 8.5 (9) 232 26.5 27.0 24.8 C 19.5 16.0 0.2 21.8 227 228 221 11.6 25.1 17.4 14.0 (.8) 12.2 18 22.7 25.4 26.1 27.3 20.9 8.9 14.8 17.0 3.3 10.7 8.4 (7)2 12.4 8.2 $(\bar{})$ 12.2 5.8 18.1 20.0 (19) (9) 25.1 26.1 20.6 16.7 13.4 9.2 8.3 10.1 21.5 22.5 20.9 12 16.6 20.6 23.3 23.6 12.7 16.4 9.8 (.6)4 5,1 7.3 (7.0008 13.4 15.6 () io.6 24.3 239 22.2 19.2 15.8 6.4 5.9 6.3 15.0 12.0 (.)4 20,3 10.3 8.2 20.5 20.2 18.0 4,5 14.2 18.1 • 13.8 16.9 18.0 19 1 261 5.4 13.4, 10.0 14.9 200 21 (b)-21.8 20.6 18.0 5. 5.2 4.8 8.1 10.9 19.2 17.4 14.9 100 6.3 3.2 12.2 8.1 (\cdot) (•) 19.0 20.2 19.4 4.03.8 125-14.2-10 67 17.7 (1)85, 8.7, 51 10.0 14.9 176 17.5 15.0 12.7 (9:9) 7.8 5.6 4.7 6.3 18.6 19.1 2.3 3.2 6.7 $\left(\cdot \right)$ 5.8 8.6 10.6 12 15.4 18.1 19.1 6. 16.8 19.5 19.6 97.0 14.2 9.7 17.5 15.7 139 11.4 8.5 4.2 3.6 6.0 10.2 48.8 4.2 6,1\ 2.8 1.5 3.1 10,0 7.4 32 6.9 9.0 11.6 14.9 17.3 18.7 19.1 18.6 17.5 15.5 12.6 7.6 10.1 5.0 17 4.5 14.1 18.0 19.9 20.0 5.8 18.6 15.3 10.9 6.4 3.1 6.5 /6.5 7.5 9.0 1.9 14.7 17.0 19.2 20.2 20.3 19.2 16.8 15.5 12.1 9.3 7.6 6.0 5.9 7.4 7.8 11.3 15.6 18.5 21.2 21.9 20.3 16.9 12.1 7.5

4/8

10

7

18/8

FIG. 1.1

2

FIG. 2.1

this expression we derive :

$$d = c/b - at/b \tag{2h}$$

or

$$t = c/a - bd/a \tag{2i}$$

which used in (2f) will give :

$$\mathbf{y}' = \mathbf{R} \cos \left[(q - \varrho \, a/b)t + \varrho \, c/b - r \right]$$
(2j)

or

$$y' = \mathbf{R} \cos \left[(\varrho - q \ b/a)d + q \ c/a - r \right]$$
(2k)

(2j) is the equation of a curve situated in the plane (2g) expressed as a function of t, and (2k) is the equation of the same curve expressed as a function of d. As soon as we have fixed the values of a, b and c, which define the position of the secant plane, (2j) and (2k) are the harmonic expressions from which we may determine the values of R and -r with the aid of a certain number of values y' measured at the intersection of the "tidal-surface" with the secant plane. These values of R and -r will enable us to obtain, using the formulae (2b) and (2c), the harmonic constants of the constituent of the tide.

It is evident that the same will apply for the total "tidal-surface" which is the representation of the sum of the constituents. It is therefore legitimate to say that one may make the harmonic analysis is of the *tide* with the aid of any sections of the "*tidal-surface*".

We note that $a/b = -tg \alpha$ defines the inclination of the secant plane in relation to yOt. The expressions (2j) and (2k) show that the hourly phase variations depend on this inclination, which may be observed in fig. 2.1.

Moreover for

or for which we have $q - \rho \ a/b = 0$ $\rho - q \ b/a = 0$ $b/a = \rho/q \qquad (2l)$ the phase variation is zero. Therefore in all the planes having an inclination defined by (2l), the height y' of the constituent will be constant. All the sections thus defined will be straight lines as we can see in fig. 2.1.

To obtain the expressions of the curves determined by the planes (2g) on the total "tidal-surface", it is evident that it suffices to replace in (2d) the values of t or d given respectively by (2k) and (2i). Proceeding in this way we have :

$$y = S_0 + \sum_{c} R \cos \left[(q - \varrho a/b)t + \varrho c/b - r \right]$$
(2m)

$$y = S_0 + \sum_{a} R \cos \left[(\varrho - q b/a)d + q c/a - r \right]$$
(2n)

If we count t from zero hour and d from the first day of observation, the expressions (2h) and (2j) show that c/b is the co-ordinate on Od of the intersection of (2g) with the plane yOd and that c/a is the co-ordinate on Ot of the intersection of the plane (2i) with yOt. Thus we may write :

$$c/b = d'$$

$$c/a = t'$$

The expressions (2m) and (2n) are then transformed :

 $y = S_0 + \Sigma R \cos \left[(q - \rho a/b)t + \rho d' - r \right]$ (20)

and

$$y = S_0 + \sum_{c} R \cos \left[(\varrho - q \ b/a)d + qt' - r \right]$$
(2p)

3. — Choice of the Sections

On examining the expression (2o) we notice that it is possible to modify the hourly phase variation by working on the basis of the relationship a/b. As we know, the separation of the various groups of constituents of the same species becomes appreciably simplified if the coefficient of t in the expression (2o) is a multiple of 15° , as is the case for the solar constituents $(S_1, S_2 ...)$. Now, if we designate by n the number which defines the species of the constituents (0 for the long period series, 1 for the diurnal series, 2 for the semi-diurnal series, etc.), we can write the expression :

but as

we obtain

 $q - arphi a/b = 15^\circ n$ $arphi = 24 \ q - 360^\circ n$

 $a/b = 1/24 \tag{3a}$

Thus we see that for the inclination $- tan^{-1} 1/24$ of the secant plane, the hourly phase variation is completely independent of the values of q and ρ . This very interesting property constitutes the true basis of the semi-graphic method. In fig. 1.1, we see the traces of 8 secant planes inclined by $- tan^{-1} 1/24$. These traces are defined by the centres of small circumferences which form the "columns" slightly oblique in relation to Ot. The values of y corresponding to the centres of these circumferences are those used for the analysis. The values, numbering 24 per "column", enable one to separate the species by means of an adequate combination of these values. These combinations will lead to the determination of the linear

and

functions of the unknown values of $R \cos r$ and $R \sin r$ for all the constituents of the species. Since, by reason of the short period of analysis not more than 6 constituents of each species will be considered, the systems formed in dealing with the 8 columns will furnish, as we shall see, a number of equations larger than the number of unknowns which we will deal with by the method of least squares. Thus, this number of columns which may be varied at will, was chosen after having accepted it as reasonable for the reduction of accidental errors, already reduced during the tracing of the contours.

In order to be able to study the distribution of observation points in the columns, it is necessary previously to study the distribution of these columns, which necessitates some preliminary explanations.

To simplify the calculation of the coefficients needed for the analysis, and for the analysis itself, the author of the Admiralty method chose as the central hour of the period to be analysed 0 hour on the 16th day (point N in fig. 3.1). Furthermore, instead of considering the phase variation of the constituents along the axis Od, he preferred to consider it on the constant phase planes of the constituents M_1 , M_2 , M_3 ... From this second choice there results considerable simplification in the formation of the necessary systems for the separation of constituents of the same species.

Furthermore, we will understand why the choice of these planes, the traces of which are represented in fig. 3.1 by AM and NH, leads to an appreciable simplification in the calculation of the invariable coefficients needed for the analysis.

According to the expression (2l), the inclination of the planes on which the phase of a constituent of speeds q and ϱ is constant, is given by $-cot^{-1}$ (ϱ/q). Now, as any constituent M_n has a speed n times greater than M_1 , the relationship ϱ/q does not change and the expression (2l) for the whole group M will be:

$$b/a = 12^{\circ}.191/14^{\circ}.492 = -0.841$$

It is in this way that the straight lines AM and NH in fig. 3.1 are inclined by $\cot^{-1} 0.841 (49°54')$ in relation to Ot. Let us now see the phase variation of the constituents on these lines. For that, it will suffice to replace in (2p)b/a by — 0.841, which gives us :

$$y = S_0 + \Sigma R \cos [(\varrho + 0.841q)d + qt' - r]$$

If one takes as the origin 0 hour on the 16th day, or at 24 hours on the 15th day, M and N will both be points of origin for which t' = 0 and the above expression will be transformed as follows :

$$y = S_0 + \sum_{c} R \cos [(\rho + 0.841q) (d - 16) - r]$$
(3b)

If we designate by \overline{t} the hour which corresponds to any point on AM or NH and if we imagine that a vertical plane passes through this point making an angle with. Ot equal to $-tan^{-1}$ (1/24), the phases of the constituents from this point and in the above plane, will vary by 15°n $\times (t-\overline{t})$. Thus we may write for any point situated on a line parallel to the " columns" the expression of y for any instant t:

$$y = S_0 + \sum_{e} R \cos \left[15^{\circ} n \left(t - t \right) + \left(\rho + 0.841q \right) \left(d - 16 \right) - r \right] \quad (3c)$$

6.7 135.4
6.7
96,7
58.0
19.3
- 28.0
- 90.7
-130.4
300.9
30.11
0/.11
INTERN IN
PLTC .

