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“ It is depressing, if instructive, to find out how difficult it is even 
for informed people to take in a simple proposition, if it goes counter to 
what G a l b r a i t h  calls ‘ the conventional W isdom  ideas which have been 
accepted so long, that they are defended uncritically and even with passion 
from attack. ” (Philip W i l l s  in an article “ Air Traffic Control and Logic " 
in Sailplane and Gliding, February 1963).

Ref. 1 : “ Radio Aids and Geodesy ” in Vol. XXIV o f International 
Hydrographic Review, 1947.

Ref. 2 : “ The Absolute Plumb Line Deflection ” in Vol. XL o f Inter
national Hydrographic Review, 1963.

Since I have discovered that many people, at least in Denmark, did 
not understand, or completely misunderstood, ref. 2, I want to give a 
more complete, and I do hope more comprehensible, explanation of my 
thoughts.

Intentionally I try to evade long and tedious mathematical develop
ments; but I shall try to explain the thoughts behind the principle proposed 
with appeal to simple logic and well known laws of nature.

The following notations are used :
r  : (capital gamma) : The gravity in the spheric system, 
y : The gravity in the spheroidic system. 
g  : The gravity in the geoidic system. 
r  : Radius in the spheric system.
R ; Radius vector in the spheroidic system.
<p' : Geocentric latitude, latitude in spheric system.
<p : Geographic or geodetic latitude, latitude in spheroidic system, 
cpG : Geoidic latitude, latitude in geoidic system. 
a : Semi-major (equatorial) axis o f ellipsoid o f rotation. 
b : Semi-minor (polar) axis of ellipsoid o f rotation. 

a —  b
f  : F lattening---------- o f ellipsoid o f rotation.

a
fit : Meridian radius o f curvature o f ellipsoid of rotation.
N : Grand normal, radius of curvature o f ellipsoid of rotation at 

right angles to the meridian.
The notations are marked * o " when they are used to indicate the 

value on the surface o f the globe in question.



First let me explain the strange word : anomaly. It simply means 
deviation from the normal, so it depends upon what is considered normal.

In ref. 1, page 35, I defined the gravity anomaly as : g'J — y0-
The two dots at g0 indicate that the observed gravity g has been reduced 

to mean sea level by the free-air and the Bouguer correction, because this 
is the common practice in Denmark. y0 is the “ normal ” gravity computed 
from the International Ellipsoid having a flattening f0 =  1/297.0.

As W . D. L a m b e r t  says in an article referred to later in great detail : 
“ The question o f the best method of reducing to sea level, whether by an 
isostatic reduction, by condensation, by inversion, or by no reduction at 
all except the free-air reduction for elevation, has not yet been settled to 
the entire satisfaction of all geodesists and is too large a question to be 
discussed here. ”

Moreover this question is irrelevant as to principle; here we may 
abstract and imagine it possible to measure the gravity on the Geoid itself.

Net let us consider the different globes and their corresponding potential 
surfaces (ref. 1, page 15).

The sphere

The simplest potential surface approximating to the Earth is the Sphere. 
If we imagine a large fluid mass, with mean density the same as that of 
the Earth (about 5.6) and with volume the same as that o f the Geoid, being 
alone in space, it would, solely under the influence of Newton’s law of 
attraction, assume the form  of a sphere.

Newton’s law says in words that the attraction between two masses is 
proportional to the product o f the masses and inversely proportional to 
the square of the distance between their centres of gravity, or :

F • m, ■ m2
*  = ------- < »

where k  is the force o f attraction, F an attraction constant, m 1 and m2 the 
two masses and r the distance between their centres o f gravity.

The surface o f this globe (being fluid) is not only a potential surface 
but also the visible boundary between empty space and the globe filled with 
matter. On and outside this boundary Newton’s law of attraction is valid 
in its simple form.

On the surface o f this globe a particle of unit mass would be attracted 
towards the centre with a force :

F - m
r .  =  — n -  O)M>

where m is the total mass of the globe and r0 the radius of the sphere (or 
distance to its centre o f gravity). To is independent o f the position on the 
globe.

On the potential surface at double the distance from the centre 

(r =  2r0), the force r  would be only ~  To- All potential surfaces outside 

the globe would also be concentric spheres.



