HARMONIC ANALYSIS
 OF THE TIDE BY THE SEMI-GRAPHIC METHOD

by Vice-Admiral A. Dos Santos Franco

1. - Introduction

In 1959, the British Admiralty introduced a method of harmonic analysis of the tide using the hourly heights registered over 30 consecutive days.

On a sheet of squared paper (fig. 1.1) on which the vertical lines represent the days and the horizontal lines the hours, one plots the hourly heights at intervals of 2 squares (1 cm on the original of the diagram), in decimetres or in feet, in such a manner that the position of the decimal point corresponds exactly to the reading recorded. Then the points of equal reading are joined by contours. In this way one obtains the impression of a continuous topographical surface. The contours may be traced at intervals of 20 cm or 1 foot (or closer if needed), as the case may be.

Fig. 1.1 also includes one interesting detail : we see that the heights are plotted for the hours - 1 and - 2 of the 2 nd, 3rd, 4 th, etc., days, and for the hours 24 and 25 every day. It is evident that the heights recorded at the hours -1 and -2 of a given day are the repetition of the heights relating to the hours 23 and 22 of the previous day. This is to facilitate the interpolation of contours in the upper and lower parts of fig. 1.1 (*).

With the help of a geometrical explanation together with very simple arithmetical calculations, the Admiralty Tidal Handbook $N^{o} 1$ (H.D. 505) shows the possibility of making the analysis using particular sections of the surface, the construction of which we have just described, and which we shall call " the tidal-surface". The principal advantage of the process rests in the minimizing during the tracing of the contours, of the effect of accidental errors which manifest themselves by irregularities in contours, irregularities which may be reduced by eye.

Having confidence in the efficiency of the method we have decided to study it in minute detail, using a more general mathematical procedure, based on the equation of the "tidal-surface". In addition, we will generalise the method in order to be able to obtain all the constituents furnished by the method of the Tidal Institute.

2. - Study of the "tidal-surface"

The height of the tide above the zero mark of the tide-gauge may be expressed by :

$$
\begin{equation*}
y=\mathrm{S}_{0}+\sum_{c} f \mathrm{H} \cos \left(\mathrm{~V}_{0}+u+q t+\rho d-g\right) \tag{2a}
\end{equation*}
$$

In this expression we shall define only q and ρ, because the other symbols are well known. It is evident that q is the hourly phase variation and o its daily variation (t being the standard time counted from 0 to 24 and d the number of days elapsed since the start).

To facilitate the writing of the equation let us make :

$$
\begin{gather*}
f \mathrm{H}=\mathrm{R} \tag{2b}\\
\mathrm{~V}_{0}+u-g=-r \tag{2c}
\end{gather*}
$$

thus we shall have :

$$
\begin{equation*}
y=S_{0}+\Sigma_{c} R \cos (q t+\rho d-r) \tag{2d}
\end{equation*}
$$

If we consider t and d as independent variables, y becomes a continuous function which represents a surface referred to 3 axes of rectangular coordinates $\mathrm{O} t, \mathrm{O} d, \mathrm{O} y$. This is the "tidal-surface" we have defined above. It must be pointed out that this surface is not the surface of the tide, but an artificial surface representing the phenomenon with the help of 3 parameters. Only the values of y obtained on this surface in the vertical planes parallel to $\mathrm{O} t$ and for which we have $d-1=0,1,2,3 \ldots$ are the true heights of the tide. It is evident that the intersection of the surface ($2 d$) with a network of vertical planes parallel to $O d$ and at intervals of one hour, and a network of vertical planes parallel to Ot and at intervals of one day, will give the observation points of fig. 1.1.

The method of harmonic analysis of the tide which we are going to describe is based on particular sections of the "tidal-surface" which are not sections parallel to $O d$ and $O t$, which we are generally accustomed to using.

We shall establish the mathematical expression for such sections of the "tidal-surface" and demonstrate that their use is legitimate for making the harmonic analysis of the tide.

Simplifying, let us suppose that the tide is made up of a single constituent the height of which above the mean level is expressed by :

$$
\begin{equation*}
y^{\prime}=\mathrm{R} \cos (q t+\rho d-r) \tag{2f}
\end{equation*}
$$

Allowing that this expression is the equation of a surface referred to 3 axes of rectangular co-ordinates $\mathrm{Ot}, \mathrm{O} d$, $\mathrm{O} y$, the graphic representation of this surface is that which we see in fig. 2.1 (for which the chosen values of q and ρ are those of \mathbf{M}_{2}).

Let us suppose that this surface is cut by a plane perpendicular to $t O d$ for which the expression is

$$
\begin{equation*}
a t+b d=c \tag{2g}
\end{equation*}
$$

The common points to the plane ($2 g$) and to the surface ($2 f$) will satisfy simultaneously (2f) and ($2 g$). Consequently, their locus will be obtained by substituting in (2f) one of the variables taken from (2g). From
 $6.1) 10.2 \ 13.1$

 $2.4,7.211 .1 \times 15.017 .819 .418518 .1$

 10.04 .855

 ${ }^{27.3} 1251$

this expression we derive :

$$
\begin{equation*}
d=c / b-a t / b \tag{2h}
\end{equation*}
$$

or

$$
\begin{equation*}
t=c / a-b d / a \tag{2i}
\end{equation*}
$$

which used in ($2 f$) will give :

$$
\begin{equation*}
y^{\prime}=\mathbf{R} \cos [(q-\rho a / b) t+\rho c / b-r] \tag{2j}
\end{equation*}
$$

or

$$
\begin{equation*}
y^{\prime}=\mathbf{R} \cos [(\rho-q b / a) d+q c / a-r] \tag{2k}
\end{equation*}
$$

($2 j$) is the equation of a curve situated in the plane ($2 g$) expressed as a function of t, and ($2 k$) is the equation of the same curve expressed as a function of d. As soon as we have fixed the values of a, b and c, which define the position of the secant plane, ($2 j$) and ($2 k$) are the harmonic expressions from which we may determine the values of R and $-r$ with the aid of a certain number of values y^{\prime} measured at the intersection of the "tidal-surface" with the secant plane. These values of \mathbf{R} and -r will enable us to obtain, using the formulae (2b) and (2c), the harmonic constants of the constituent of the tide.

It is evident that the same will apply for the total "tidal-surface" which is the representation of the sum of the constituents. It is therefore legitimate to say that one may make the harmonic analysis is of the tide with the aid of any sections of the "tidal-surface".

We note that $a / b=-\operatorname{tg} \alpha$ defines the inclination of the secant plane in relation to $y O t$. The expressions ($2 j$) and ($2 k$) show that the hourly phase variations depend on this inclination, which may be observed in fig. 2.1.
Moreover for

$$
q-\rho a / b=0
$$

or
for which we have

$$
\rho-q b / a=0
$$

$$
\begin{equation*}
b / a=\rho / \boldsymbol{q} \tag{2l}
\end{equation*}
$$

the phase variation is zero. Therefore in all the planes having an inclination defined by ($2 l$), the height y^{\prime} of the constituent will be constant. All the sections thus defined will be straight lines as we can see in fig. 2.1.

To obtain the expressions of the curves determined by the planes ($2 g$) on the total "tidal-surface ", it is evident that it suffices to replace in ($2 d$) the values of t or d given respectively by ($2 k$) and (2i). Proceeding in this way we have :
and

$$
\begin{align*}
& y=\mathrm{S}_{0}+\sum_{c} \mathrm{R} \cos [(q-\rho a / b) t+\rho c / b-r] \tag{2m}\\
& y=\mathrm{S}_{0}+\Sigma_{c} \mathrm{R} \cos [(\rho-q b / a) d+q c / a-r] \tag{2n}
\end{align*}
$$

If we count t from zero hour and d from the first day of observation, the expressions ($2 h$) and ($2 j$) show that c / b is the co-ordinate on $O d$ of the intersection of ($2 g$) with the plane $y \mathrm{O} d$ and that c / a is the co-ordinate on Ot of the intersection of the plane (2i) with $y \mathrm{O} t$. Thus we may write :

$$
\begin{aligned}
c / b & =d^{\prime} \\
c / a & =t^{\prime}
\end{aligned}
$$

The expressions (2m) and (2n) are then transformed :

$$
\begin{equation*}
y=\mathrm{S}_{0}+\Sigma_{c} \mathrm{R} \cos \left[(q-\rho a / b) t+\rho d^{\prime}-r\right] \tag{2o}
\end{equation*}
$$

and

$$
\begin{equation*}
y=\mathrm{S}_{0}+\Sigma_{c} \mathrm{R} \cos \left[(\rho-q \boldsymbol{b} / \boldsymbol{a}) d+q t^{\prime}-\mathrm{r}\right] \tag{2p}
\end{equation*}
$$

3. - Choice of the Sections

On examining the expression (2o) we notice that it is possible to modify the hourly phase variation by working on the basis of the relationship a / b. As we know, the separation of the various groups of constituents of the same species becomes appreciably simplified if the coefficient of t in the expression (2o) is a multiple of 15°, as is the case for the solar constituents ($S_{1}, S_{2} \ldots$). Now, if we designate by n the number which defines the species of the constituents $(0$ for the long period series, 1 for the diurnal series, 2 for the semi-diurnal series, etc.), we can write the expression :

$$
q-\rho a / b=15^{\circ} n
$$

but as

$$
\varphi=24 q-360^{\circ} n
$$

we obtain

$$
\begin{equation*}
a / b=1 / 24 \tag{3a}
\end{equation*}
$$

Thus we see that for the inclination - $\tan ^{-1} 1 / 24$ of the secant plane, the hourly phase variation is completely independent of the values of q and p. This very interesting property constitutes the true basis of the semi-graphic method. In fig. 1.1, we see the traces of 8 secant planes inclined by - $\tan ^{-1} 1 / 24$. These traces are defined by the centres of small circumferences which form the "columns" slightly oblique in relation to Ot. The values of y corresponding to the centres of these circumferences are those used for the analysis. The values, numbering 24 per "column", enable one to separate the species by means of an adequate combination of these values. These combinations will lead to the determination of the linear
functions of the unknown values of $R \cos r$ and $R \sin r$ for all the constituents of the species. Since, by reason of the short period of analysis not more than 6 constituents of each species will be considered, the systems formed in dealing with the 8 columns will furnish, as we shall see, a number of equations larger than the number of unknowns which we will deal with by the method of least squares. Thus, this number of columns which may be varied at will, was chosen after having accepted it as reasonable for the reduction of accidental errors, already reduced during the tracing of the contours.