TABLE 3-I

FIG. 3.1

If we examine table 3-I, we note that the values of $(\rho + 0.841q)$ are symmetrical for certain pairs of constituents in relation to the series M. In fact, in the diurnal species Q_1 and J_1 are symmetrical in relation to M_1 , and the same applies for 0_1 and K_1 . Also in the semi-diurnal species, the constituents (μ_2 and S_2) and (N_2 and L_2) are symmetrical in relation to M_2 . In addition, many constituents for shallow waters, obtained with M_2 retain the values of certain semi-diurnal constituents. Thus, in the formation of the systems of condition equations for the analysis there are numerous repetitions and, due to this fact, the calculation of the coefficients becomes considerably reduced.

We may now place the "columns" in the "tidal-surface". For this purpose let us first see how many days are necessary for the analysis. To make the analysis it is advisable that all the constituents should have achieved about one complete cycle of 360° on AM and NH. The number of days required for each constituent to make this cycle will be given by the relationship $360^{\circ}/(\rho + 0.841q)$.

The constituents 0_1 and K_1 make the cycle in exactly 26.40 days, a figure which should be chosen as reasonably meeting the requirements of the analysis. Indeed, as table 3-I shows, the constituents N_2 and L_2 make the cycle of 360° in 26.62 days, SN_4 and MSN_6 in 30.77 days and the others complete much more than 360° in the same time.

However, in the British Admiralty publication the number of days chosen is equal to 23.1. Although this figure does not correspond to any special cycle, the method, nevertheless, gives good results. For purposes of comparison, we have retained 23.1 days in our study.

Under these conditions, if we choose 8 symmetrical sections arranged two by two in relation to NM in order to be able to separate a maximum of 6 constituents of each species, the points of intersection of the "columns" with AM and NH should have as a difference in co-ordinate d 23.1/7 = 3.3 days.

Under these conditions, N being the central point of the observations $(0^{h},16)$, the point E (fig. 3.1) will have as co-ordinate 16 + 1.65, the point F = 16 + 1.65 + 3.3, point G = 16 + 1.65 + 2 (3.3), etc. In short the co-ordinates of the points A, B, C ... H on Od will be given by the expression :

d = 16 + 1.65 + 3.3 k

$$d - 16 = 1.65 + 3.3 k \tag{3d}$$

in which :

$$k = 0, 1, 2, 3$$
 for the right hand columns

and

k = -1, -2, -3, -4 for the left hand columns.

As AM and NH are inclined in relation to Od by $tan^{-1}0.841$ the coordinates \overline{t} of these points will be :

$$t = 0.841 \ (1.65 + 3.3 \ k) \tag{3e}$$

Consequently, if from M or N we draw the lines AM and NH with the inclination $tan^{-1}0.841$, the points A, B, C ... H may be plotted on these lines by means of (3d) or of (3e). In table 3-I we see that the values of d-16 have been calculated for the 8 columns as well as the phase variations from 0^{h} on the 16th day (or 24 hours on the 15th day) up to points A, B, C ... H of all the constituents isolated in the analysis. It is clear that these phase variations are given by the expression :

 $(\varphi + 0.841q) (1.65 + 3.3 k)$

The numerous repetitions of values which we see in the table show how much the calculation will be simplified.

To place the "columns" in fig. 1.1 it is more convenient to establish the formula which gives the co-ordinates d of the intersection of the "columns" A, B, ... with the axes Od.

Let NP (fig. 3.2) be the constant phase line of M, and QP one of these columns. In the figure $\alpha' = tan^{-1} (1/24)$ and

NR = 1.65 + 3.3 k

now,

$$\mathbf{RQ} = \overline{t} \quad \tan \alpha' = \frac{t}{24}$$

FIG. 3.2

Therefore :

i.e.

ND

$$NQ = NR + RQ = 1.035 (1.65 + 3.3 k)$$
$$NQ = 1.71 + 3.41 k$$
(3f)

Consequently, on marking on the axis Od, from 0 hrs. on the 16th day the values of NQ calculated by means of (3f), and on the straight line t = 24 h parallel to Od the same values from the point (24 h. 15) and by joining these points 2 to 2, we shall obtain the 8 " columns " at the desired inclination.

The points A, B, C...H, correspond to the time origin \overline{t} of each " column ". Although in the original method the author judged it necessary to work with 16 values of y only on each column, the process of elimination will be much more accurate if we work, as we shall now, with 24 points on each " column ".

In fig. 1.1, we see the straight lines starting from points (0 h. 16) and (24 h. 15) which are the locus of the instants \overline{t} from which one must take the ordinates on each column to transcribe them on the form 3-A. It is in this way that column A of the form 3-A is the result of the transcription of column A in fig. 1.1, carried out in the following manner : we take as the first ordinate that one which is in the circle situated at the intersection of the "column" A of fig. 1.1 with the straight line which passes through M (24 h. 15). The following ordinates are those which are situated on the circles of column A which follow one another in the same manner as the hours t increasing up to the last point situated in the lower part of column A. From there one passes to the upper part of the same column and continues the transcription of the values of y descending as

far as the last point before the initial hour. One transcribes the other columns in the same manner, in columns B, C ... H of form 3-A.

$t = \overline{t}$	Α	В	С	D	Е	F	G	Н
(0)	56	97	65	48	80	105	60	0
(1)	80	106	75	80	125	138	78	20
(2)	121	121	98	125	170	168	110	75
(3)	170	142	134	172	212	192	148	140
(4)	210	165	174	210	232	203	181	201
(5)	230	183	200	234	230	202	202	240
(6)	230	188	214	225	205	178	204	268
(7)	210	175	202	200	160	140	190	250
(8)	168	152	168	145	100	100	160	205
(9)	120	128	130	90	55	76	122	142
(10)	85	105	90	48	30	70	95	88
(11)	76	96	63	28	36	80	75	41
(12)	81	98	55	35	65	105	75	29
(13)	112	110	60	60	104	130	88	50
(14)	150	128	85	102	152	160	120	90
(15)	190	150	118	155	195	190	150	160
(16)	225	172	150	198	224	195	180	218
(17)	245	190	185	225	224	190	199	255
(18)	244	194	204	230	202	168	195	268
(19)	210	181	200	205	160	133	180	244
(20)	168	160	180	160	110	100	144	195
(21)	120	130	148	110	68	78	112	140
(22)	55	110	108	63	45	70	78	70
(23)	55	98	72	40	50	82	59	18

FORM 3-A

4. - Separation of the groups of constituents of the same species

If in the expression (3c) we make

$$(\rho + 0.841q) \ (d - 16) - r = -r' \tag{4a}$$

we obtain :

$$y = S_0 + \sum_{c} R \cos r' \cos 15^{\circ} n (t - \bar{t}) + \sum_{c} R \sin r' \sin 15^{\circ} n (t - \bar{t})$$
(4b)

The values of $15n \ (t-\overline{t})$ and the values corresponding to cosines and sines may now be put in the table. In this way we obtain table 4-I. We may easily see that a sum of the products of $\cos 15^{\circ}n \ (t-\overline{t}) \times R \cos r'$ and of $\sin 15^{\circ}n \ (t-\overline{t}) \times R \sin r'$ in each horizontal line is the mathematical expression of y for the point considered in the "column". Afterwards, it is possible to choose a suitable combination of the terms y in such a way as to isolate a group of the same species. An example will serve to make the process clear. Let us take the column $\cos 30^{\circ} \tau$ in table 4-I. If we assign to all the negative values the multiplier — 1, to all the positive values of the multiplier 1, and to all the 0 values the multiplier 0, we have the set of multipliers of column (2) of table 4-II. Let us take a strip of paper and write on it these multipliers in such a way that each corresponds to a horizontal line of table 4-I. We may make these multipliers correspond to