Inside the globe one cannot apply (2) directly, or the attraction would 
be infinite at the center around which all the mass is evenly distributed, 
so here the attraction from  the matter in the globe must be zero. The 
force r  is in fact the difference between the attraction of all masses below 
and the attraction of all the masses above the horizontal plane through 
the point in question. It is seen that all the potential surfaces inside the 
globe must also be concentric spheres and all the lines o f force straight lines 
(radii) terminating at the centre, and that the force of attraction F would 
reach its maximum some distance below the surface o f the globe (the 
isostatic layer).

The results o f geophysics show that the Earth is not homogeneous but 
has an increasing density towards the centre. On the surface we have water 
with a density of about 1, sand, earth and rocks with a density o f about 
2-3, but in the centre the density is believed to be between 11 [1] and 
18.5 [2].

Height E a r t h  r a d ii  D ep th  km. *

Fig. 1. —  Density and the numerical value o f gravity as function o f the distance
to the centre.

NJI. —  The direction of gravity is of course in the direction o f the abscissa.

W e can imagine having the same variation o f density in layers inside 
our idealized globe or sphere. This would not interfere with the variation 
of gravity on or outside the globe, but inside it would let the gravity rise 
slowly to a first (relative) maximum (isostatic layer) o f about 999 gal at 
a depth of about 6-700 km below the surface [2] (see fig. 1).

If we pour some oil on our sphere it would be distributed over the whole 
surface; but it we pour some mercury on it, it would sink to the layer



with the same density (13.6). It is seen that all the potential surfaces are 
still concentric spheres and the lines of force still straight lines.

W e can also imagine our globe having an atmosphere like that o f the 
Earth. Though the weight o f a column of the atmosphere at sea level 
balances with that o f a column o f about 760 mm of mercury or about 10 m

1
o f water, the mass o f the whole atmosphere is only about ------------------ of

^  ̂ 3 000 000
the mass o f the Earth [1 ].

As we don’t know the mass o f the Earth within this accuracy (1 in 10e), 
nor can we observe the absolute gravity with this accuracy (ref. 1, page 35), 
so far no one has taken the atmosphere into account.

It is easily seen that the condition imposed on all potential functions 
is fulfilled, i.e. that the integral o f the forces over the whole globe is zero, 
as the force acting on one random surface element o f the potential surface 
is cancelled out by an equal but opposite directed force acting on the 
surface element on the opposite side o f the potential surface. This is also 
valid for all the other surface elements, that is to say, there are no forces 
left to change the motion of the globe. The same applies to all the other 
spheres or potential surfaces.

If we consider ourselves observing To (the absolute gravity or the 
numerical value o f the gravity) on the surface of this idealized globe we 
would everywhere get the same result (apart from observational errors). 
W e could also say that we have measured the distance r0 to the centre of 
the globe, as r0 is a function o f r  through Newton’s law o f attraction.

If we consider ourselves moving around above and below the surface 
o f the idealized globe with an ordinary relative gravimeter measuring the 
gravity-difference from  the gravity on the idealized globe, we could in fact 
use it as an altimeter measuring the distance to the surface of the globe. 
The only places where we could not apply this principle are where the

/ dr \variations o f gravity in relation to the distance from the centre I ------ ) are

zero, i.e. where the gravity has a minimum or maximum, at an infinite 
distance (r — oo, F  =  0) or at the isostatic layer 600-700 km below the 
surface o f the globe. The principle is most accurate where the variation 
o f r  in relation to r is greatest, i.e. where :

^ £  =  o
dr2

or the curve has an inflexion at the surface o f the sphere.
The celestial sphere with r — oo and T =  0 belongs to this system.
To recapitulate :
In the spherical system the globe and all its other potential surfaces 

are concentric spheres.
On each potential surface the distance to the centre (r), the gravity 

(D . the curvature o f any great circle and the surface curvature ^ ^

o f any surface element are all constant.



The only force in action is the mass attraction, on and outside the 
globe according to Newton’s simple law o f attraction (2).

All the lines o f force are straight lines terminating in the centre.

The Spheroid

If we imagine the sphere set in rotation around an axis through its 
centre, a new force, the centrifugal force, which is directly proportional 
to the rate o f rotation and the distance to the axis o f rotation, will appear 
in addition to the mutual mass attraction.