In order to be able to study the distribution of observation points in the columns, it is necessary previously to study the distribution of these columns, which necessitates some preliminary explanations.

To simplify the calculation of the coefficients needed for the analysis, and for the analysis itself, the author of the Admiralty method chose as the central hour of the period to be analysed 0 hour on the 16 th day (point N in fig. 3.1). Furthermore, instead of considering the phase variation of the constituents along the axis $O d$, he preferred to consider it on the constant phase planes of the constituents $M_{1}, M_{2}, M_{3} \ldots$ From this second choice there results considerable simplification in the formation of the necessary systems for the separation of constituents of the same species.

Furthermore, we will understand why the choice of these planes, the traces of which are represented in fig. 3.1 by AM and NH, leads to an appreciable simplification in the calculation of the invariable coefficients needed for the analysis.

According to the expression (2l), the inclination of the planes on which the phase of a constituent of speeds q and ρ is constant, is given by - $\cot ^{-1}(\rho / q)$. Now, as any constituent M_{n} has a speed n times greater than M_{1}, the relationship ρ / q does not change and the expression (2l) for the whole group M will be :

$$
b / a=12^{\circ} .191 / 14^{\circ} .492=-0.841
$$

It is in this way that the straight lines AM and NH in fig. 3.1 are inclined by $\cot ^{-1} 0.841\left(49^{\circ} 54^{\prime}\right)$ in relation to Ot. Let us now see the phase variation of the constituents on these lines. For that, it will suffice to replace in ($2 p$) b / a by - 0,841, which gives us:

$$
y=\mathrm{S}_{0}+\sum_{c} \mathrm{R} \cos \left[(\rho+0.841 q) d+q t^{\prime}-r\right]
$$

If one takes as the origin 0 hour on the 16 th day, or at 24 hours on the 15 th day, M and N will both be points of origin for which $t^{\prime}=0$ and the above expression will be transformed as follows :

$$
\begin{equation*}
y=S_{0}+\sum_{c} R \cos [(\rho+0.841 q)(d-16)-r] \tag{3b}
\end{equation*}
$$

If we designate by \bar{t} the hour which corresponds to any point on AM or NH and if we imagine that a vertical plane passes through this point making an angle with. Ot equal to - $\tan ^{-1}(1 / 24)$, the phases of the constituents from this point and in the above plane, will vary by $15^{\circ} n$ $\times(t-\bar{t})$. Thus we may write for any point situated on a line parallel to the " columns" the expression of y for any instant t :

$$
\begin{equation*}
y=\mathrm{S}_{0}+\Sigma_{c} \mathrm{R} \cos \left[15^{\circ} n(t-\bar{t})+(\rho+0.841 q)(d-16)-r\right] \tag{3c}
\end{equation*}
$$

Table 3-I

Fig. 3.1
If we examine table $3-\mathrm{I}$, we note that the values of $(\rho+0.841 q$) are symmetrical for certain pairs of constituents in relation to the series M. In fact, in the diurnal species Q_{1} and J_{1} are symmetrical in relation to M_{1}, and the same applies for 0_{1} and K_{1}. Also in the semi-diurnal species, the constituents (μ_{2} and S_{2}) and (N_{2} and L_{2}) are symmetrical in relation to M_{2}. In addition, many constituents for shallow waters, obtained with \mathbf{M}_{2} retain the values of certain semi-diurnal constituents. Thus, in the formation of the systems of condition equations for the analysis there are numerous repetitions and, due to this fact, the calculation of the coefficients becomes considerably reduced.

We may now place the "columns" in the "tidal-surface". For this purpose let us first see how many days are necessary for the analysis. To make the analysis it is advisable that all the constituents should have achieved about one complete cycle of 360° on AM and NH. The number of days required for each constituent to make this cycle will be given by the relationship $360^{\circ} /(\rho+\mathbf{0 . 8 4 1 q})$.

The constituents 0_{1} and K_{1} make the cycle in exactly 26.40 days, a figure which should be chosen as reasonably meeting the requirements of the analysis. Indeed, as table 3-I shows, the constituents $\mathrm{N}_{\mathbf{2}}$ and $\mathbf{L}_{\mathbf{2}}$ make
the cycle of 360° in 26.62 days, SN_{4} and MSN_{6} in 30.77 days and the others complete much more than 360° in the same time.

However, in the British Admiralty publication the number of days chosen is equal to 23.1. Although this figure does not correspond to any special cycle, the method, nevertheless, gives good results. For purposes of comparison, we have retained 23.1 days in our study.

Under these conditions, if we choose 8 symmetrical sections arranged two by two in relation to NM in order to be able to separate a maximum of 6 constituents of each species, the points of intersection of the "columns" with AM and NH should have as a difference in co-ordinate d $23.1 / 7=3.3$ days.

Under these conditions, N being the central point of the observations $\left(0^{\mathrm{b}}, 16\right)$, the point E (fig. 3.1) will have as co-ordinate $16+1.65$, the point $\mathbf{F}=16+1.65+3.3$, point $G=16+1.65+2(3.3)$, etc. In short the coordinates of the points $\mathrm{A}, \mathrm{B}, \mathrm{C} \ldots \mathrm{H}$ on $\mathrm{O} d$ will be given by the expression :

$$
d=16+1.65+3.3 k
$$

i.e.

$$
\begin{equation*}
d-\mathbf{1 6}=\mathbf{1 . 6 5}+3.3 k \tag{3d}
\end{equation*}
$$

in which :
$k=0,1,2,3$ for the right hand columns
and

$$
k=-1,-2,-3,-4 \text { for the left hand columns. }
$$

As $A M$ and NH are inclined in relation to $O d$ by $\tan ^{-1} 0.841$ the coordinates \bar{t} of these points will be :

$$
\begin{equation*}
\bar{t}=0.841(1.65+3.3 \mathrm{k}) \tag{3e}
\end{equation*}
$$

Consequently, if from M or N we draw the lines AM and NH with the inclination $\tan ^{-1} 0.841$, the points $\mathrm{A}, \mathrm{B}, \mathrm{C} \ldots \mathrm{H}$ may be plotted on these lines by means of ($3 d$) or of ($3 e$). In table $3-\mathrm{I}$ we see that the values of $d-16$ have been calculated for the 8 columns as well as the phase variations from 0^{b} on the 16 th day (or 24 hours on the 15 th day) up to points $\mathrm{A}, \mathrm{B}, \mathrm{C} \ldots \mathrm{H}$ of all the constituents isolated in the analysis. It is clear that these phase variations are given by the expression :

$$
(\rho+0.841 q)(1.65+3.3 k)
$$

The numerous repetitions of values which we see in the table show how much the calculation will be simplified.

To place the "columns" in fig. 1.1 it is more convenient to establish the formula which gives the co-ordinates d of the intersection of the "columns" A, B, ... with the axes Od.

Let NP (fig. 3.2) be the constant phase line of M, and QP one of these columns. In the figure $\alpha^{\prime}=\tan ^{-1}(1 / 24)$
and

$$
\mathrm{NR}=1.65+3.3 k
$$

now,

$$
\mathrm{RQ}=\bar{t} \tan \alpha^{\prime}=\frac{\bar{t}}{24}
$$

and according to (3e) we shall have

$$
\begin{aligned}
\mathrm{RQ} & =0.841(1.65+3.3 k) / 24 \\
& =0.035(1.65+3.3 k)
\end{aligned}
$$

Fig. 3.2
Therefore :

$$
\mathrm{NQ}=\mathrm{NR}+\mathrm{RQ}=1.035(1.65+3.3 k)
$$

i.e.

$$
\begin{equation*}
\mathrm{NQ}=1.71+3.41 k \tag{3f}
\end{equation*}
$$

Consequently, on marking on the axis $O d$, from 0 hrs . on the 16 th day the values of NQ calculated by means of ($3 f$), and on the straight line $t=24 \mathrm{~h}$ parallel to $\mathrm{O} d$ the same values from the point (24 h .15) and by joining these points 2 to 2 , we shall obtain the 8 "columns" at the desired inclination.

The points $A, B, C \ldots H$, correspond to the time origin \bar{t} of each " column". Although in the original method the author judged it necessary to work with 16 values of y only on each column, the process of elimination will be much more accurate if we work, as we shall now, with 24 points on each "column".

In fig. 1.1, we see the straight lines starting from points (0 h .16) and (24 h .15) which are the locus of the instants \bar{t} from which one must take the ordinates on each column to transcribe them on the form 3-A. It is in this way that column A of the form $3-A$ is the result of the transcription of column A in fig. 1.1, carried out in the following manner : we take as the first ordinate that one which is in the circle situated at the intersection of the "column" A of fig. 1.1 with the straight line which passes through $M(24 \mathrm{~h} .15)$. The following ordinates are those which are situated on the circles of column A which follow one another in the same manner as the hours t increasing up to the last point situated in the lower part of column A. From there one passes to the upper part of the same column and continues the transcription of the values of y descending as
far as the last point before the initial hour. One transcribes the other columns in the same manner, in columns $\mathrm{B}, \mathrm{C} \ldots \mathrm{H}$ of form 3-A.