			4	8888888888888	
nal	Coefficients of	ه ^۲ nis ۵.4∡	sin 90°.	$\begin{smallmatrix} 0.000\\ -0.$	
Sixth-diurnal	Coeffi	ζ Β " cos դ'	cos 90° τ	$\begin{array}{c} 1.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 1.000\\ 0.$	
<i>S</i> 1			90°τ	$egin{array}{c} 0 & 0 & 0 \\ 90 & 270 & 270 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & $	
urnal	Coefficients of	کّR, sin ۳'،	sin 60° τ	$\begin{array}{c} 0.000\\ 0.866\\ 0.866\\ 0.000\\ 0.866\\ 0.000\\ 0.866\\ 0.866\\ 0.000\\ 0.866\\ 0.000\\ 0.866\\ 0.000\\ 0.866\\ 0.000\\ 0.000\\ 0.866\\ 0.000\\ 0.$	same
Quarter-diurnal	Coeffi	Σ Β' CO3 Ի'	cos 60° τ	$\begin{array}{c} 1.000\\ -0.500\\ -0.500\\ -0.500\\ -0.500\\ -0.500\\ -0.500\\ -0.500\\ 0.500\\ 0.500\\ 0.500\\ 0.500\\ \end{array}$	Repeat with same sign.
			00° τ	$\begin{smallmatrix}&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&$	
rnal	Coefficients of	ε'a nis ∗Яζ	sin 45° t	$\begin{array}{c} 0.000\\ 0.707\\ 1.000\\ 0.707\\0.707\\0.707\\0.707\\ 0.707\\ 0.707\\ 0.707\\ 0.707\\ 0.707\\ 0.707\\ 0.707\end{array}$	opposite
Third-diurnal	Coeffi	Σ Β [*] cos [*] Υ	cos 45° τ	$\begin{array}{c} 1.000\\ 0.707\\ 0.707\\ -0.707\\ -0.707\\ 0.707\\ 0.707\\ 0.707\\ 0.707\\ 0.707\\ 0.707\\ 0.707\end{array}$	with
F			45°T	$\begin{smallmatrix}&&0\\&&&45\\&&&&45\\&&&&3\\&&&&&3\\&&&&&&\\&&&&&&&\\&&&&&&&&\\&&&&&&$	Repeat sign.
'nal	Coefficients of	ی¶ nis ⊮Ω	sin 30° τ	$\begin{array}{c} 0.000\\ 0.500\\ 0.500\\ 0.866\\ 0.866\\ 0.500\\ 0.$	same
Semi-diurnal	Coeffi o	ະ`1 ຂos r's ΣR₂ cos r's	cos 30° τ	$\begin{array}{c} 1.000\\ 0.866\\ 0.500\\ 0.500\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.866\\ 0.000\\ 0.866\\ 0.866\end{array}$	Repeat with sign.
			30°t	$\begin{smallmatrix}&&&&&\\&&&&&\\&&&&&\\&&&&&\\&&&&&\\&&&&&\\&&&&$	
ırnal	icients of	r't niz 183	sin 15°τ	$\begin{array}{c} 0.000\\ 0.259\\ 0.500\\ 0.500\\ 0.966\\ 0.966\\ 0.966\\ 0.966\\ 0.966\\ 0.500\\ 0.500\\ 0.500\\ 0.509\end{array}$	opposite
Diur	Coeffi o	ະມີ ຂວງ ເມື່	cos 15°τ	$\begin{array}{c} 1.000\\ 0.966\\ 0.866\\ 0.707\\ 0.259\\ 0.$	Repeat with esign.
		efficients of ΣR _" cos r' _"	15°τ	$\begin{array}{c} 1200\\ 1500\\ 1500\\ 1500\\ 1500\\ 1500\\ 1500\\ 100\\ 1$	Repea sign.
L.P.		icien of 1ª cos	S	00000000000	
T.			U		
$S_{0} + C_{0}$					
$1 = \underline{j} - \underline{j}$				010840908001	12 to 23

TABLE 4-I

each column of $\Sigma \cos r'$ and $\Sigma \sin r'$ of the table and add the products.

We see that by this means, all the sums of sines are 0 and all the sums of cosines are 0, except that of the columns $R_2 \cos r'_2$ and $R_6 \cos r'_6$. With the multipliers of column (b) of table 4-II, drawn up in the same way but considering the signs of the values of column sin 30° τ , the sum of all the products will be 0 except for $R_2 \sin r'_2$, and $R_6 \sin r'_6$.

1	а	2	b	3	с	4	d	6	f
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	$\begin{array}{c} 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	$\begin{array}{c} 1\\ 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ 1\\ 1\\ -1\\ -$	$\begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -$	$ \begin{array}{c} 1\\ 1\\ 0\\ -1\\ -1\\ -1\\ 0\\ -1\\ -1\\ 0\\ -1\\ -1\\ 0\\ -1\\ -1\\ 0\\ 1 \end{array} $	$\begin{array}{c} 0 \\ 1 \\ 1 \\ 0 \\1 \\ -1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ -1 \\ -1$	$ \begin{array}{c} 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ $	$\begin{array}{c} 0\\ 1\\ 1\\ 0\\ -1\\ -1\\ 0\\ 1\\ 1\\ 0\\ -1\\ -1\\ 0\\ -1\\ 1\\ 0\\ -1\\ -1\\ -1 \end{array}$	$ \begin{array}{c} 1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $

TABLE 4-II

This procedure is a general one and each of the columns of multipliers appearing in table 4-II has been prepared in this way to separate a group of constituents of the same species. The interference of the sixth-diurnal species on the semi-diurnal and of the third-diurnal on the diurnal can be very easily eliminated as will be seen below. The symbol which is found at the head of each column of this table represents the group to be separated. The symbol 1, which is the subscript of the diurnal group, is used to indicate the separation of the cosines of the diurnal group, and the symbol a, first letter of the alphabet, for the separation of the sines of the diurnal group; 2 for the cosines of the semi-diurnal group, and b for the sines of the semi-diurnal group, etc.

The sum of the values of $(\cos 15^{\circ}n \sum_{c} R \cos r')$ and $(\sin 15^{\circ}n \sum_{c} R \sin r')$ in each horizontal row of (0) to (23) of table 4-I is the expression of y which corresponds to the points of intersection of the lines (0) to (23) with the "columns" A, B, C, ... H of fig. 3.1. Thus, if we combine the 24 values of y of each "column" A, B, C, etc., using the multipliers of table 4-II, we shall obtain the numerical values, which are recorded in form 4-A, for

HARMONIC ANALYSIS OF THE TIDE

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	sin	12.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	os	12.000 12.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	sin	13.856 13.856
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	cos	10 000 000 00 00 00 00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.5	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ZR ₃ cos	$\begin{array}{c} -4.828 \\ -4.828 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
sin $r_1 \Sigma R_2 \cos$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0	sin	14.928 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sin	cos	14.928 000000000000000000000000000000000000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	sin	15.192 000000000000000000000000000000000000
X S.+ Σ.R. cos r. 24.000 24.000 24.000 66 00 00 00 00 00 00 00 00 00 00 00	ΣR ₁ cos r' ₁	$\begin{array}{c} 15.192\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
X OHERLOWUTTON	$S_{n} + \sum_{\sigma} R_{\sigma} \cos r_{\sigma}$	24.000 000000000000000000000000000000000
	X	0

TABLE 4-III

6

the functions which we shall call X to which we shall apply as subscripts the symbols which are found at the head of the columns in table 4-II.

The table 4-III gives the coefficients $\sum_{c} R \cos r'$ and $\sum_{c} R \sin r'$ in these functions. This table was constructed by using the multipliers of table 4-II and the values of cosines and sines of the angles of table 4-I. Now let us write explicitly the functions of table 4-III :

$$X_0 = 24 \sum_{c} R_0 \cos r'_0 \qquad (4c)$$

$$X_1 = 15.192 \sum_{o} R_1 \cos r'_1 - 4.828 \sum_{o} R_3 \cos r'_3$$
 (4d)

$$\mathbf{X}_a = 15.192 \sum_c \mathbf{R}_1 \sin \mathbf{r}_1' + 4.828 \sum_c \mathbf{R}_3 \sin \mathbf{r}_3' \qquad (4e)$$

$$X_{2} = 14.928 \sum_{o} R_{2} \cos r_{2}' - 4.000 \sum_{o} R_{6} \cos r_{6}$$
(4f)

$$X_{b} = 14.928 \sum_{c} R_{2} \sin F_{2} + 4.000 \sum_{c} R_{6} \sin F_{6}$$
(4g)
$$X_{c} = 14.484 \sum_{c} R_{2} \cos F_{2}$$
(4h)

$$X_{2} = 14.484 \sum_{a} B_{2} \sin r'_{2}$$
(4i)

$$X_4 = 16.000 \sum_{c} R_4 \cos r'_4 \qquad (4j)$$

$$\int 1.15 \, X_d = 16.000 \, \sum_{c} R_4 \, \sin r'_4 = U_d \tag{4k}$$

$$X_6 = 12.000 \sum_{c} R_6 \cos r'_6$$
 (41)

$$X_f = 12.000 \sum_{c} R_6 \sin r'_6 \qquad (4m)$$

The expressions (4d), (4e), (4j) and (4k) give :

15.192
$$\sum_{c} R_1 \cos r'_1 = X_1 + \frac{X_3}{3} = U_1$$
 (4*h*)

15.192
$$\sum_{c} R_{1} \sin r'_{1} = X_{a} - \frac{X_{c}}{3} = U_{a}$$
 (40)

and the expressions (4f), (4g), (4l) and (4m) give us :

14.928
$$\sum_{c} R_2 \cos r'_2 = X_2 + \frac{X_6}{3} = U_2$$
 (4*p*)

14.928
$$\sum_{c} R_{2} \sin r'_{2} = X_{b} - \frac{X_{f}}{3} = U_{b}$$
 (4q)

The form 4-A shows us the numerical values of X and U as given by the above formulas.