Around the Equator, where the centrifugal force operates at its greatest 
distance from the axis and consequently has its greatest value, it counteracts 
the mass attraction and tries to raise the surface of the globe.

As the globe, being a fluid, cannot be expanded or compressed (at least 
with an extremely high degree o f approximation), and as the volume of the 
globe must thus remain constant, matter is taken from  the areas around 
the poles (where the distance to the axis and consequently the centrifugal 
force are zero) and moved to a belt around the Equator. The surface of 
the globe around the poles is lowered and the mass attraction here is 
increased as the surface is brought nearer to the centre of gravity.

For a given rate o f rotation there is a corresponding form o f the globe : 
the greater the rate o f rotation, or the greater the centrifugal forces are in 
relation to the mass attraction, the greater the flattening o f the globe.

If the rate o f rotation o f the globe is slowed down, the flattening 
decreases, and if it is stopped the flattening again becomes zero, i.e. the 
globe is again a sphere.

In fact the globe behaves as an old fashioned centrifugal regulator.
Much energy is needed to overcome inertia and to move masses from 

the areas around the poles to the belt around the Equator when the globe 
is set in rotation. But when the globe has reached its fixed speed and a 
state o f equilibrium has been reached, no energy is needed to keep it 
rotating.

W hen the globe is rotating at its fixed speed and has reached its 
equilibrium position, only the two forces, mass attraction and centrifugal 
force, are acting, and the gravity y0 at every point of the surface of the 
rotating globe is at right angles to the surface element in question and is 
the resultant o f these two components.

In this case a0, &0, the flattening f0 of the globe, and the mass attraction, 
the centrifugal force and the resultant ÿ0 at any fixed point on the surface 
of the globe are constant.

Only when the rotation o f the globe is accelerated or retarded do 
other forces intervene; a0, 60, f0, the centrifugal force and the gravity yo 
are then variables, and only the volume and the mass of the globe and the 
mass attraction at any fixed point in space outside the surface o f the globe 
remain constant.



As both the centrifugal forces (at right angles to the axis o f rotation) 
and the mass attractions (through the centre) lie in the meridian planes, 
it follows that their resultants must also be in the meridian planes and 
that the Spheroid must thus be a body o f rotation.

The surface o f this rotating globe has not the same potential as the 
stationary sphere. This can be explained in the following way : on the 
sphere all the forces are directed towards the centre, contributing to the 
potential. On the rotating globe the centrifugal forces, directed away from 
the axis of rotation, also intervene and subtract from  the potential created 
by the mass attraction. The potential surface belonging to the stationary 
system which has the same potential as the rotating spheroid is therefore 
a sphere raised above the surface o f the stationary globe, becoming higher 
as the speed o f rotation o f the spheroid increases.

When the rate o f rotation is retarded and stopped, the spheric potential 
surface lowers itself and at last coincides with the surface of the sphere 
with the same volume as the Geoid. The difference is so small that it cannot 
be shown on a figure.

W e can define the Spheroid as the idealized, regular potential surface 
with the same distribution of masses in the core (not in the crust) as the 
Earth, rotating with the same speed and having the same potential as 
mean sea level; all the irregularities of the Geoid caused by islands and 
continents with mountains and valleys and all the other uneven distribution 
of masses in the crust o f the Earth are eliminated.

Colonel N. P. J o h a n s e n  [3] defines the Spheroid as an ellipsoid of 
rotation concentric with the centre of gravity of the Earth, with the minor 
axis coinciding with the world axis, whose form and dimensions are such 
that, in approximating to the Geoide, the sum o f the volumes cut off 
between the two surfaces outside and inside the ellipsoid are equal.

In ref. 1, page 16, I defined the Spheroid as the idealized globe, resulting 
from  assuming that the Earth is alone in space, that it maintains its rate 
of rotation, and then assuming that all solids shall change into fluids while 
maintaining their densities.

This definition is not strictly correct. When the islands and continents 
change into fluids and run out into the ocean, the surface would rise 
(perhaps a couple o f hundred metres) and not have the same potential as 
mean sea level on the Earth.