Form 3-A

$t-\bar{t}$	A	B	C	D	E	F	G	H
(0)	56	97	65	48	80	105	60	0
(1)	80	106	75	80	125	138	78	20
(2)	121	121	98	125	170	168	110	75
(3)	170	142	134	172	212	19	192	148
(4)	210	165	174	210	230	203	181	201
(5)	230	183	200	234	230	203	202	202
(6)	230	188	214	225	205	178	204	268
(7)	210	175	202	200	160	140	190	250
(8)	168	152	168	$\mathbf{1 4 5}$	100	100	160	205
(9)	120	128	130	90	55	76	122	142
(10)	85	105	90	48	30	70	95	88
(11)	76	96	63	28	36	80	75	41
(12)	81	98	55	35	65	105	75	29
(13)	112	110	60	60	104	130	88	50
(14)	150	128	85	102	152	160	120	90
(15)	190	150	118	155	195	190	150	160
(16)	225	172	150	198	224	195	180	218
(17)	245	190	185	225	224	190	199	255
(18)	244	194	204	230	202	168	195	268
(19)	210	181	200	205	160	133	180	244
(20)	168	160	180	160	110	100	144	195
(21)	120	130	1488	110	68	78	112	140
(22)	55	110	108	63	45	70	78	70
(23)	55	98	72	40	50	82	59	18

4. - Separation of the groups of constituents of the same species

If in the expression (3c) we make

$$
\begin{equation*}
(\rho+0.841 q)(d-16)-r=-r^{\prime} \tag{4a}
\end{equation*}
$$

we obtain :

$$
\begin{align*}
y=S_{0} & +\sum_{c} R \cos r^{\prime} \cos 15^{\circ} n(t-\bar{t}) \\
& +\sum_{c} R \sin r^{\prime} \sin 15^{\circ} n(t-\bar{t}) \tag{4b}
\end{align*}
$$

The values of $15 n(t-\bar{t})$ and the values corresponding to cosines and sines may now be put in the table. In this way we obtain table 4-I. We may easily see that a sum of the products of $\cos 15^{\circ} n(t-\bar{t}) \times R \cos r^{\prime}$ and of $\sin 15^{\circ} n(t-\bar{t}) \times R \sin r^{\prime}$ in each horizontal line is the mathematical expression of y for the point considered in the "column ". Afterwards, it is possible to choose a suitable combination of the terms y in such a way as to isolate a group of the same species. An example will serve to make the process clear. Let us take the column $\cos 30^{\circ} \tau$ in table 4-I. If we assign to all the negative values the multiplier - 1 , to all the positive values of the multiplier 1 , and to all the 0 values the multiplier 0 , we have the set of multipliers of column (2) of table 4-II. Let us take a strip of paper and write on it these multipliers in such a way that each corresponds to a horizontal line of table 4-I. We may make these multipliers correspond to
Table 4－I

		．P．		Diu			Semi－diur	rnal		Third－di	rnal		uarter－di	urnal		Sixth－diu	nal
				Coeffi	cients		Coeffi	$\begin{aligned} & \text { icients } \\ & \text { of } \end{aligned}$			$\begin{aligned} & \text { icients } \\ & \text { of } \end{aligned}$		Coeffi	icients of		Coeff	icients of
$\xrightarrow{11}$	$\begin{array}{r} \text { Coeffi } \\ \mathrm{S}_{0}+\Sigma \mathrm{R} \end{array}$				$\begin{aligned} & \ddot{i} \\ & E \\ & \text { E } \\ & \text { 佥. } \end{aligned}$		＂゙ı	2＂		苋	云		2 0 0 0 Win				
	$0^{\circ} \tau \mathrm{C}$	S	$15^{\circ} \tau$	$\cos _{15^{\circ} \tau}$	$\sin _{15^{\circ} \tau}$	$30^{\circ} \tau$	$\begin{gathered} \cos \\ 30^{\circ}{ }_{\tau} \end{gathered}$	$\sin _{30^{\circ} \tau}$	$45^{\circ} \tau$	$\begin{gathered} \cos \\ 45^{\circ} \tau \end{gathered}$	$\sin _{45^{\circ}}$	$60^{\circ} \tau$	$\begin{gathered} \cos \\ 60^{\circ} \tau \end{gathered}$	$\sin _{60^{\circ} \tau}$	90° \％	$\underset{90^{\circ} \tau}{\cos }$	$\sin _{90^{\circ}}$
0	$0^{\circ} 1$	0	10°	1.000	0.000	0°	1.000	0.000									
1	0	0	15	0.966	0.259	30	0.866	0.500	45	0.707	0.707	60	0.500	0.866	90	0.000	1.000
2	1	0	30	0.866	0.500	60	0.500	0.866	90	0.000	1.000	120	-0.500	0.866	180	-1.000	0.000
3	1	0	45	0.707	0.707	90	0.000	1.000	135	-0.707	0.707	180	-1.000	0.000	270	0.000	-1.000
4	1	0	60	0.500	0.866	120	-0.500	0.866	180	-1.000	0.000	240	-0.500	-0.866	0	1.000	0.000
5	01	0	75	0.259	0.966	150	-0.866	0.500	225	-0.707	-0.707	300	0.500	-0.866	90	0.000	1.000
6	1	0	90	0.000	1.000	180	-1.000	0.000	270	0.000	-1.000	0	1.000	0.000	180	－ 1.000	0.000
7	01	0	105	-0.259	0.966	210	-0.866	-0.500	315	0.707	-0.707	120	0.500	0.866	270	0.000	-1.000
8	1	0	120	-0.500	0.866	240	-0.500	-0.866	0	1.000	0.000	180	-0.500	0.866	0	1.000	0.000
9	$0 \quad 1$	0	135	-0.707	0.707	270	0.000	-1.000	45	0.707	0.707	240	-1.000	0.000	90	0.000	1.000
10	0	0	150	-0.866	0.500	300	0.500	-0.866	90	0.000	1.000	300	-0.500	-0.866	270	-1.000	0.000
11	01	0	165	－0．966	0.259	330	0.866	-0.500	135	0.707	0.707	0	0.500	-0.866	0	0.000	-1.000
$\begin{array}{\|l\|l} 12 \\ \text { to } \\ 23 \end{array}$	Repeat with opposite sign．	Repeat with opposite sign．				Repeat with same sign．			Repeat with opposite sign．			Repeat with same sign．					

each column of $\sum_{c} \cos r^{\prime}$ and $\sum_{c} \sin r^{\prime}$ of the table and add the products.
We see that by this means, all the sums of sines are 0 and all the sums of cosines are 0 , except that of the columns $R_{2} \cos r_{2}^{\prime}$ and $R_{6} \cos r_{6}^{\prime}$. With the multipliers of column (b) of table 4-II, drawn up in the same way but considering the signs of the values of column $\sin 30^{\circ} \tau$, the sum of all the products will be 0 except for $R_{2} \sin r_{2}^{\prime}$, and $R_{6} \sin r_{6}^{\prime}$.

Table 4-II

1	a	2	b	3	c	4	d	6	f
1	0	1	0	1	0	1	0	1	0
1	1	1	1	1	1	1	1	0	1
1	1	1	1	0	1	-1	1	-1	0
1	1	0	1	-1	1	-1	0	0	-1
1	1	-1	1	-1	0	-1	-1	1	0
1	1	-1	1	-1	-1	1	-1	0	1
0	1	-1	0	0	-1	1	0	-1	0
-1	1	-1	-1	1	-1	1	1	0	-1
-1	1	-1	-1	1	0	-1	1	1	0
-1	1	0	-1	1	1	-1	0	0	1
-1	1	1	-1	0	1	-1	-1	1	0
-1	1	1	-1	-1	1	1	-1	0	-1
-1	0	1	0	-1	0	1	0	1	0
-1	-1	1	1	-1	-1	1	1	0	1
-1	-1	1	1	0	-1	-1	1	-1	0
-1	-1	0	1	1	-1	-1	0	0	-1
-1	-1	-1	1	1	0	-1	-1	1	0
-1	-1	-1	1	1	1	1	-1	0	1
0	-1	-1	0	0	1	1	0	-1	0
1	-1	-1	-1	-1	1	1	1	0	-1
1	-1	-1	-1	-1	0	-1	1	1	0
1	-1	0	-1	-1	-1	-1	0	0	1
1	-1	1	-1	0	-1	-1	-1	-1	0
1	-1	1	-1	1	-1	1	-1	0	-1

This procedure is a general one and each of the columns of multipliers appearing in table 4 -II has been prepared in this way to separate a group of constituents of the same species. The interference of the sixth-diurnal species on the semi-diurnal and of the third-diurnal on the diurnal can be very easily eliminated as will be seen below. The symbol which is found at the head of each column of this table represents the group to be separated. The symbol 1 , which is the subscript of the diurnal group, is used to indicate the separation of the cosines of the diurnal group, and the symbol a, first letter of the alphabet, for the separation of the sines of the diurnal group; 2 for the cosines of the semi-diurnal group, and b for the sines of the semi-diurnal group, etc.