5. — Separation of the constituents

Now we shall be able to proceed with the separation of the constituents of each species. We have obtained functions X and U the numerical values of which are equal to the contributions of all the constituents of a same group. Furthermore, table 4-III shows that all the functions X with numerical subscripts have only contributions in $R \cos r'$ and that the

	Α	В	С	D	E	F	G	н
X.	3611	3379	3178	3188	3234	3253	3205	3407
X1 0.333X3	187 9	— 11 1	48 	161 11	1 1	$-35 \\ 2$	-102 - 2	-185 -4
U1	196	- 10	32	150	136	53	- 104	- 189
X. 0.333X.	— 74 0	62 3	3:8 9	— ⁹ 5	$- 21 \\ 2$	51 5	60 0	— 38 4
U.ª	— 74	— 59	47	4	19	56	60	_ 34
X ₂ 0,333X ₆		691 1	$-1106 \\ - 2$	1403 1	- 990 2	501 2	997 1	-1863 - 4
\mathbf{U}_2	1261	692			<u> </u>	503	- 998	
Хь 333Х/	466 1	$-\overset{132}{2}$	$- 82 \\ - 3$	472 0	1054 2	839 1	241 0	$56 \\ 2$
U۵	467	130	— 85	472	1056	840	241	58
X3 Xc	$- 28 \\ - 1$	3 9		— 33 14	4 5	-7 - 7 - 15	$\begin{bmatrix} - & 7\\ - & 1 \end{bmatrix}$	$-12 \\ -13$
$\begin{array}{c} X_4 \\ X_d \\ U_f = 1.15 X_d \end{array}$	47 38 44	53 14 16	$\begin{array}{r}12\\26\\30\end{array}$	32 31 36	48 10 12	$\begin{array}{ccc} & 49 \\ & 23 \\ & 26 \end{array}$	5 1 1	-41 -2 -2
Xe Xf	$-\frac{23}{4}$	$- \frac{2}{5}$	— 7 9	- ³ - 1	7 7	- 6 3	$- 2 \\ - 1$	-11 - 6

FORM 4-A

functions X with literal subscripts have only contributions in $R \sin r'$. The same is true for the functions U as we can see in the expressions (4k) and (4h) to (4q). Therefore, if we designate by l the sum of all the terms of the functions with numerical subscripts and by l' the sum of all the terms of the functions with literal subscripts, we may write :

$$l = C \sum_{c} R \cos r'$$
 (5a)

$$l' = -C \sum_{c} R \sin r'$$
 (5b)

where C represents the numerical coefficients for X and U. If in (4a) we replace (d - 16) by the second part of (3d) and if we transfer to (5a) and (5b) the value of r' which results from this, we shall obtain after development :

$$l = C \sum_{c} [R \cos r \cos (\rho + 0.841 q) (1.65 + 3.3 k) + R \sin r \sin (\rho + 0.841 q) (1.65 + 3.3 k)]$$
(5c)
$$l' = -C \sum_{c} [R \cos r \sin (\rho + 0.841 q) (1.65 + 3.3 k) - R \sin r \cos (\rho + 0.841 q) (1.65 + 3.3 k)]$$
(5d)

r	1	1		T	r	
	Н	$\begin{array}{c} 0.690 \\ -0.924 \\ -0.924 \\ -0.924 \\ 0.690 \\ 0.383 \end{array}$	$\begin{array}{c} 0.366 \\ -0.914 \\ -0.914 \\ -0.914 \\ -0.914 \\ -0.733 \\ -0.712 \end{array}$		Н	$\begin{smallmatrix} & 0.724 \\ & 0.724 \\ & 0.383 \\ & 0.000 \\ & 0.383 \\ & 0.383 \\ & 0.383 \\ & 0.383 \\ & 0.383 \\ & 0.724 \\ & 0.930 \\ & 0.405 \\ & 0.405 \\ & 0.405 \\ & 0.000 \\ & 0.702 \\ & 0.702 \\ \end{smallmatrix}$
-	IJ	$\begin{array}{c} -0.719 \\ -0.383 \\ 1.000 \\ -0.383 \\ -0.719 \\ 0.924 \end{array}$	$\begin{array}{c} -0.881\\ -0.366\\ -0.366\\ -0.366\\ -0.881\\ 0.553\\ 0.553\\ \end{array}$		ť	$\begin{smallmatrix} -0.695\\ -0.0024\\ -0.000\\ -0.924\\ -0.925\\ -0.933\\ -0.000\\ -0.930\\ 0.000\\ 0.933\\ 0.9$
(k)	F	-0.700 0.383 0.383 0.383 0.383 0.383 0.324	$\begin{array}{c} -0.572 \\ 0.392 \\ 1.000 \\ 0.392 \\ 0.392 \\ -0.572 \\ 0.530 \end{array}$	(k)	F	$\begin{array}{c} -0.714 \\ -0.924 \\ 0.000 \\ 0.924 \\ -0.924 \\ 0.714 \\ -0.920 \\ 0.000 \\ 0.000 \\ 0.820 \\ 0.820 \\ 0.838 \\ 0.848 \\ 0.848 \end{array}$
(1.65 + 3.3k)	Э	0.710 0.924 1.000 0.924 0.710 0.383	$\begin{array}{c} 0.748\\ 0.925\\ 1.000\\ 0.925\\ 0.748\\ 0.117\\ 0.944\end{array}$	(1.65 + 3.3k)	ы	$\begin{array}{c} -0.705\\ -0.383\\ 0.000\\ 0.383\\ 0.383\\ 0.383\\ 0.383\\ 0.383\\ 0.383\\ 0.379\\ 0.000\\ 0.379\\ 0.664\\ 0.379\\ 0.093\\ 0.331\\ 0.331\end{array}$
(p + 0.841q)	D	0.710 0.924 1.000 0.924 0.710 0.383	$\begin{array}{c} 0.748\\ 0.925\\ 1.000\\ 0.748\\ 0.748\\ 0.748\\ 0.117\\ 0.944 \end{array}$	(p + 0.841q)	D	$\begin{array}{c} 0.705\\ 0.383\\ 0.000\\ 0.000\\ -0.383\\ -0.383\\ -0.383\\ -0.383\\ -0.383\\ -0.383\\ -0.383\\ -0.383\\ -0.333\\ -0.993\\ -0.331\\ -0.331\\ \end{array}$
cos	IJ	-0.700 0.383 1.000 0.383 0.383 -0.700 -0.724	-0.572 0.392 1.000 0.392 0.572 0.572 0.530	sin	С	$\begin{array}{c} 0.714\\ 0.924\\ 0.000\\ -0.014\\ -0.924\\ -0.714\\ 0.383\\ 0.383\\ 0.383\\ 0.920\\ -0.920\\ -0.820\\ 0.938\\ -0.820\\ 0.938\\ -0.820\\ -0.820\\ -0.848\end{array}$
	в	-0.719 -0.383 1.000 -0.383 -0.383 -0.719 0.924	$\begin{array}{c} -0.881 \\ -0.366 \\ 1.000 \\ -0.366 \\ -0.381 \\ 0.553 \\ 0.533 \end{array}$		В	$\begin{array}{c} -0.695\\ -0.924\\ 0.000\\ -0.924\\ 0.695\\ 0.383\\ 0.383\\ 0.383\\ -0.930\\ 0.000\\ -0.933\\ -0.993\end{array}$
	А	0.690 -0.924 -0.924 -0.924 0.690 -0.383	$\begin{array}{c} 0.366 \\ -0.914 \\ 1.000 \\ 0.914 \\ 0.366 \\ 0.366 \\ -0.712 \\ -0.712 \end{array}$		A	$\begin{array}{c} -0.724\\ 0.383\\ 0.000\\ -0.383\\ -0.383\\ 0.724\\ -0.333\\ 0.724\\ -0.405\\ 0.405\\ 0.930\\ 0.93$
			So Mm MS,			Mm So MS,
nonte	SIIION		2MN, M. 2MS, 2SM, MSN,	nents		2MN, M. 2MS, 2SM, MSN,
Conctituente	Tompti	MO ^s MA ^s MK _s	MN, M, SN, SN,	Constituents		MO ^s MKs MKs MKs SN
		QQAX.QQ	$^{2}_{\mathrm{S}}^{\mathrm{H}_{2}}_{\mathrm{S}}$		1	2S _{Ss} r ₂ ^M Ss ²

TABLE 5-I

INTERNATIONAL HYDROGRAPHIC REVIEW

Table 3-I gives the values of $(\rho + 0.841 \ q)$ $(1.65 + 3.3 \ k)$ for the "columns" A to H, of the "tidal-surface". We may see that the angles of columns A and H have the same numerical values, but are of opposite signs. The same applies to columns B and G. C and F. D and E. Thus, the cosines of these angles will be equal in value and in signs, and the sines will be equal and of opposite sign. This is to be seen in table 5-II which gives the values of the sines and cosines of the angles $(\rho + 0.841 \ q)$ $(1.65 + 3.3 \ k)$ for each column A, B, etc., and each constituent Q_1 , O_1 , etc., μ_2 , N_2 , etc.