The error committed would perhaps be smaller than the uncertainty 
in our present knowledge of the Spheroid itself, but to be scientifically 
correct, I should prefer to alter this definition to :

The Spheroid is the idealized potential surface having the same potential 
as mean sea level and resulting from assuming that the Earth is alone in 
space, that it maintains its rate o f rotation and that all solids change into 
fluids while maintaining their densities.

It is assumed that the Spheroid is an ellipsoid of rotation, and it is 
easily seen that such a body also satisfies the condition that the integral 
o f y*» over the whole surface o f the globe is zero. The force acting on one 
random surface element is cancelled out by an oppositely directed force



acting on the surface element with opposite latitude and longitude. The 
moment of this couple is balanced out by the moment of the couple acting 
on the surface elements at the same latitude, opposite longitude, and 
opposite latitude, same longitude. This reasoning can be applied to all 
surface elements <*).

As we rise above the surface of the Spheroid the mass attraction 
decreases according to Newton’s law, while the centrifugal force increases 
due to a longer arm of rotation (except at the poles). The potential surfaces 
in the lower atmosphere must therefore be concentric (not confocal) 
ellipsoids of rotation with increasing flattening with increasing height.

The surface elements of the different potential surfaces on the same 
line of force are not parallel but converge towards the poles. The gravity 
lines of force are not straight lines but curves with concavity towards the 
poles. Only at the poles, where there is no centrifugal force, and along 
the Equator, where the centrifugal force acts in a directly opposite 
direction to the mass attraction, are the lines o f force still straight lines. 
As the latitude cp is the angle between the plumb line (tangent to the line 
of force) and the Equatorial plane, larger values (of the latitude cp) will be 
obtained when rising from  the surface of the Spheroid through the lower 
atmosphere along a line o f force.

In the upper atmosphere the rate o f rotation is slowed down with 
increasing height and does not follow that of the Earth. The potential 
surfaces will be concentric ellipsoids of rotation with decreasing flattening 
with increasing height. The gravity lines o f force will somewhere have an 
inflexion, and above this will be curved with the concavity towards the 
Equator.

Far outside the atmosphere no rotation takes place, only the mass 
attraction is acting; consequently all the potential surfaces are concentric 
spheres and the lines of force straight lines in the direction of the centre 
of the Earth.

Although the mass of the atmosphere is so small that it doesn’t 
influence the gravity on the Earth to such an extent that it can at present 
be measured, it still plays a role conveying the rotation of the Earth some 
distance out in space. In this age of space geophysicists have a far wider 
knowledge of the atmosphere than in the past.

As geodesists work on the physical surface of the Earth (ref. 1, 
page 14) (from the level of the Dead Sea about 400 m below mean sea 
level, to the top o f Mount Everest about 8 900 m above mean sea level), 
only the curvature of the lines of force in the lower atmosphere is of real 
interest.

Ga u s s , H e l m e r t  and others [4] have worked out formulae for this 
curvature (ref. 1, page 24) for the Bessel ellipsoid. I don’t know if a similar 
formula has been worked out for the International Ellipsoid, but at least 
it can be done.

The first approximation to the Spheroid has only been known since 
1924, when the International Union of Geodesy and Geophysics (IUGG) in

(*) According to this reasoning also, other closely resembling globes (ovaloids of 
rotation) might be potential surfaces (ref. 1, page 16).



Madrid defined the International Ellipsoid with the determining elements 
a0 := 6 378 388 m and / =  1/297.0, and as a potential surface since 1930, 
when the same scientific union in Stockholm defined the variation of 
gravity y0 on this globe by the international gravity formula :

y0 =  978.0490 (1 +  0.005 2884 sin2 <p0 —  0.000 0059 sin2 2<po)
I prefer to call this International Ellipsoid the International Spheroid 

(ref. 1, page 18).
This idealized globe, the International Spheroid and its “ normal” 

gravity are of course defined with much greater accuracy than that with 
which they are really known (ref. 1, page 43).

“ Science advances rather by providing a succession o f approximations 
to the truth, each more accurate than the last, but each capable o f endless 
degrees of higher accuracy. ” (Sir James J e a n s  : The Universe around us).

It is o f course necessary to have an idealized globe o f such regular 
form  that you can develop a geometry and make your computations on it, 
define your chart planes and illustrate the undulations o f the Geoid in 
relation to it.