The sum of the values of $\left(\cos 15^{\circ} n \sum_{c} R \cos r^{\prime}\right)$ and $\left(\sin 15^{\circ} n \sum_{c} R \sin r^{\prime}\right)$ in each horizontal row of (0) to (23) of table 4-I is the expression of y which corresponds to the points of intersection of the lines (0) to (23) with the "columns" A, B, C, ... H of fig. 3.1. Thus, if we combine the 24 values of y of each "column" A, B, C, etc., using the multipliers of table 4-II, we shall obtain the numerical values, which are recorded in form 4-A, for
Table 4-III

X	$S_{11}+\sum_{n} R_{0} \cos r_{0}$	$\sum_{C} \mathrm{R}_{1} \cos r_{1}^{\prime}$	${ }_{r} \mathrm{R}_{1} \sin r_{1}$	$\underset{c}{\Sigma} \mathrm{R}_{2} \cos r_{2}^{\prime}$	$\sum_{c} \mathrm{R}_{2} \sin \mathrm{r}^{\prime}$		${ }_{r} \mathrm{R}_{3} \sin r^{\prime}$	$\underset{r}{\sum R} R_{1} \cos r_{4}$	$\sum_{0} \mathrm{R}_{4} \sin r_{4}$	$\underset{r}{ } \mathrm{R}_{8} \cos r_{6}^{\prime}$	$\sum_{*} \mathrm{R}_{\theta} \sin r_{s}$
0	24.000		0	0	0	0	0	0	0	0	0
1	0	15.192	0	0	0	-4.828	0	0	0	0	0
a	0	0	15.192	0	0	0	4.828	0	0	0	0
2	0	0	0	14,928	0	0	0	0	0	-4.000	0
b	0	0	0	0	14.928	0	0	0	0	0	4.000
3	0	0	0	0	0	14.484	0	0	()	0	0
c	0	0	0	0	0	0	14.484	0	0	0	0
4	0	0	0	0	0	0	14.484	16.000	0	0	0
d	0	0	0	0	0	0	0	0	13.856	0	0
6	0	0	0	0	0	0	0	0	13.850 0	12.000	0
f	0	0	0	0	0	0	0	0	0	0	12.000

the functions which we shall call X to which we shall apply as subscripts the symbols which are found at the head of the columns in table 4-II.

The table 4-III gives the coefficients $\sum_{c} R \cos r^{\prime}$ and $\sum_{c} R \sin r^{\prime}$ in these functions. This table was constructed by using the multipliers of table 4-II and the values of cosines and sines of the angles of table 4-I. Now let us write explicitly the functions of table 4-III :

$$
\begin{align*}
& \mathrm{X}_{\mathbf{0}}=24 \sum_{c} \mathrm{R}_{0} \cos r_{0}^{\prime} \tag{4c}\\
& \left\{\begin{array}{l}
\mathbf{X}_{1}=15.192 \sum_{c} \mathbf{R}_{1} \cos r_{1}^{\prime}-4.828 \sum_{c} \mathbf{R}_{3} \cos r_{3}^{\prime} \\
\mathbf{X}_{a}=15.192 \sum_{c} \mathbf{R}_{1} \sin r_{1}^{\prime}+4.828 \sum_{c} \mathbf{R}_{3} \sin r_{3}^{\prime}
\end{array}\right. \tag{4d}\\
& \left\{\begin{array}{l}
\mathbf{X}_{2}=14.928 \sum_{c}^{\sum} \mathbf{R}_{2} \cos r_{2}^{\prime}-4.000 \sum_{c} \mathbf{R}_{6} \cos r_{6}^{\prime} \\
\mathbf{X}_{b}=14.928 \sum_{c} \mathbf{R}_{2} \sin r_{2}^{\prime}+4.000 \sum_{c} \mathbf{R}_{6} \sin r_{6}^{\prime}
\end{array}\right. \tag{4f}\\
& \left\{\begin{array}{l}
\mathrm{X}_{3}=14.484{\underset{c}{c} \mathbf{R}_{3} \cos r_{3}^{\prime}}^{\mathrm{X}_{c}}=14.484 \sum_{\underset{\sim}{2}} \mathbf{R}_{3} \sin r_{3}^{\prime}
\end{array}\right. \tag{4h}\\
& \left\{\begin{aligned}
\mathrm{X}_{4} & =16.000 \sum_{c}^{\sum} \mathrm{R}_{4} \cos r_{4}^{\prime} \\
1.15 \mathrm{X}_{d} & =16.000 \sum_{c} \mathrm{R}_{4} \sin r_{4}^{\prime}=U_{d}
\end{aligned}\right. \\
& \left\{\begin{array}{l}
\mathrm{X}_{\mathrm{f}}=12.000 \sum_{c} \mathrm{R}_{6} \cos r^{\prime}{ }_{6} \\
\mathrm{X}_{f}=12.000 \sum_{c} \mathrm{R}_{\mathrm{f}} \sin \mathrm{r}_{\mathrm{f}}^{\prime}
\end{array}\right.
\end{align*}
$$

The expressions (4d), (4e), (4j) and (4k) give :
$15.192 \sum_{c} \mathrm{R}_{1} \cos r_{1}^{\prime}=\mathrm{X}_{1}+\frac{\mathrm{X}_{3}}{3}=\mathrm{U}_{1}$
$15.192 \sum_{c} \mathrm{R}_{1} \sin \mathrm{r}_{1}^{\prime}=\mathrm{X}_{a}-\frac{\mathbf{X}_{c}}{\mathbf{3}}=\mathrm{U}_{a}$
and the expressions (4f), ($4 g$), (4l) and (4m) give us :
$\begin{array}{ll}14.928 & \sum_{c} R_{2} \cos r_{2}^{\prime}=X_{2}+\frac{X_{6}}{3}=U_{2} \\ 14.928 & \sum_{c} R_{2} \sin r_{2}^{\prime}=X_{b}-\frac{X_{f}}{3}=U_{b}\end{array}$
The form 4-A shows us the numerical values of X and U as given by the above formulas.

5. - Separation of the constituents

Now we shall be able to proceed with the separation of the constituents of each species. We have obtained functions X and U the numerical values of which are equal to the contributions of all the constituents of a same group. Furthermore, table 4-III shows that all the functions X with numerical subscripts have only contributions in $R \cos r^{\prime}$ and that the

Form 4-A

	A	B	C	D	E	F	G	H
X_{0}	3611	3379	3178	3188	3234	3253	3205	3407
${ }_{0.333} \mathrm{X}_{1} \mathrm{X}_{\mathbf{s}}$	- 187	- 11	48 $-\quad 16$	161 $-\quad 11$	137 $-\quad 1$	35 $-\quad 2$	- 102	[185
$\begin{array}{r} \mathbf{U}_{\mathbf{I}} \\ \mathbf{X}_{a} \\ -0.333 \mathbf{X}_{c} \end{array}$	196 $-\quad 74$ 0	$\begin{array}{r}-10 \\ -62 \\ \hline\end{array}$	32 38 9	$\begin{array}{r}150 \\ -\quad 9 \\ \hline\end{array}$	$\begin{array}{r} 136 \\ -\quad 21 \\ -\quad 2 \end{array}$	53 51 5	$\left.\begin{array}{r} -104 \\ 60 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{r} -189 \\ -\quad 38 \\ -\quad 4 \end{array}$
\mathbf{U}_{a}	- 74	- 59	47	4	19	56	60	- 34
$\begin{array}{r} \mathbf{X}_{2} \\ 0,333 \mathbf{X}_{8} \end{array}$	$\begin{array}{r}-1269 \\ \hline 8\end{array}$	-691 $-\quad 1$	-1106	-1403 1	$\begin{array}{r}\text { - } 990 \\ \hline 2\end{array}$	- 501	-997 $-\quad 1$	- 1863
$\begin{array}{r} \mathbf{U}_{2} \\ -0.333 \mathbf{X}_{\boldsymbol{t}} \end{array}$	$\begin{array}{r} -1261 \\ 466 \\ 1 \end{array}$	$\begin{array}{r} -692 \\ \\ -\quad 2 \end{array}$	$\begin{array}{r} -1108 \\ -\quad 82 \\ -\quad 3 \end{array}$	$\begin{array}{r} -1402 \\ 472 \\ 0 \end{array}$	$\begin{array}{r} -988 \\ 1054 \\ 2 \end{array}$	$\begin{array}{r} -503 \\ 839 \\ 1 \end{array}$	$\begin{array}{r} -998 \\ 241 \\ 0 \end{array}$	$\begin{array}{r} -1867 \\ 56 \\ 2 \end{array}$
$\mathbf{U}^{\text {b }}$	467	130	- 85	472	1056	840	241	58
$\mathbf{X}_{\mathbf{3}}{ }_{\text {c }}$	$-\quad 28$ $-\quad 1$	3 9	$\begin{array}{r} -\quad 49 \\ -\quad 28 \end{array}$	$\begin{array}{r} 33 \\ -\quad 14 \end{array}$	$\begin{array}{r} 4 \\ -\quad 5 \end{array}$	$\begin{array}{r} 7 \\ -\quad 15 \end{array}$	$\begin{aligned} & -\quad 7 \\ & -\quad 1 \end{aligned}$	$\left\lvert\, \begin{array}{ll} - & 12 \\ - & 13 \end{array}\right.$
$\begin{array}{r} \mathbf{X}_{\mathbf{d}} \\ \mathbf{U}_{\mathrm{f}}=1.15 \mathbf{X}_{d} \end{array}$	$\begin{aligned} & 47 \\ & 38 \\ & 44 \end{aligned}$	$\begin{aligned} & 53 \\ & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & 12 \\ & 26 \\ & 30 \end{aligned}$	$\begin{aligned} & 32 \\ & 31 \\ & 36 \end{aligned}$	$\begin{aligned} & 48 \\ & 10 \\ & 12 \end{aligned}$	$\begin{array}{r} 49 \\ -\quad 23 \\ -\quad 26 \end{array}$	5 1 1	$\begin{array}{r} 41 \\ -\quad 2 \\ -\quad 2 \end{array}$
$\mathbf{X}_{\mathbf{X}}^{\text {¢ }}$	23 $-\quad 4$	- 2	7 $-\quad 9$	3 1	7	$-\quad 6$ $-\quad 3$	- $\quad 1$	- 11

functions X with literal subscripts have only contributions in $R \sin r^{\prime}$. The same is true for the functions U as we can see in the expressions ($4 k$) and (4h) to ($4 q$). Therefore, if we designate by l the sum of all the terms of the functions with numerical subscripts and by l^{\prime} the sum of all the terms of the functions with literal subscripts, we may write :

$$
\begin{array}{r}
l=\mathrm{C} \sum_{c} \mathrm{R} \cos r^{\prime} \\
l^{\prime}=-\mathrm{C} \sum_{c} \mathrm{R} \sin r^{\prime} \tag{5b}
\end{array}
$$

where C represents the numerical coefficients for X and U. If in (4a) we replace ($d-16$) by the second part of ($3 d$) and if we transfer to (5a) and (5b) the value of r^{\prime} which results from this, we shall obtain after development :

$$
\begin{align*}
& t=\mathrm{C} \sum_{c}[\mathrm{R} \cos r \cos (\rho+0.841 q)(1.65+3.3 k) \\
& +\mathrm{R} \sin r \sin (\rho+0.841 q)(1.65+3.3 k)] \tag{5c}\\
& \boldsymbol{l}=-\mathrm{C} \sum_{c}[\mathrm{R} \cos r \sin (\rho+0.841 q)(1.65+3,3 k) \\
& -\mathrm{R} \sin r \cos (e+0.841 q)(1.65+3.3 k)] \tag{5d}
\end{align*}
$$