Consequently, we may add the l functions for A and H, B and G, etc., and the results will be freed from the terms in $R \sin r$. The same applies to the differences between the values of l' for A and H, B and G, etc., which will be freed from the term in $R \sin r$. In form 5-A, we see the practical values of l and l' calculated as just described. We can then write the following equations

		A + H	B + G	C + F	$\mathbf{D} + \mathbf{E}$		A—H	B—G	C—F	D—E
Xo	R cos r	7018	6584	6431	6422	R sin r	204	174	— 75	<u> </u>
R cos r	U1 U2 X3 X4 X4		58	$-1611 \\ -56$	80	Ua Ub Xc Ud Xf	$-\begin{array}{c} - & 40 \\ 409 \\ 12 \\ 46 \\ 2 \end{array}$	$ \begin{array}{r} 119 \\ 111 \\ 8 \\ 15 \\ 6 \end{array} $	$\begin{array}{ccc} - & 9 \\ - & 925 \\ - & 13 \\ 56 \\ 12 \end{array}$	$ \begin{array}{rrrr} & 15 \\ & 584 \\ & 9 \\ & 24 \\ & 6 \\ \end{array} $
		A + B	B + G	C + F	$\mathbf{D} + \mathbf{E}$		—(A—H)	—(B —G)	(CF)	(DE)
R sin r	Ua Ub Xc Ud Xf	$\begin{array}{c} 108 \\ 525 \\ 14 \\ 42 \\ 10 \end{array}$	371 	4	1528 19	$U_1 \\ U_2 \\ X_3 \\ X_4 \\ X_6$	$ 606 \\ 7 \\ 16 \\ 88 \\ 34$	$\begin{array}{cccc} - & 94 \\ - & 306 \\ - & 10 \\ - & 48 \\ & 0 \end{array}$	$ \begin{array}{r} 1 \\ 605 \\ 42 \\ 37 \\ 1 \end{array} $	$ 14 \\ 414 \\ 29 \\ 16 \\ 4$

FORM 5-A

where c(A), c(B), etc., represent the cosines of table 5-I for columns A, B, etc., and s(A), s(B), etc., the sines :

$$l(A) + l(H) = C \sum_{c} \{ [c(A) + c(H)] \ R \cos r \} \}$$

$$l(B) + l(G) = C \sum_{c} \{ [c(B) + c(G)] \ R \cos r \} \}$$

$$l(C) + l(F) = C \sum_{c} \{ [c(C) + c(F)] \ R \cos r \} \}$$

$$l(D) + l(E) = C \sum_{c} \{ [c(D) + c(E)] \ R \cos r \} \}$$

$$l'(A) - l'(H) = -C \sum_{c} \{ [s(A) - s(H)] \ R \cos r \} \}$$

$$l'(B) - l'(G) = -C \sum_{c} \{ [s(B) - s(G)] \ R \cos r \} \}$$

$$l'(C) - l'(F) = -C \sum_{c} \{ [s(D) - s(E)] \ R \cos r \} \}$$

$$l'(D) - l'(E) = -C \sum_{c} \{ [s(D) - s(E)] \ R \cos r \} \}$$

In the same way, if we total the symmetrical values of l', and the differences in symmetrical values of l, the results will be freed from $R \cos r$.

Thus we obtain :

$l'(A) + l'(H) = C \sum_{A} \{ [c(A) + c(H)] R \sin r \} \}$	
$l'(B) + l'(G) = C \sum_{a}^{b} \{ [c(B) + c(G)] R \sin r \}$	
$l'(C) + l'(F) = C \sum_{n=1}^{\infty} \{ [c(C) + c(F)] R \sin r \}$	
$l'(D) + l'(E) = C \sum_{n=1}^{\infty} \{ [c(D) + c(E)] R \sin r \}$	
c ((5g)
$l(A) - l(H) = C \sum_{n \in I} \{ [s(A) - s(H)] R \sin r \}$	(Jy)
$l(\mathbf{B}) - l(\mathbf{G}) = C \sum_{i=1}^{r} \{ [s(\mathbf{B}) - s(\mathbf{G})] \ \mathbf{R} \ \sin r \}$	
$l(\mathbf{C}) - l(\mathbf{F}) = \mathbf{C} \sum_{i=1}^{c} \{ [s(\mathbf{C}) - s(\mathbf{F})] \; \mathbf{R} \; \sin r \}$	
$l(\mathbf{D}) - l(\mathbf{E}) = C \sum_{n=1}^{\infty} \{ [s(\mathbf{D}) - s(\mathbf{E})] \ \mathbf{R} \ \sin r \}$	

We obtain in this way 8 equations in $R \cos r$ and in $R \sin r$. As we have not considered more than 6 constituents in each group, we have for each group a number of systems of linear equations larger than the number of unknowns, which we may resolve by the method of least squares.

We may now make a very important observation: the expressions (5f) and (5g) show that the system (5f) only differs from (5g) by the known terms (first left-hand terms) if we invert the signs of the 4 last equations of (5g). We shall therefore have only one matrix for the two systems of each group. Table 5-I again shows us that c(A) = c(H), c(B) = c(G), etc., and s(A) = -s(H), s(B) = s(G), etc., which permits us to double the coefficients C of (5f) to (5i) and organize the matrices by copying the values of cosine and sine of (A) to (D) of table 5-I for each consistuent. This is what has been done to construct table 5-II.

Table 5-II shows us the systems in which the repetition of the coefficients is remarkable. We see that there are only long period constituents which have different matrices for the unknown $R \cos r$ and $R \sin r$. We also see that the diurnal constituents and third-diurnal constituents may be determined as a function of a same matrix, and likewise for the fourth-diurnal and sixth-diurnal constituents, the matrix of which is slightly different from that which corresponds to semi-diurnal constituents. To take account of the difference between the general coefficients, it suffices to divide the final values of R by a coefficient equal to their ratio. In the case of third-diurnal constituents, this coefficient will be 0.953 and in the case of the fourth-diurnal constituents it will be 1.333.

In form 6-D, we see that these coefficients are designated by c.

The solution of these very numerous equations by the method of least squares leads to inverse matrices, i.e. to the multipliers of the known terms which we see in table 5-III. On transcribing these multipliers on a sheet of paper, in such a way that the columns shall have the same width as the columns of form 5-A, and in placing the sheet of paper in such a way that the values corresponding to M_2 for example are coincident with the row U_2 , the sum of the products will be $R \cos r$ for this component. The same multipliers juxtaposed to row X_b will give $R \sin r$. This is a general rule for obtaining all the values of $R \cos r$ and $R \sin r$ which appear in form 5-B. These values are not definitive for the diurnal and semi-

TABLE 5-II

General coefficient : 48,000										
Ro	cos r	So	Mn	n N	IS ₇	Mm	MS,	R sin r		
X۰	$ \begin{array}{c} \mathbf{A} + \mathbf{H} \\ \mathbf{B} + \mathbf{G} \\ \mathbf{C} + \mathbf{F} \\ \mathbf{D} + \mathbf{E} \end{array} $	1 1 1 1	$\begin{array}{c} -0.9 \\ -0.3 \\ 0.3 \\ 0.9 \end{array}$	66 0 92 0).366).881).572).748	0.405 0.930 0.920 0.379	$\begin{array}{c}0.930 \\0.437 \\ 0.820 \\ 0.664 \end{array}$	AH BG CF DE X ₀		
			Gener	al coeffi	cient : 3	80,384				
	ſ	Q1	O ₁	M ₁	K ₁	J1	001.			
U.		$\begin{array}{c} 0.690\\ -0.719\\ -0.700\\ 0.710\\ 0.724\\ 0.695\\ -0.714\\ -0.705\end{array}$	$\begin{array}{c} -0.924 \\ -0.383 \\ 0.383 \\ 0.924 \\ -0.383 \\ -0.924 \\ -0.924 \\ -0.924 \\ -0.383 \end{array}$	$\begin{array}{c} 1.000\\ 1.000\\ 1.000\\ 1.000\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} -0.924 \\ -0.383 \\ 0.383 \\ 0.924 \\ 0.383 \\ 0.924 \\ 0.924 \\ 0.924 \\ 0.383 \end{array}$	$\begin{array}{c} 0.690\\ -0.719\\ -0.700\\ 0.710\\ -0.724\\ -0.695\\ 0.714\\ 0.705\\ \end{array}$	$\begin{array}{c} -0.383\\ 0.924\\ -0.924\\ 0.383\\ 0.924\\ -0.383\\ -0.383\\ 0.924\\ 0.924\\ \end{array}$	$ \begin{array}{c} A + H \\ B + G \\ C + F \\ D + E \\ -(A - H) \\ -(B - G) \\ -(C - F) U_{1} \\ -(D - E) \end{array} $		
			MO ₃	M₃	MK₃					
	1	,_ _	Gener	al coeffi	cient : 2	28,968				
General coefficient : 29,856										
		{ 1 9	N_2	M ₂	L2	S2	2SM₂			
U2 U3	A+HB+GC+FD+EA-HB-GC-F	$\begin{array}{r} 0,366\\0,881\\-0.572\\0.748\\0.930\\0.437\\0.820\end{array}$	$\begin{array}{r} -0.914 \\ -0.366 \\ 0.392 \\ 0.925 \\ -0.405 \\ -0.930 \\ -0.920 \end{array}$	$1.000 \\ 1.000 \\ 1.000 \\ 1.000 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} -0.914 \\ -0.366 \\ 0.392 \\ 0.925 \\ 0.405 \\ 0.930 \\ 0.920 \end{array}$	$\begin{array}{r} 0.366\\0.881\\0.572\\0.748\\0.930\\0.437\\0.820\end{array}$	$\begin{array}{r} -0.731 \\ 0.553 \\ -0.345 \\ 0.121 \\ -0.682 \\ 0.833 \\ -0.938 \end{array}$	$ \begin{array}{c} \mathbf{A} + \mathbf{H} \\ \mathbf{B} + \mathbf{G} \\ \mathbf{C} + \mathbf{F} \\ \mathbf{D} + \mathbf{E} \\ - (\mathbf{A} - \mathbf{H}) \\ - (\mathbf{B} - \mathbf{G}) \\ - (\mathbf{C} - \mathbf{F}) \\ \mathbf{U}_{\mathbf{z}} \end{array} $		
	D—E	-0.664	0,379	0	0,379	0.664	0.993	(DE)		
		r	Gener	al coeff:	icient : 3	32,000	1	1		
			MN₄	M.	SN₄	MS4	S.			
X4 X6 Ud X7			$\begin{array}{c}0.914\\ 0.366\\ 0.392\\ 0.925\\0.405\\0.930\\0.920\\0.379\end{array}$	$\begin{array}{c} 1.000\\ 1.000\\ 1.000\\ 1.000\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ \end{array}$	$\begin{array}{c} -0.712 \\ -0.117 \\ 0.530 \\ 0.944 \\ 0.702 \\ 0.993 \\ 0.848 \\ 0.332 \end{array}$	$\begin{array}{ c c c c c } -0.881 \\ -0.572 \\ 0.748 \\ -0.930 \\ -0.437 \\ 0.820 \end{array}$	$\begin{array}{c} -0.731 \\ 0.553 \\ -0.345 \\ 0.121 \\ -0.682 \\ -0.833 \\ -0.938 \\ 0.993 \end{array}$	$ \begin{array}{c} A+H \\ B+G \\ C+F \\ M+E \\ -(A-H) \\ -(B-G) \\ (C-F) \\ -(D-E) \\ \end{array} $		
			2MN ₆	M.	MSN₀	2MS ₆	2SM₄			
l			Gene	ral coeff	icient :	24,000				