The flattening of the International Spheroid is so small (1/297.0) that 
it cannot be distinguished from  a sphere on normal graphic representations ; 
on the Earth the centrifugal force is very small in relation to the mass 
attraction.

My figures are therefore drawn greatly exaggerated (flattening about 
1/5) to illustrate clearly the effect of the flattening.

To investigate the relations between the Sphere and the Spheroid, we 
might superimpose them concentrically (fig. 2) and draw the curve 
representing gravity | yo | as a function o f cp0 as given by the international 
gravity formula (fig. 3).

It is seen directly from  the figure that the Spheroid has its greatest
1

curvature for cp0 =  0. It is greatest in a NS-direction -------  corresponding
Mo

to V — 1852.925 m. In an EW -direction it is --------------  corresponding
to 1' =  1855.398 m. N0 (= a 0)

The curvature decreases continuously towards the poles but the 
curvature is everywhere greater in a NS-direction than in an EW -direc-

1
tion. Only at the poles it has its smallest curvature -------  corresponding

Mq
to 1' =  1861.666 m in all direction (which are all to the South) as M0 =  2V0.

The poles are so-called spherical points having the same surface 
curvature as a sphere with radius r =  M0 =  N0.

In fact a gravimeter might be used for latitude determination on the 
idealized globe except near the poles and the Equator, as gravity y0 and 
latitude cp0 are functions o f each other.

Moreover it is seen that what is vertical (the plumb line) on one globe 
is not vertical at the corresponding position on the other; and -what is 
horizontal (the fluid surface) on one globe is not horizontal at the 
corresponding position on the other globe. But on both globes the vertical 
is always and everywhere at right angles to the horizontal (the surface 
element).

Since latitude is defined as the angle between the plumb line and the 
Equatorial plane then the latitude is not exactly the same for corresponding 
positions on the two globes. W e can call the latitude on the Speroid cp0, 
and on the Sphere (geocentric latitude) <p'. (It is not necessary to call it <p</> 
since it is the same for all spheres (potential surfaces) as the gravity lines 
of force are straight lines).

The deflection of the plumb line <p„ —  cp' or cp' —  <p0 (according to what 
globe is considered “ norm al” ) has been computed and tabulated both in 
La Connaissance du Temps and in IHB Special Publication No. 21, Table VII, 
together with the logarithm of the radius vector (R) o f the International 
Spheroid (expressed in terms of the equatorial radius a as a unit), as they 
are geometrically connected by the formulae [5] :

tan cp-' — (1 —  / 0)2 tan <p0 (3)



9 -  = 45" 07'  48" 22

F ig. 3. —  y» as a function  o f  latitude 
Yo =  978.0490 (1 +  0.005 2884 sin1 (p„— 0.000 0059 sin* 2 <p0)

It is seen from the tables that this deflection o f the plumb line 
between these two globes has its maximum of 11'35766 for <p0 at about 45", 
while it is zero at the poles and along the Equator, where | y<> j has maxima 
and minima (fig. 3). For the Bessel ellipsoid with a slightly smaller 
flattening (1/299.153) the greatest deflection is only 11'30"4.

W e might visualize two spheres (potential surfaces) coincident with 
the Spheroid along the Equator and at the poles. The outer sphere coincident 
along the Equator has everywhere a smaller gravity and a smaller potential 
than the Spheroid. The inner sphere coincident at the poles has everywhere 
a greater gravity and a greater potential than the Spheroid. Between these 
two spheres we might imagine a multitude of concentric spheres inter
secting the Spheroid at different latitudes. As the gravity on the Spheroid 
is continuously increasing with increasing cp0, it follows that there must 
be one and only one sphere having the same potential as the spheroid, 
and this is what I call the Sphere. As mentioned previously it must have 
a greater radius than the sphere with the same volume and inner mass 
distribution as the Geoid.

If we look at the gravity formula :
Yo =  978.0490 (1 +  0.005 2884 sin2 ço —  0.000 0059 sin22cp0) 

it has the form :
Yo =  A0 (1 +  aL sin2cpo —  a2 sin22<p0)

A0 is the “ normal ” gravity at the Equator (not to be confused with the 
Equatorial a0).