Table 5-I

Constituents				$\cos (\rho+0.841 q)(1.65+3.3 k)$							
				A	B	C	D	E	F	G	H
Q ${ }_{1}$				0.690	-0.719	-0.700	0.710	0.710	-0.700	-0.719	
O_{1}	MOs			-0.924	-0.383	0.383	0.924	0.924	0.383	-0.383	-0.924
M_{1}	M_{3}			1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
K_{2}	MK_{3}			-0.924	-0.383	0.383	0.924	0.924	0.383	-0.383	-0.924
J_{1}				0.690	-0.719	-0.700	0.710	0.710	-0.700	-0.719	0.690
00_{1}				-0.383	0.924	-0.924	0.383	0.383	-0.924	0.924	-0.383
μ_{2}				0.366	- -1.881	-0.572	0,748	0.748	-0.572	-0.881	0.366
N_{2}	MN4	2 MN .		-0.914	-0.366	0.392	0.925	0.925	0.392	-0.366	-0.914
M_{2}	M	Ma	So	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000
L_{5}			Mm	-0.914	-0.366	0.392	0.925	0.925	0.392	$--0.366$	-0.914
${ }_{2 S^{\text {S }}}$	MS,	${ }_{2}^{2 \mathrm{SS}}{ }_{0}$	MS ${ }_{\text {t }}$	0.366	-0.881	-0.572	0.748	0.748	-0.572	-0.881	0.366
$2 \mathrm{SM}_{2}$	S_{4}	${ }_{\text {2SM }}^{2}$		-0.733	0.553	-0.345	0.117	0.117	-0.345	0.553	-0.733
	SN,	MSN ${ }_{\text {e }}$		-0.712	-0.117	0.530	0.944	0.944	0.530	-0.117	-0.712
	Constit						$p+0.841$	(1.65 +			
				A	B	C	D	E	F	G	H
				-0.724	-0.695						
O_{1}	MO_{3}			0.383	0.924	0.924	0.383	-0.383	-0.924	-0,924	-0.383
M_{4}	M_{3}			0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000
K_{1}	MK_{3}			-0.383	-0.924	-0.924	-0.383	0.383	0.924	0.924	0.383
				0.724 0.924	0.695	-0.714	-0.705	0.705	0.714	-0.695	-0.724
00_{1}				-0.924	0.383	0.383	-0.924	0.924	-0.383	-0.383	0.924
				-0.930	-0.437	0.820	0.664	-0.664	-0.820	0.437	0,930
N_{2}	MN4	$2 \mathrm{MN}_{\text {c }}$		0.405	0.930	0.920	0.379	-0.379	-0.920	-0.930	-0.405
M_{p}	M.	Ms.	So	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
			Mm	-0.405	-0.930	-0.920	-0.379	0.379	0.920	0.930	0.405
			MSt	0.930	0.437	-0.820	-0.664	0.664	0.820	-0.437	-0.930
$2 \mathrm{SM}_{2}$	S_{4}	${ }^{2} \mathrm{SM}_{4}$		0.682	-0.833	0.938	-0.993	0.993	-0,938	0.833	-0.682
	SN_{4}	MSN ${ }_{\text {c }}$		-0.702	-0.993	--0.848	-0.331	0.331	0.848	0.993	0.702

Table 3-I gives the values of $(\rho+0.841 q)(1.65+3.3 k)$ for the "columns" A to H, of the "tidal-surface". We may see that the angles of columns A and H have the same numerical values, but are of opposite signs. The same applies to columns B and G, C and F, D and E. Thus, the cosines of these angles will be equal in value and in signs, and the sines will be equal and of opposite sign. This is to be seen in table 5 -II which gives the values of the sines and cosines of the angles $(p+0.841 q)(1.65+3.3 k)$ for each column A, B, etc., and each constituent Q_{1}, O_{1}, etc., μ_{2}, N_{2}, etc.

Consequently, we may add the l functions for A and H, B and G, etc., and the results will be freed from the terms in $R \sin r$. The same applies to the differences between the values of l^{\prime} for A and H, B and G, etc., which will be freed from the term in $R \sin r$. In form $5-A$, we see the practical values of l and l calculated as just described. We can then write the following equations

Form 5-A

		$\mathrm{A}+\mathrm{H}$	$\mathrm{B}+\mathrm{G}$	$\mathbf{C}+\mathrm{F}$	D +E		A-H	B-G	$\mathrm{C}-\mathrm{F}$	D-E
X_{0}	$\mathrm{R} \cos r$	7018	6584	6431	6422	$\mathrm{R} \sin r$	204	174	- 75	- 46
a	$\begin{aligned} & \mathbf{U}_{1} \\ & \mathbf{U}_{\mathbf{u}} \\ & \mathbf{X}_{3} \\ & \mathbf{X}_{4} \\ & \mathbf{X}_{s} \end{aligned}$	$\left\|\begin{array}{r} 385 \\ -3128 \\ -\quad 40 \\ -\quad 6 \\ 12 \end{array}\right\|$	$\left\|\begin{array}{r} 114 \\ -1690 \\ -\quad 4 \\ -\quad 4 \\ -\quad 4 \end{array}\right\|$	65 -1611 $-\quad 56$ $-\quad 13$	$\left\|\begin{array}{r} 286 \\ -2390 \\ -\quad 37 \\ 80 \\ 10 \end{array}\right\|$	$\begin{aligned} & \mathrm{U}_{a} \\ & \mathrm{U}_{\mathrm{b}} \\ & \mathrm{X}_{\mathrm{c}} \\ & \mathrm{U}_{d} \\ & \mathrm{X}_{r} \end{aligned}$	$\left.\begin{array}{r} 40 \\ -\quad 409 \\ 12 \\ 46 \\ 2 \end{array} \right\rvert\,$	$\begin{array}{r} 119 \\ -111 \\ -\quad 8 \\ \quad 15 \\ 6 \end{array}$	$\begin{array}{r} 9 \\ -\quad 925 \\ -\quad 13 \\ 56 \\ 12 \end{array}$	$\begin{array}{r} 15 \\ -584 \\ 9 \\ 24 \\ 6 \end{array}$
		A +B	$\mathrm{B}+\mathrm{G}$	$\mathrm{C}+\mathrm{F}$	D $+\mathbf{E}$		-(A-H)	-(B-G)	-(C-F)	(D-E)
$\begin{aligned} & 2 \\ & E \\ & \underset{\sim}{n} \end{aligned}$		$\left\lvert\, \begin{array}{rr} -108 \\ - & 525 \\ - & 14 \\ - & 10 \\ - & 10 \end{array}\right.$	$\left.\begin{array}{\|r\|} 1 \\ 371 \\ -\quad 10 \\ 17 \\ 4 \end{array} \right\rvert\,$	103 755 -43 4 6	$\begin{array}{r} 23 \\ 1528 \\ 19 \\ -\quad 48 \end{array}$	U_{1} U_{2} X_{3} \mathbf{X}_{3} X_{4}	$\begin{array}{r} 606 \\ -\quad 7 \\ -\quad 86 \\ -\quad 34 \end{array}$	$\begin{array}{r} 94 \\ -\quad 306 \\ -\quad 10 \\ -\quad 48 \\ -\quad 0 \end{array}$	$\begin{array}{r} 1 \\ 605 \\ 42 \\ 37 \\ 1 \end{array}$	$\begin{array}{r} 14 \\ 414 \\ 29 \\ 16 \\ 4 \end{array}$

where $c(A), c(B)$, etc., represent the cosines of table 5 -I for columns A, B, etc., and $s(\mathrm{~A}), s(\mathrm{~B})$, etc., the sines :

In the same way, if we total the symmetrical values of l^{\prime}, and the differences in symmetrical values of l, the results will be freed from $R \cos r$.

Thus we obtain :

We obtain in this way 8 equations in $R \cos r$ and in $R \sin r$. As we have not considered more than 6 constituents in each group, we have for each group a number of systems of linear equations larger than the number of unknowns, which we may resolve by the method of least squares.

We may now make a very important observation : the expressions ($5 f$) and ($5 g$) show that the system ($5 f$) only differs from ($5 g$) by the known terms (first left-hand terms) if we invert the signs of the 4 last equations of (5 g). We shall therefore have only one matrix for the two systems of each group. Table 5-I again shows us that $c(\mathbf{A})=c(\mathbf{H}), c(\mathrm{~B})=c(\mathrm{G})$, etc., and $s(\mathbf{A})=-s(\mathrm{H}), s(\mathrm{~B})=s(\mathrm{G})$, etc., which permits us to double the coefficients C of (5f) to ($5 i$) and organize the matrices by copying the values of cosine and sine of (A) to (D) of table 5-I for each consittuent. This is what has been done to construct table 5-II.