		MO ₃ M ₃ MK ₃		2MN ₆ M6 2MS6 2SM6 2SM6					
± (D-E)	324 604 928			$\begin{array}{c} & - & 337 \\ & - & 94 \\ & - & 94 \\ & 196 \\ & 831 \\ & 831 \\ & 1162 \\ & 11758 \end{array}$	0				
± (CF)	872 698 1570				0				
± (B-G)	1017 		$\begin{array}{c} - 597 \\ - 944 \\ 108 \\ 694 \\ - 305 \\ 952 \\ 952 \end{array}$	$\begin{array}{c c} -1058 \\ -1058 \\ -855 \\ -359 \\ -359 \\ 379 \\ 379 \\ 379 \\ \end{array}$	0				
± (A—H)	522 		$\begin{array}{c} 638 \\ - 331 \\ - 331 \\ 76 \\ - 565 \\ - 56$	$\begin{array}{c} - 570 \\ - 570 \\ 139 \\ 139 \\ 855 \\ - 1075 \\ - 1075 \\ - 1511 \\ - 1511 \end{array}$	0				
	10° R sin r								
D+E	$580 \\ 784 \\ 778 \\ 2142 \\ 2142 \\ 2142 \\ 212 \\ 2$	581 752 752 752 318 318 318 318	674 596 596 596 596 537 707 3707	856 1168 847 805 121 3797	2332				
C+F	576 571 722 425	$\begin{array}{c} & - & 577 \\ & 577 \\ & 817 \\ & 817 \\ & 323 \\ & 328 \\ & - & 586 \\ & - & 586 \\ & - & 586 \\ & - & - & 586 \\ & - & - & 586 \\ & - & - & - & - \\ & - & - & - & - & -$	$\begin{array}{c} - & 690 \\ 537 \\ 663 \\ 663 \\ 536 \\ - & 653 \\ - & 106 \\ - & 106 \\ \end{array}$	$\begin{array}{c} 212\\ 1105\\ 507\\ -& 598\\ -& 408\\ 818\end{array}$	1463				
B+G	$\begin{array}{c} 513 \\ - 189 \\ - 889 \\ - 565 \end{array}$	$\begin{array}{c} - & 590 \\ - & 307 \\ - & 307 \\ - & 307 \\ - & 581 \\ - & 581 \\ - & 210 \\ - & 210 \end{array}$			204				
A+H	-1165 -334 83 83	586 768 828 768 768 149 149	$\begin{array}{c} 633\\ - 911\\ 945\\ - 945\\ - 991\\ - 167\\ - 167\\ 235\end{array}$	$\begin{array}{c} & 956 \\ 1055 \\ 1055 \\ 535 \\ 535 \\ - & 419 \\ 847 \\ - & 847 \\ \end{array}$	- 708				
	10 ⁶ R cos r	QQ MARQO QQ	$\mathbb{P}_2^{\mu_2}$	MN, MN, SN, SS, SS,	Σ_3				
	So Mm MS, MS,	105 R cosr or 105 R sin r							

TABLE 5-III

88

tgr	- 0.285 1.033		1.428	0.014		0.280		1.113 0.403	- 0.375	5.653 0.699	2.468		5.239 0.348	- 2.203		-2.269 0.131	- 0.045 						
\mathbb{R}^{2}	55.0189 25.7469		3.6972	1.7033	0.6218	0.5437		13.3303 299.0457	6614.8580	38.5129 936.8134	0.7771		0.0602 1.4260	0.3299		2.1188 5.6645	3.1855 2.4432						
R sin r	2.031	— 1.614	- 1.575				0.424	- 2.716 6.465	28.545	6.111 17.543	- 0.817	55.131	- 0.241 - 0.392	0.525	0,107	$1.332 \\ 0.308$	- 0.080 $-$ 1.563	0.528	3.652	0.190	0.14/ 0.218	$0.223 \\ 0.366$	0.414
corr.	· · · ·		0.053	- 0.168	0.114	— 0.076	0.063	+ 2.687 - 0.971	1.128	-1.876 0.295	- 0.230	1.033											
(R sin r)			- 1.522	0.146	0.601	— 0.123	0.483	-5.403 7.436	27.417	7.987	0.587	54.097											
R cos r	$\begin{array}{r} 137.120 \\ - & 7.134 \\ 3.530 \end{array}$	133.516	- 1.103	-1.305	$4.512 \\ 0.547$	0.710	10.215	-2.440 16.039	-76.158	1.081	0.331	— 86.228		0.233	- 1.407	- 0.587 2.360	- 0.014	-0.258	3.284	- 0.246	0.085	- 0.016	0.275
corr.	· · · · · · · ·		- 0.027		- 0.005 $-$ 0.059	- 0.037	0.059	$1.204 \\ 0.478$	0.190	- 1.014	0.333	- 0.472											
(R cos r)			- 1.076	- 1.221	4.517 0.488	0.747	10,273	- 3.644	- 76.348	2.095 25.028	0.664	— 85.753	•										
	So Mm MS,	20	Ś	ָ שַּׁ	, K	100	Σ_1	۳. Z	W.	r L	2SM ²	Σ_2	MOa Ma	MK,	Σ 3	'W 'NW	SN, MS,	S.	Σ,	2MN ₆	MSN,	2MS ₆ 2SM	Σ.

HARMONIC ANALYSIS OF THE TIDE

Form 5-B

89

diurnal constituents since it is still necessary to make corrections due to the interferences of certain small constituents. However, before determining these corrections it is necessary to calculate for zero hour on the 16th day of the series of observations the values of V, u and f for the various constituents. We will say nothing regarding this calculation which is well known. Form 6-D shows the results of the operations carried out.

6. — Additional Refinement of the results

On account of the limitations inherent in an analysis of short period, the constituents the speeds of which are close to one another cannot be separated; they appear in groups which we may consider represented respectively by the main constituent of the group duly corrected in amplitude and in phase.

The groups to be considered are the following :

S₂, K₂ and T₂ K₁ and P₁ Q₁ and ρ_1 J₁ and θ_1 N₂ and ν_2 MS₄, MK₄ and MT₄ 2MS₆, 2MK₆ and 2MT₆

As we know, we may treat each one of these groups as a constituent expressed by :

$$y = f(1 + W)H \cos (V + u + w + qt - q)$$

where (1 + W) and w are the corrective elements of the main constituent of the group. The determination of these elements is quite well known and their values are already given in tables of various publications, such as the one on page 73 of vol. XXXI of this Review. Form 6-D shows the values calculated for obtaining R and r for the groups S₂, N₂ and K₁. The other groups do not require any special treatment since the values of W and wfor the group (S₂, K₂, T₂) clearly apply to (MS₄, MK₄, MT₄) and to (2MS₆, 2MK₆, 2MT₆), because the ratios of the amplitudes within these two last groups, as given by the equilibrium tide, are the same as for (S₂, K₂, T₂). For the same reasons the values of (1 + W) and w for the group N₂ and v₂ may be used for MN₄, Mv₄ and for 2MN₆ and 2Mv₆ as well as for Q₁ and ρ_1 and J₁ and θ_1 ; but for this last group, w must be taken with the opposite sign. Finally, the values of W and w for the groups K₁ and P₁ may be used for MK₃ and MP₃.