Table 5-II shows us the systems in which the repetition of the coefficients is remarkable. We see that there are only long period constituents which have different matrices for the unknown $R \cos r$ and $R \sin r$. We also see that the diurnal constituents and third-diurnal constituents may be determined as a function of a same matrix, and likewise for the fourth-diurnal and sixth-diurnal constituents, the matrix of which is slightly different from that which corresponds to semi-diurnal constituents. To take account of the difference between the general coefficients, it suffices to divide the final values of R by a coefficient equal to their ratio. In the case of third-diurnal constituents, this coefficient will be 0.953 and in the case of the fourth-diurnal constituents it will be 1.333 .

In form 6-D, we see that these coefficients are designated by c.
The solution of these very numerous equations by the method of least squares leads to inverse matrices, i.e. to the multipliers of the known terms which we see in table 5-1II. On transcribing these multipliers on a sheet of paper, in such a way that the columns shall have the same width as the columns of form $5-\mathrm{A}$, and in placing the sheet of paper in such a way that the values corresponding to \mathbf{M}_{2} for example are coincident with the row U_{2}, the sum of the products will be $R \cos r$ for this component. The same multipliers juxtaposed to row X_{b} will give $R \sin r$. This is a general rule for obtaining all the values of $R \cos r$ and $R \sin r$ which appear in form 5-B. These values are not definitive for the diurnal and semi-

Table 5-II

General coefficient : 48,000						
$\mathrm{R} \cos \boldsymbol{r}$	So	Mm	MS,	Mm	MS ${ }_{\text {f }}$	$\mathrm{R} \sin \boldsymbol{r}$
	1 1 1	$\begin{array}{r}-0.914 \\ -0.366 \\ 0.392 \\ 0.925 \\ \hline\end{array}$	0.366 -0.881 -0.572 0.748	0.405 0.930 0.920 0.379	-0.930 -0.437 0.820 0.664	$\begin{aligned} & \mathrm{A}-\mathrm{H} \\ & \mathrm{~B}-\mathrm{G} \\ & \mathrm{C}-\mathrm{F} \\ & \mathrm{D}-\mathrm{E} \end{aligned}$

		General coefficient : 29,856						
		${ }^{13}$	N	M.	L.	S_{2}	2SM.	
U3	A +H	0.366	-0.914	1.000	-0.914	0.366	-0.731	A +H
	$\stackrel{B}{\mathrm{~B}}+\mathrm{G}$	-0.881	${ }^{-0.366}$	1.000	-0.366	-0.881	-0.553	$\stackrel{B}{\mathbf{C}}+\mathbf{G} \mathrm{U}_{\text {b }}$
	$\stackrel{\text { C }}{\mathrm{D}}+\mathrm{F}$	-0.572	0.392 0.925	1.000	${ }_{0}^{0.392}$	-0.572	-0.345	$\stackrel{\mathrm{C}}{\mathrm{D}}+\mathrm{F}$
	A-H	0.930	-0.405	,	0.405	-0.930	-0.682	-(A-H)
U	${ }^{\mathbf{B}}$-G	0.437	-0.930	0	0.930	-0,437	0.833	-(B-G)
	$\mathrm{C}-\mathrm{F}$	0.820	-0.920	0	0.920	0.820	-0.938	-(C-F) C_{3}
	D-E	-0.664	-0.379	0	0.379	0.664	0.993	-(D-E)

		Gene	coeff	cient : 3	2,000		
		MN.	M ${ }_{\text {c }}$	SN,	MS ${ }_{\text {4 }}$	S.	
	A+ H	-0.914	1.000	-0.712	-0.366	-0.731	$\mathrm{A}+\mathrm{H}$
X.	$\mathrm{B}+\mathrm{G}$	0.366	1.000	-0.117	-0.881	0.553	$\mathrm{B}+\mathrm{G} \mathrm{Ca}_{4}$
X_{8}	$\mathrm{C}+\mathrm{F}$	0.392	1.000	0.530	-0.572	-0.345	$\mathrm{C}+\mathrm{F} \quad \mathrm{X}_{\text {f }}$
	$\mathrm{D}+\mathrm{E}$	0.925	1.000	0.944	0.748	0.121	$\mathrm{D}+\mathrm{E}-$
	A-H	-0.405	0	0.702	-0.930	-0.682	-(A-H)
$\mathrm{U}_{\text {d }}$	B-G	-0.930	0	0.993	-0.437	-0.833	-(B-G) X_{0}
$\mathrm{X}_{\text {t }}$	$\underset{\mathrm{D}}{\mathrm{C}} \mathrm{F} \mathrm{F}$	$\underline{-0.920}$	O	0.848	0.820	-0.938	$\begin{aligned} & (\mathrm{C}-\mathrm{F}) \mathrm{x}_{0} \\ & \mathrm{D}-\mathrm{E} \end{aligned}$
		-0.379	0	0.332	0.664	0.993	$-(\bar{D}-E)^{\Lambda_{0}}$
		2 MN	M	MSN ${ }^{\text {e }}$	2 MS \%	$2 \mathrm{SM}_{6}$	
General coefficient : 24,000							

Table 5－III

		90\％		ス̌y	
a		$\begin{aligned} & \text { No Norsid } \\ & \text { Nom mion } \\ & 1 \mid \end{aligned}$	｜ 1		\bigcirc
	Nome			।	－
$\xrightarrow{-1}$		1111	1	｜｜！	\bigcirc
$\xrightarrow{\text { 星 }}$	ํํำは 11	 111	1｜！		\bigcirc
	$\begin{aligned} & 2 \\ & \text { 2 } \\ & \text { a } \\ & \text { a } \end{aligned}$				
¢1 + \square	¢			Bonis	$\stackrel{\text { ® }}{\text { ¢ }}$
L \pm		 ｜｜｜｜	｜111	｜ 1	\％
$\begin{aligned} & 0 \\ & + \\ & \infty \end{aligned}$	$\mathfrak{m} x \infty 28$ ｜｜｜	11111	 ｜｜｜｜｜	 ｜｜｜	त
$\begin{aligned} & \mathrm{I} \\ & + \\ & + \end{aligned}$	$\underset{\mid}{+108}$	毋ơo ｜｜｜	 ｜｜｜		$\stackrel{\infty}{\stackrel{\infty}{\gtrless}}$
	－				¢
		4 uls	：01 do x soo y	¢01	

Form 5-B

	$(\mathrm{R} \cos r)$	corr.	$\mathrm{R} \cos r$	$(\mathrm{R} \sin r)$	corr.	$\mathrm{R} \sin r$	R^{2}	tgr
So Mm MS ${ }_{1}$			$\begin{array}{r} 137.120 \\ -\quad 7.134 \\ 3.530 \end{array}$	\ldots \ldots \ldots	. ${ }^{\text {a }}$ - \ldots	$\begin{array}{r} 2.031 \\ -\quad 3.645 \\ \hline \end{array}$	$\begin{array}{r} 55.0189 \\ 25.7469 \\ \hline \end{array}$	$\begin{array}{r} 0.285 \\ -\quad 1.033 \\ \hline \end{array}$
Eo			133.516			- 1.614		
Q_{1} O_{1} M_{1} $\mathrm{~K}_{1}$ $\mathrm{~J}_{1}$ $0 \mathrm{O}_{1}$	-1.076 6.818 -1.221 4.517 0.488 0.747	-0.027 $-\quad 0.036$ $-\quad 0.084$ $-\quad 0.005$ $-\quad 0.059$ $-\quad 0.037$	1.103 $-\quad 6854$ $-\quad 1.305$ 4.512 0.547 0.710	-1.522 -0.063 0.146 $-\quad 0.601$ $-\quad 0.682$ $-\quad 0.123$	-0.053 $-\quad 0.071$ $-\quad 0.168$ 0.049 $-\quad 0.114$ $-\quad 0.076$	1.675 $-\quad 2.134$ $-\quad 0.018$ $-\quad 0.650$ $-\quad 0.568$ $-\quad 0.199$	3.6972 51.5313 1.7033 20.7806 0.6218 0.5437	1.428 0.311 0.014 $-\quad 0.144$ $-\quad 1.038$ $-\quad 0.280$
Σ	10,273	- 0.059	10.215	0.483	- 0.063	0.424		
μ_{2} $\mathrm{~N}_{2}$ M_{2} $\mathrm{~L}_{2}$ $\mathrm{~S}_{2}$ 2 M	$\begin{array}{r} \hline-3.644 \\ -16.517 \\ -76.348 \\ 2.095 \\ -25.038 \\ 0.664 \end{array}$	1.204 $-\quad 0.478$ $-\quad 0.190$ $-\quad 1.014$ $-\quad 0.043$ $-\quad 0.333$	$\begin{array}{r} 2.440 \\ -16.039 \\ -76.158 \\ -25.081 \\ -0.081 \\ 0.331 \end{array}$	5.403 $-\quad 7.436$ 27.417 7.987 17.248 $-\quad 0.587$	$+\quad 2.687$ $-\quad 0.971$ $-\quad 1.128$ $-\quad 1.876$ $-\quad 0.295$ $-\quad 0.230$	2.716 $-\quad 6.465$ 2.545 6.111 17.543 $-\quad 0.817$	13.3303 299.0457 6614.8580 38.5129 936.8134 0.7771	1.113 0.403 $-\quad 0.375$ -5.653 -0.699 2.468
Σ_{2}	-85.753	- 0.472	-86.228	54.097	1.033	55.131		
$\begin{array}{r} \mathrm{MO}_{\mathrm{s}} \\ \mathrm{M}_{\mathrm{s}} \\ \mathrm{MK}_{\mathrm{s}} \end{array}$			$\begin{array}{ll} - & 0.046 \\ - & 1.128 \\ - & 0.233 \end{array}$	\ldots	...	$\begin{array}{r}-\quad 0.241 \\ -\quad 0.392 \\ 0.525 \\ \hline\end{array}$	$\begin{aligned} & 0.0602 \\ & 1.4260 \\ & 0.3299 \end{aligned}$	5.239 0.348 -2.253
Σ_{3}			- 1.407			0,107		
$\begin{gathered} \mathrm{MN}_{4} \\ \mathrm{M}_{4} \\ \mathrm{SN}_{4} \\ \mathrm{MS}_{4} \\ \mathrm{~S}_{4} \end{gathered}$			$-\quad 0.587$ $-\quad 2.360$ $-\quad 0.014$ $-\quad 0.258$			1.332 $-\quad 0.308$ $-\quad 0.080$ 1.563 0.528	2.1188 5.6645 3.1855 2.4432	$\begin{aligned} & -2.269 \\ & -0.131 \\ & -111.645 \end{aligned}$
Σ			3.284			3.652		
$\begin{gathered} 2 \mathrm{MN}_{\mathrm{s}} \\ \mathrm{M}_{\mathrm{e}} \\ \mathrm{MSN}_{\mathrm{s}} \\ 2 \mathrm{MS}_{8} \\ 2 \mathrm{SM}_{\mathrm{s}} \end{gathered}$			-0.246 -0.096 0.085 $-\quad 0.356$ $-\quad 0.016$			0.190 $-\quad 0.147$ -0.218 0.223 0.366		
Σ_{11}			0.275			0.414		

diurnal constituents since it is still necessary to make corrections due to the interferences of certain small constituents. However, before determining these corrections it is necessary to calculate for zero hour on the 16 th day of the series of observations the values of V, u and f for the various constituents. We will say nothing regarding this calculation which is well known. Form 6-D shows the results of the operations carried out.

6. - Additional Refinement of the results

On account of the limitations inherent in an analysis of short period, the constituents the speeds of which are close to one another cannot be separated; they appear in groups which we may consider represented respectively by the main constituent of the group duly corrected in amplitude and in phase.

The groups to be considered are the following :

$$
\begin{aligned}
& \mathrm{S}_{2}, \mathrm{~K}_{2} \text { and } \mathrm{T}_{2} \\
& \mathrm{~K}_{1} \text { and } \mathrm{P}_{1} \\
& \mathrm{Q}_{1} \text { and } \rho_{1} \\
& \mathrm{~J}_{1} \text { and } \theta_{1} \\
& \mathrm{~N}_{2} \text { and } \nu_{2} \\
& \mathrm{MS}_{4}, \mathrm{MK}_{4} \text { and } \mathrm{MT}_{4} \\
& 2 \mathrm{MS}_{6}, 2 \mathrm{MK}_{6} \text { and } 2 \mathrm{MT}_{6}
\end{aligned}
$$

As we know, we may treat each one of these groups as a constituent expressed by :

$$
y=f(1+W) H \cos (V+u+w+q t-g)
$$

where $(1+W)$ and w are the corrective elements of the main constituent of the group. The determination of these elements is quite well known and their values are already given in tables of various publications, such as the one on page 73 of vol. XXXI of this Review. Form 6-D shows the values calculated for obtaining R and r for the groups S_{2}, N_{2} and K_{1}. The other groups do not require any special treatment since the values of W and w for the group ($\mathrm{S}_{2}, \mathrm{~K}_{2}, \mathrm{~T}_{2}$) clearly apply to $\left(\mathrm{MS}_{4}, \mathrm{MK}_{4}, \mathrm{MT}_{4}\right.$) and to ($2 \mathrm{MS}_{6}$, $2 \mathrm{MK}_{6}, 2 \mathrm{MT}_{6}$), because the ratios of the amplitudes within these two last groups, as given by the equilibrium tide, are the same as for ($\mathrm{S}_{2}, \mathrm{~K}_{2}, \mathrm{~T}_{2}$). For the same reasons the values of $(1+W)$ and w for the group N_{2} and ν_{2} may be used for $\mathrm{MN}_{4}, \mathrm{M}_{4}$ and for $2 \mathrm{MN}_{6}$ and $2 \mathrm{M}_{\nu_{6}}$ as well as for Q_{1} and ρ_{1} and J_{1} and σ_{1}; but for this last group, w must be taken with the opposite sign. Finally, the values of W and w for the groups K_{1} and P_{1} may be used for MK_{3} and MP_{3}.

These corrections are still insufficient, since they affect only the main constituents of each group and in reality, there is still the interference of the constituents of each of these groups on the constituents determined by the analysis, and in the process of refinement under study, we may include other constituents such as $2 N_{2}$ in the semi-diurnal group and π_{1}, Ψ_{1} and φ_{1} in the diurnal group. To eliminate the interference of these constituents on all the others, it is necessary first of all to calculate the values of R and r for the first ones. This is perfectly feasible if we accept as valid the equilibrium relations which enable us to draw up table 6-I. In so far as the
values of R are concerned, it is not necessary to give any explanation, but as regards the values of w, we must add some comments. For all the constituents which appear in table 6-I, except for $2 \mathrm{~N}_{2}$ we can write :

$$
-\mathbf{r}=\mathrm{V}+\boldsymbol{u}+\boldsymbol{w}-\boldsymbol{g}
$$

$$
-r^{\prime}=\mathrm{V}^{\prime}+u^{\prime}-g \quad \text { secondary constituent }
$$

whence

$$
\boldsymbol{r}^{\prime}=\boldsymbol{r}+\boldsymbol{w}+\left(\boldsymbol{u}-\boldsymbol{u}^{\prime}\right)+\left(\mathbf{V}-\mathbf{V}^{\prime}\right)
$$

Table 6-I

In so far as the constituent $2 \mathbf{N}_{2}$ is concerned, the equilibrium relations show that :

$$
\text { arg. } 2 \mathbf{N}_{2}=\mathbf{2}\left(\text { arg. } \mathrm{N}_{2}\right)-\text { arg. } \mathrm{M}_{2}
$$

Consequently, if we admit that in practice this equality remains valid, we may write in place of ($6 a$) :

$$
\text { phase } 2 \mathbf{N}_{2}=2\left(\text { phase } N_{2}\right) \text { - phase } M_{2}
$$

Table 6-II

P_{1}	π_{1}	ψ_{1}	φ_{1}	\mathbf{K}_{2}	T_{2}	v_{2}	$2 \mathrm{~N}_{2}$		
1	1	1	1	0	0	0	0	$\boldsymbol{r}+\boldsymbol{w}+\boldsymbol{u}$	K_{1}
0	0	0	0	- 2	0	0	0	$\mathrm{V}+\boldsymbol{u}$	K_{1}
2	3	-1	- 2	0	1	0	0	V	K_{1}
0	0	0	0	0	0	1	2	$\boldsymbol{r}+\boldsymbol{u}$	$\mathrm{N}_{\mathbf{2}}$
0	0	0	0	0	0	2	0	V	\mathbf{N}_{2}
0	0	0	0	0	0	- 3	0	V	\mathbf{M}_{2}
0	0	0	0	0	0	0	1	\boldsymbol{r}	M_{2}
0	0	0	0	1	1	0	0	$\boldsymbol{r}+\boldsymbol{w}$	$\mathbf{S a}_{\mathbf{a}}$
0	-12°	12°	180°	180°	-12	0	0		

On the other hand, if on account of the interference of v_{2}, N_{2} becomes increased by w, that of $2 N_{2}$ will be increased by $2 w$ in accordance with the equilibrium relation. Thus, the expression ($6 a$) will continue to be valid, which enables us to write the expression of r for $2 N_{2}$ which appears in table 6-I. In this case, in carrying out to completion the calculation of R and r for S_{2}, N_{2}, K_{2} and M_{2} as shown in Form 6-A, we may calculate with the formulae in table 6-I all the values of R and r of the constituents which have an effect which we wish to eliminate in the case of others. In order to understand the calculation of the terms R, it suffices to refer to Form 6-C.
Form 6-A

	$f(1+\mathrm{W})$	R	H	r
$\mathrm{~K}_{1}$	1.194	4.6	3.9	$7^{\circ} .6$
$\mathrm{~N}_{2}$	1.121	18.1	16.1	24.2
$\mathrm{~S}_{2}$	0.862	30.4	35.3	145.4
M_{2}	\cdots	\cdots	\cdots	160.3

FORM 6-C

(*) $H=H\left(K_{1}\right)$ for the diurnal constituents; $H=H\left(S_{2}\right)$ for K_{2} and $T_{2} ; H=H\left(N_{2}\right)$ for v_{2} and $2 N_{2}$.
Form 6-D

As to the terms r, we may express them as the multipliers which are found in table 6-II to make the combination of values which are included in Form 6-B. The values of V, u and w found there are the same as those in Form 6-D.

It still remains to be explained how we may do away with the values of $R \cos r$ and $R \sin r$ of the isolated constituents in the analysis, the amounts arising from the values of $R \cos r$ and $R \sin r$ calculated in Form 6-C. For this purpose, we shall use the matrix calculation which will make the development very much simpler.