These corrections are still insufficient, since they affect only the main constituents of each group and in reality, there is still the interference of the constituents of each of these groups on the constituents determined by the analysis, and in the process of refinement under study, we may include other constituents such as $2N_2$ in the semi-diurnal group and π_1 , Ψ_1 and φ_1 in the diurnal group. To eliminate the interference of these constituents on all the others, it is necessary first of all to calculate the values of R and r for the first ones. This is perfectly feasible if we accept as valid the equilibrium relations which enable us to draw up table 6-I. In so far as the values of R are concerned, it is not necessary to give any explanation, but as regards the values of w, we must add some comments. For all the constituents which appear in table 6-I, except for $2N_2$ we can write :

> -r = V + u + w - g main constituent -r' = V' + u' - g secondary constituent

whence

$$r' = r + w + (u - u') + (V - V')$$

TABLE 6-I

R	r
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} (r+w) \text{ of } S_2 - 2(V+u) \text{ of } K_1 + 180^{\circ} \\ (r+w) \text{ of } S_2 + V \text{ of } K_1 - 12^{\circ} \\ (r+w) \text{ of } N_2 - (3V \text{ of } M_2 - 2V \text{ of } N_2) \\ 2(r+w) \text{ of } N_2 - r \text{ of } M_2 \\ (r+w+u) \text{ of } K_1 + 2V \text{ of } K_1 \\ (r+w+u) \text{ of } K_1 + 3V \text{ of } K_1 - 12^{\circ} \\ (r+w+u) \text{ of } K_1 + 3V \text{ of } K_1 + 12^{\circ} \\ (r+w+u) \text{ of } K_1 - 2V \text{ of } K_1 + 180^{\circ} \end{array}$

In so far as the constituent $2N_2$ is concerned, the equilibrium relations show that :

arg.
$$2N_2 = 2$$
 (arg. N_2) — arg. M_2 (6a)

Consequently, if we admit that in practice this equality remains valid, we may write in place of (6a):

phase $2N_2 = 2$ (phase N_2) — phase M_2

 \mathbf{P}_1 π_1 ψı \mathbf{K}_{2} Τ. $2N_2$ φ_1 ٧2 K1 K1 K1 1 1 1 0 0 0 0 r+w+u $\begin{array}{c}
 0 \\
 2 \\
 0 \\
 0 \\
 0 \\
 0
 \end{array}$ 0 3 0 0 0 $\overline{\mathbf{2}}$ Õ 0 0 2 0 0 0 0 + u 2 0 v 1 1 0 0 0 N₂ N₂ 0 0 0 $\begin{array}{c} 1\\ 2\\ 3\\ 0 \end{array}$ v_{V}^{r+u} Õ Ō Õ 0 0 M_2 0 0 0 0 0 0 0 0 0 1 0 M₂ 0 0 0 0 0 1 0 S₂ 1 r+w180° 0 12° 12° 180° Ō -12

TABLE 6-II

On the other hand, if on account of the interference of v_2 , N_2 becomes increased by w, that of $2N_2$ will be increased by 2w in accordance with the equilibrium relation. Thus, the expression (6a) will continue to be valid, which enables us to write the expression of r for $2N_2$ which appears in table 6-I. In this case, in carrying out to completion the calculation of R and r for S_2 , N_2 , K_2 and M_2 as shown in Form 6-A, we may calculate with the formulae in table 6-I all the values of R and r of the constituents which have an effect which we wish to eliminate in the case of others. In order to understand the calculation of the terms R, it suffices to refer to Form 6-C. FORM 6-B

INTERNATIONAL HYDROGRAPHIC REVIEW

FORM 6-C

	14 0	214.7	30.4	86.2	311.5	128.0	1	2
		ר ממ	r + w	N	> *	r + w		
	ĸ.	K.	Å.	z;	M ³	e s		
		-	7.6	24.2	145.4	160.3		
		Н	30	16.1	35.3			
Form 6-A		В	4.6	18.1	30.4	•		
		f(1 + W)	1.194	1.121	0.862	•		

Ă_SŠŽ

	P1	π_1	ф.	1.2		K ₃	Ľ	٤٧	$2N_2$
f Н* Н'/Н	$\begin{array}{c} 1.000\\ 3.9\\ 0.331\end{array}$	1.000 3.9 0.019	$\begin{array}{c} 1.000\\ 3.9\\ 0.008 \end{array}$	1.000 3.9 0.014		$ \begin{array}{c} 1.168 \\ 35.3 \\ 0.272 \end{array} $	$\begin{array}{c} 1.000\\ 35.3\\ 0,059\end{array}$	$\begin{array}{c} 0.981 \\ 16.1 \\ 0.194 \end{array}$	0.981 16.1 0.133
$R = fH' \dots$	1.3	0.1	0.0	0.1		11.2	2,1	3.1	2.1
r	68,5	278.2		81.7	54	238.6	337,7	348.3	260.5
cos r	$0,367 \\ 0,930$	$0.143 \\ -0.990$		$\begin{array}{c} 0.144 \\ 0.990 \end{array}$		-0.521 -0.854	0,925 -0,379	0.979	$0.165 \\ -0.986$
$\begin{array}{c} R \cos r \\ R \sin r \\ \ldots \end{array}$	0,477 1,209	$\begin{array}{c} 0.014 \\ -0.099 \end{array}$	00	$\begin{array}{c} 0.014 \\ 0.099 \end{array}$		-5.835 -9.565	1,943 0,796	3.035 -0.629	0.347 2.071

(*) $H = H(K_1)$ for the diurnal constituents; $H = H(S_2)$ for K_2 and T_2 ; $H = H(N_2)$ for v_2 and $2N_2$.

K ₁ , MK ₈	K ₁ $2V_0 + u = 76.4$ wf = -16.6	$w_{f}^{\prime}=0.125$ f=1.069	w = -15.5 W = 0.117	2MN ₆	$M_{s} = 3V = 934.5$ $N_{s} = 2V = 172.4$	difference = 42.1	w = 6.2	1 + W = 1.143	S ₂ , MS ₄ , MS ₇ , 2MS ₆	m/f = w/t	W/f = -0.118 f = 1.170	. II . II	W = -0.138	$2SM_s$, $2SM_s =$	$w = 2w(S_2)$	$W = 2W(S_a)$		N_{i_1} MON ₀ $m = m(S_0) + m(N_0)$	= $=$ $+$ $=$	J	$w = -w(N_s)$	+	Q	as for N ₃	
001	173.7 27.8	305.0	$91.2 \\ 1.427$		0.7	0.5	MKa	173.2 8 8	15.5	262.8	0.953	1.050	1.171	0.7	0.6	2SM ₆	311.5	- 1.8			1.000	106.0			
J1	82.0 9.9	$\frac{-6.2}{313.9}$	$\begin{array}{c} 19.8 \\ 1.106 \end{array}$	1.143	$1.264 \\ 0.8$	0.6	Ms	287.3	1.2	123.8	0.953	0.972	0.926	1.2	1.3	2MS ₆	263.0	- 3.0			1.000	0.302			
Kı	221.7 - 7.0		207.4 1.069	1.117	1.194 4.6	3.9	MO ⁸	41.3	0.0	306.6	0.953	1.092	1.041	0.2	0.2	MSN	37.7	3.0			1.000	0.302			
Mı	245.8 112.9	180.8	179.5 1.186		1.3	1.1	2SM _a	48.5	-34.8	307.6	1.000	0.981	0.724 0.710	0.9	1.3	M	214.5	0.4			1.000	0.344			
01	89.8 8.1	.17.3	115.2 1.111		7.2	6.5	Sa		-17.4	127.6	1.000	1.000	0.862	30.6	35.5	2MN ₆	349.2	0.4			1.000	0.344			
õ	224.5 8.1	$\begin{array}{c} 6.2 \\ 235.0 \end{array}$	113.8 1.111	1.143	$1.270 \\ 1.9$	1,5	La	356.8	0.00	73.0	1.000	1.280	1.280	6.2	4.8	MS,	311.5	17.4	90.5	22.8	1.333	0.862	1.126	1.4	
MS,	311.5 1.8		$246 \\ 0.981$	0.862	0.846 4.8	5.6	M.	311.5	1.0	109.1	1.000	0.981	0.981	81.3	82.8	SN4	86.2		357.4	70.4	1.333	1145	1.496	1.2	
MM	225.3	164.1	29 0.932		7.4	7.9	N₂	86.2	6.2	21.3	1.000	0.981	1.145	17.3	15.4	M,	263.0	- 3.6	7.5	266.9	1.333	706.0	1.273	1.9	214
S						137.1	112	263.0	1.000	220.1	1.000	0.981		3.7		MN,	37.7	9.0 9.0	113.8	153.9	1.333	0.902	1.468	10	
	V _o u	a r	64	1+W	/(1+W) B	H		V	n Y	r , c	י ת 	•	1+W	^c /u+m)	H		V	n	3 4	9	0.	1 1 1	cf(1+W)	# H	

HARMONIC ANALYSIS OF THE TIDE

93

As to the terms r, we may express them as the multipliers which are found in table 6-II to make the combination of values which are included in Form 6-B. The values of V, u and w found there are the same as those in Form 6-D.

It still remains to be explained how we may do away with the values of $R \cos r$ and $R \sin r$ of the isolated constituents in the analysis, the amounts arising from the values of $R \cos r$ and $R \sin r$ calculated in Form 6-C. For this purpose, we shall use the matrix calculation which will make the development very much simpler.