Now, in designating by \{ C$\}$ the column vector constituted by the known terms of the systems $5-11$, by M the matrices of these systems and by \{I\} the column vector constituted by the unknown terms, any one of these systems may be represented by

$$
\begin{equation*}
\{\mathbf{C}\}=\mathbf{k} \mathbf{M} \cdot\{\mathrm{I}\} \tag{6b}
\end{equation*}
$$

where k is the general coefficient of the unknown terms of the systems in table 5-II. It happens however, that in the drawing up of ($6 b$) the unknown

Table 6-III

General coefficient : 30.384				
	P_{1}	π_{1}	ψ_{1}	φ_{1}
			-0.982	-1.000
$\mathrm{~A}+\mathrm{H}$	-0.695	-0.533	-0.514	-0.635
$\mathrm{~B}+\mathrm{G}$	-0.099	0.047	0.301	0.915
$\mathrm{D}+\mathrm{F}$	0.539	0.610	0.912	0.900
$\pm(\mathrm{A}-\mathrm{H})$	0.945	0.954	0.187	0.019
$\pm(\mathrm{B}-\mathrm{G})$	0.719	0.846	0.858	0.973
$\pm(\mathrm{C}-\mathrm{F})$	0.955	0.999	0.954	0.437
$\pm(\mathrm{D}-\mathrm{E})$	0.842	0.792	0.410	

Table 6-IV

General coefficient : 29.856				
	K_{2}	Tı	ν_{2}	$2 \mathrm{~N}_{2}$
$\mathrm{A}+\mathrm{H}$	0.708	0.168	-0.708	0.674
$\mathbf{B}+\mathbf{G}$	-0.706	-0.941	-0.113	-0.729
$\mathbf{C}+\mathbf{F}$	-0.707	-0.498	0.531	-0.693
$\mathbf{D}+\mathbf{E}$	0.707	0.766	0.944	0.714
$\pm(\mathrm{A}-\mathrm{H})$	-0.706	-0.985	-0.706	0.738
$\pm(\mathrm{B}-\mathrm{G})$	-0.708	-0.339	-0.994	0.684
$\pm(\mathrm{C}-\mathrm{F})$	0.707	0.867	-0.847	-0.721
$\pm(\mathrm{D}-\mathrm{E})$	0.707	0.643	-0.331	-0.700

terms which appear in table 6-I are not involved. These unknown terms give rise to matrices which one can see in tables 6-III and 6-IV, which have been constructed in the same manner as 5 -II. Consequently, if we designate by $\left\{I^{\prime}\right\}$ the column vector which represents these unknown terms,
and by M^{\prime} the respective matrix, the equation ($6 c$) should be replaced by another one obtained by adding to its second part $\mathrm{kM}^{\prime}\left\{\mathrm{I}^{\prime}\right\}$:

$$
\begin{equation*}
\{\mathbf{C}\}=\mathbf{k} \mathbf{M}\{\mathbf{I}\}+\mathbf{k} \mathbf{M}^{\prime}\left\{\mathbf{I}^{\prime}\right\} \tag{6c}
\end{equation*}
$$

From this we deduce :

$$
\begin{equation*}
\{I\}=\frac{\mathbf{M}^{-1}\{\mathbf{C}\}}{\mathbf{k}}-\mathbf{M}^{-1} \mathbf{M}^{\prime}\left\{\mathbf{I}^{\prime}\right\} \tag{6d}
\end{equation*}
$$

Evidently, $\frac{\mathrm{M}^{-1}}{\mathrm{k}}$ is any one of the inverse matrices which appear in table 5-III. Consequently, the expression ($6 d$) shows that the correction to be applied to $\{\mathrm{I}\}$ is equal to the product divided by k of the matrix of the diurnal species in table $5-\mathrm{II}$ by the matrix 6 -III or of that of the semi-diurnal species by 6-IV. The products of the matrices are those which are represented in table $6-\mathrm{V}$ and 6 -VI. Thus, the values of the column vector $\left\{\mathrm{I}^{\prime}\right\}$ being known, that is to say the values of $R \cos r$ and of $R \sin r$ for the constituents which appear in the table mentioned above, the corrections to apply to $R \cos r$ and to $R \sin r$ of each of the isolated constituents in Form 5-A will be equal to the sum of the products of the multipliers of tables $6-V$ and 6-VI by the respective values of $R \cos r$ or of $R \sin r$ as the case may be. In the example quoted, the total corrections are those which appear following the values of $R \cos r$ and $R \sin r$ in form 5-B.

Table 6-V

	\mathbf{P}_{1}	π_{1}	ψ_{1}	φ_{1}
Q_{1}	-0.056	-0.092	0.031	0.060
O_{1}	0.075	-0.126	-0.040	-0.076
M_{1}	-0.172	-0.270	0.072	0.129
$\mathrm{~K}_{1}$	0.044	-0.922	-0.990	-0.963
$\mathrm{~J}_{1}$	-0.123	-0.175	-0.082	-0.173
OO_{1}	-0.078	-0.104	0.042	0.084
	-0.064	-1.087	-0.967	-0.939

Table 6-VI

	K_{2}	$\mathrm{~T}_{2}$	v_{2}	$2 \mathrm{~N}_{2}$
	-0.068	0.040	0.122	-1.036
M_{2}	-0.065	-0.045	0.017	-0.181
$\mathrm{~N}_{2}$	-0.091	0.048	-0.154	-0.096
M_{2}	$\mathrm{~L}_{2}$	0.182	-0.096	0.086
\mathbf{S}_{2}	-0.012	-0.031	-0.066	
$2 \mathrm{SM}_{2}$	0.042	-0.003	-0.035	-0.079
	0.118	-0.025	-0.030	-1.025

It is now necessary to give some explanations on the multipliers K_{1}, N_{2} and S_{2} in tables 6-V and 6-VI. We have seen that in order to correct K_{1} of P_{1}, S_{2} of K_{2} and T_{2} and N_{2} of v_{2} we have introduced the factors $1+W$ and the angles w. If we look at fig. 6.1 where we have represented the
schematic vectorial combination of K_{1} and P_{1} we notice that :
$\mathrm{R} \cos r\left(\mathrm{~K}_{1}\right)=\mathrm{R} \cos r\left(\mathrm{~K}_{1}+\mathrm{P}_{1}\right)-\mathrm{R} \cos r\left(\mathrm{P}_{1}\right)$ $\mathrm{R} \sin \boldsymbol{r}\left(\mathbf{K}_{1}\right)=\mathrm{R} \sin \boldsymbol{r}\left(\mathbf{K}_{\mathbf{1}}+\mathbf{P}_{1}\right)-\mathrm{R} \sin \boldsymbol{r}\left(\mathbf{P}_{\mathbf{1}}\right)$

Fig. 6.1
Under these conditions, the corrections for P_{1} have been determined by allowing that the factor for correcting P_{1} should be equal to - 1 . Now, by multiplying the matrices, the value would be - 0.956 , instead of which 0.044 which is given in table $6-\mathrm{V}$. Consequently, if we have already made the correction by considering the multiplier - 1 it is only necessary to add 0.044 which is to be found in table $6-\mathrm{V}$. We can give the same explanation for values --0.012, 0.031 for S_{2} and 0.017 for N_{2} in table 6-VI.

The calculation will be completed in Form 6-D where we shall include the final values of R and r calculated from R^{2} and $\operatorname{tg} r$ from Form 5-B.

7. - Accuracy of the results

It is difficult to know the accuracy of the values obtained for R and r, since that it would be necessary to know the average error of the ordinates y. However, although the procedure is rather long, it is not difficult to express the average errors of R and of r as a function of a mean error of y. That has the advantage of permitting the study of the relative accuracy of the constants obtained for the various constituents as well as for the comparison of this method with others. In the study which we have made we have obtained the following formulae :

$$
m_{\mathrm{R}}=\left\{\begin{array}{l}
\text { L.P. } 0.105 \\
\text { D. } 0.114 \\
\text { S.D. } 0.112 \\
\text { T.D. } 0.103 \\
\text { Q.D. } 0.107 \\
\text { 6.D } 0.104
\end{array}\right\} \times m_{y} ; \quad m_{r}=\left\{\begin{array}{c}
\text { L.P. } 6^{\circ} .0 / \mathrm{R} \\
\text { D. } 6.5 / \mathrm{R} \\
\text { S.D. } 6.4 / \mathrm{R} \\
\text { T.D. } 6.1 / \mathrm{R} \\
\text { Q.D. } 6.0 / \mathrm{R} \\
\text { G.D } 6.0 / \mathrm{R}
\end{array}\right\} \times m_{y} ;
$$

which shows us that the average errors of the amplitudes are approximately of the same order for all the constituents but the average errors of the phases are inversely proportional to these amplitudes. As the coefficients of these are approximately of the same order, we may say that the
constituents of the same amplitude are determined with the same accuracy. However, if we imagine, for example, that the constituents K_{1} and OO_{1} retain the same relationship as that of the equilibrium tide, we shall have approximately $R\left(K_{1}\right) \approx 33 R\left(\mathrm{OO}_{1}\right)$ and thus m_{r} for OO_{1} will be 33 times greater than m_{r} for K_{1}. Consequently, one should not place too much trust in the constant g for the small constituents.

We have made a similar calculation for the Tidal Institute's method for the diurnal constituents and we find that $m_{\mathrm{R}} \approx 0.075 m_{y}$ and $m_{r}=4^{\circ} .3 m_{y} / R$. If we take account of the elimination of the errors already made by the tracing of contour lines, we may say that the small difference of $0.04 m_{y}$ and of $2^{\circ} .2 m_{y} / R$ is perfectly justified.

8. - Conclusion

We are persuaded that the study we have just presented enables us to conclude that the semi-graphic method is efficient. We also believe that it may be used for shorter periods. For this purpose it will suffice to bring the "columns" close together. Consequently, we intend to study this possibility and to present the conclusions at the same time as a complete study of the formulae of the errors obtained in the preceding paragraph.

In conclusion, we desire to express to Cdr. G. Lemiere our sincere thanks for the invaluable assistance given us in the calculations of all the tables, and of the analysis itself, and especially in the translation from the original text in Portuguese.