Now, in designating by $\{C\}$ the column vector constituted by the known terms of the systems 5-II, by M the matrices of these systems and by $\{I\}$ the column vector constituted by the unknown terms, any one of these systems may be represented by

$$\{\mathbf{C}\} = \mathbf{k} \ \mathbf{M}. \ \{\mathbf{I}\} \tag{6b}$$

where k is the general coefficient of the unknown terms of the systems in table 5-II. It happens however, that in the drawing up of (6b) the unknown

	General	coefficient : 3	0.384	
	P ₁	π1	ψ1	φ1
A + H B + G C + F D + E $\pm (A - H)$ $\pm (B - G)$ $\pm (C - F)$ $\pm (D - E)$	$\begin{array}{c}0.695 \\0.099 \\ 0.539 \\ 0.945 \\ 0.719 \\ 0.955 \\ 0.842 \\ 0.327 \end{array}$	$\begin{array}{c} -0.533\\ 0.047\\ 0.610\\ 0.954\\ 0.846\\ 0.999\\ 0.792\\ 0.301\end{array}$	$\begin{array}{c}0.982\\0.514\\ 0.301\\ 0.912\\ 0.187\\ 0.858\\ 0.954\\ 0.410\\ \end{array}$	$\begin{array}{ c c c c c }1.000 &0.635 & 0.215 & 0.900 &0.019 & 0.773 & 0.976 & 0.437 &$

TABLE 6-III

TABLE 6-IV

	Genera	coefficient : 2	9.856	
	K2	T2	٧2	2N ₂
$A + HB + GC + FD + E\pm (A - H)\pm (B - G)\pm (C - F)\pm (D - E)$	$\begin{array}{c} 0.708 \\ -0.706 \\ -0.707 \\ 0.707 \\ -0.706 \\ -0.708 \\ 0.707 \\ 0.707 \\ 0.707 \end{array}$	$\begin{array}{c} 0.168\\0.941\\0.498\\ 0.766\\0.985\\0.339\\ 0.867\\ 0.643\\ \end{array}$	$\begin{array}{c}0.708 \\0.113 \\ 0.531 \\ 0.944 \\0.706 \\0.994 \\0.847 \\0.331 \end{array}$	$\begin{array}{c} 0.674 \\ -0.729 \\ -0.693 \\ 0.714 \\ 0.738 \\ 0.684 \\ -0.721 \\ -0.700 \end{array}$

terms which appear in table 6-I are not involved. These unknown terms give rise to matrices which one can see in tables 6-III and 6-IV, which have been constructed in the same manner as 5-II. Consequently, if we designate by $\{I'\}$ the column vector which represents these unknown terms,

and by M' the respective matrix, the equation (6c) should be replaced by another one obtained by adding to its second part $kM' \{I'\}$:

$$\{C\} = kM \{I\} + kM' \{I'\}$$
(6c)

From this we deduce :

$$\{I\} = \frac{M^{-1}\{C\}}{k} - M^{-1}M'\{I'\}$$
(6d)

Evidently, $\frac{M^{-1}}{k}$ is any one of the inverse matrices which appear in

table 5-III. Consequently, the expression (6d) shows that the correction to be applied to $\{I\}$ is equal to the product divided by k of the matrix of the diurnal species in table 5-II by the matrix 6-III or of that of the semi-diurnal species by 6-IV. The products of the matrices are those which are represented in table 6-V and 6-VI. Thus, the values of the column vector $\{I'\}$ being known, that is to say the values of $R \cos r$ and of $R \sin r$ for the constituents which appear in the table mentioned above, the corrections to apply to $R \cos r$ and to $R \sin r$ of each of the isolated constituents in Form 5-A will be equal to the sum of the products of the multipliers of tables 6-V and 6-VI by the respective values of $R \cos r$ or of $R \sin r$ as the case may be. In the example quoted, the total corrections are those which appear following the values of $R \cos r$ and $R \sin r$ in form 5-B.

TABLE	6-V
-------	-----

	Pı	π_1	ψ1	φ1
$\begin{array}{c} Q_1\\ O_1\\ M_1\\ K_1\\ J_1\\ OO_1\end{array}$	$\begin{array}{c}0.056 \\ 0.075 \\0.172 \\ 0.044 \\ 0.123 \\0.078 \end{array}$	$\begin{array}{r}0.092\\ 0.126\\0.270\\0.922\\ 0.175\\0.104\end{array}$	$\begin{array}{c} 0.031 \\0.040 \\ 0.072 \\0.990 \\0.082 \\ 0.042 \end{array}$	$\begin{array}{r} 0.060 \\0.076 \\ 0.129 \\0.963 \\0.173 \\ 0.084 \end{array}$
	-0.064		0.967	0.939

TABLE 6-VI

	K2	T2	٧2	2N2
${f N_2} \\ {f N_2} \\ {f M_2} \\ {f L_2} \\ {f S_2} \\ 2SM_2$	$\begin{array}{c}0.068\\ 0.065\\0.091\\ 0.182\\0.012\\ 0.042 \end{array}$	$\begin{array}{r} 0.040 \\0.045 \\ 0.048 \\0.096 \\ 0.031 \\0.003 \end{array}$	$\begin{array}{c} 0.122\\ 0.017\\ -0.154\\ 0.086\\ -0.066\\ -0.035\end{array}$	$\begin{array}{r}1.036\\ 0.181\\0.096\\ 0.076\\0.079\\0.071\end{array}$
	0.118	0.025	0.030	

It is now necessary to give some explanations on the multipliers K_1 , N_2 and S_2 in tables 6-V and 6-VI. We have seen that in order to correct K_1 of P_1 , S_2 of K_2 and T_2 and N_2 of v_2 we have introduced the factors 1 + W and the angles w. If we look at fig. 6.1 where we have represented the

schematic vectorial combination of K_1 and P_1 we notice that :

 $R \cos r (K_1) = R \cos r (K_1 + P_1) - R \cos r (P_1)$

 $R \sin r (K_1) = R \sin r (K_1 + P_1) - R \sin r (P_1)$

F1G. 6.1

Under these conditions, the corrections for P_1 have been determined by allowing that the factor for correcting P_1 should be equal to ---1. Now, by multiplying the matrices, the value would be ---0.956, instead of which 0.044 which is given in table 6-V. Consequently, if we have already made the correction by considering the multiplier ---1 it is only necessary to add 0.044 which is to be found in table 6-V. We can give the same explanation for values ---0.012, 0.031 for S_2 and 0.017 for N_2 in table 6-VI.

The calculation will be completed in Form 6-D where we shall include the final values of R and r calculated from R^2 and tg r from Form 5-B.

7. — Accuracy of the results

It is difficult to know the accuracy of the values obtained for R and r, since that it would be necessary to know the average error of the ordinates y. However, although the procedure is rather long, it is not difficult to express the average errors of R and of r as a function of a mean error of y. That has the advantage of permitting the study of the relative accuracy of the constants obtained for the various constituents as well as for the comparison of this method with others. In the study which we have made we have obtained the following formulae :

$$m_{R} = \left\{ \begin{array}{ccc} \text{L.P. } 0.105 \\ \text{D. } 0.114 \\ \text{S.D. } 0.112 \\ \text{T.D. } 0.103 \\ \text{Q.D. } 0.107 \\ \text{6.D } 0.104 \end{array} \right\} \times m_{y}; \qquad m_{r} = \left\{ \begin{array}{ccc} \text{L.P. } 6^{\circ}.0/\text{R} \\ \text{D. } 6.5/\text{R} \\ \text{S.D. } 6.4/\text{R} \\ \text{T.D. } 6.1/\text{R} \\ \text{Q.D. } 6.0/\text{R} \\ \text{6.D } 6.0/\text{R} \end{array} \right\} \times m_{y};$$

which shows us that the average errors of the amplitudes are approximately of the same order for all the constituents but the average errors of the phases are inversely proportional to these amplitudes. As the coefficients of these are approximately of the same order, we may say that the constituents of the same amplitude are determined with the same accuracy. However, if we imagine, for example, that the constituents K_1 and OO_1 retain the same relationship as that of the equilibrium tide, we shall have approximately R (K_1) ≈ 33 R (OO_1) and thus m_r for OO_1 will be 33 times greater than m_r for K_1 . Consequently, one should not place too much trust in the constant g for the small constituents.

We have made a similar calculation for the *Tidal Institute's* method for the diurnal constituents and we find that $m_{\rm R} \approx 0.075 \ m_y$ and $m_r = 4^{\circ}.3 \ m_y/{\rm R}$. If we take account of the elimination of the errors already made by the tracing of contour lines, we may say that the small difference of $0.04 \ m_y$ and of $2^{\circ}.2 \ m_y/{\rm R}$ is perfectly justified.

8. — Conclusion

We are persuaded that the study we have just presented enables us to conclude that the semi-graphic method is efficient. We also believe that it may be used for shorter periods. For this purpose it will suffice to bring the "columns" close together. Consequently, we intend to study this possibility and to present the conclusions at the same time as a complete study of the formulae of the errors obtained in the preceding paragraph.

In conclusion, we desire to express to Cdr. G. LEMIERE our sincere thanks for the invaluable assistance given us in the calculations of all the tables, and of the analysis itself, and especially in the translation from the original text in Portuguese.