If we had only this term, the formula would represent the outer sphere.
alt the coefficient of the spherical function or harmonic of the 2nd



order, is dependent on the flattening and forces | yo | to get the 
correct values around the poles.

a2, the coefficient o f the spherical function or harmonic o f the 4th 
order, forces j y0 | to get the correct values about the middle of 
the quadrant; forces the globe to be an ellipsoid and not an 
ovaloid o f rotation, so that the complete formula represents a 
spheroid in complete agreement with the International Ellipsoid.

It is seen that the gravity formula is only valid for one potential surface, 
the International Spheroid. If we want to have a formula for the potential 
surfaces, say 1 gal above the International Spheroid at the equator, it is 
not sufficient to subtract 1.000 from A0, since the flattening o f this potential 
surface, as mentioned before, is greater than that of the International 
Spheroid. Also the other coefficients ax and a2 will change gradually.

By differentiation one derives the following formulae :

The Sphere (with the same potential as the rotating Spheroid) must 
intersect the Spheroid where the numerical value o f the gravity | yo | has 
its inflexion (fig. 3), as it is here that the vertical component has its smallest 
value but greatest variation, while the horizontal component has its greatest 
value but smallest variation. 

d2 yoSetting---------- (or f "  (m0)) in formula (7) =  0 and solving the equation,
d <f>02

I find that the Sphere intersects the Spheroid at latitude cp0 =  45° 07^0^22 
(geocentric latitude cp' =  44°56'04'.'60) and has a gravity I r 0 I =  I y« I =  
980.64092 gal.

In fig. 2 I have drawn some vectors (from  the Sphere to the Spheroid 
on the left side and from the Spheroid to the Sphere on the right) between 
positions having the same latitude (geocentric tp' and geographical <p0 and 
vice versa).

They correspond to the deflecting vector in ref. 2, page 77.
They must be visualized to represent a vector field transforming one 

globe to the other.
Each vector may be decomposed into a vertical and a horizontal 

component. It is seen that the vertical component raises or lowers the 
surface element so much that the gravity gets its correct value, while the 
horizontal component turns the surface element with its plumb line through 
the plumb line deflection between the two globes.

It is seen that the vertical component is the same as the gravity 
anomaly giving the vertical distance between the two globes.

If we consider the Sphere as the “ normal ” , idealized, imaginary globe 
while we measure the real numerical gravity | y0 | on the spheroid, the 
gravity anomaly will be | y0 | —  | T0 | and will be positive from  the pole

Yo =  f  (90) =  A0 (1 -f- ax sin2 <p0 —  a2 sin2 2cp0) (5)

(6)

(7)



down to the line of intersection. At the line of intersection the gravity 
anomaly is zero, and it is seen that all these positions have the same distance 
to the com m on axis o f rotation and to the common centre of the two 
globes.

On the other side o f the line o f intersection the gravity anomaly 
| Yo | —■ | r 0 j changes to negative and reaches its minimum as <p0 =  0, and 
continues in the same way for the complete circumference.

It is seen that the gravity anomaly is a function of the position on 
the meridian J y <> | —  | T o  | =  F  (<fo) • Where F (cp0) =  0  the two globes 
intersect, but their normals (the direction of the two gravity vectors) are 
not the same.

W here j y 0 j —  j r 0 j =  F (iy0) has a maximum or minimum, the two 
gravities yo and To do not have the same numerical value, but the 1st 
derivative of F (<po) =  | y0 j —  | F0 [ :

F , ( „ o ) =  ' d f r l - i r . P
d ipo

is zero.
This only happens where the deflecting vector is acting in the same 

or in the opposite direction to the gravity ÿ0, i.e. where there is no horizontal 
component.

It is seen that the deflection o f the plumb line ç>0 —  <p' is the horizontal 
component of the deflecting vector or F' (cp0) and is positive except for 
tpo =  0 or <p0 =  90°, where it is zero.

As both the Sphere and the Spheroid are potential functions, and as the 
difference between two potential functions is again a potential function, 
and as the potential o f the Sphere and the Spheroid are equal, it follows 
that the integral o f  the deflecting vector d over the whole surface o f the 
globe is zero. This again will imply that the integral of all the vertical 
components (the gravity anomalies) and of all the horizontal components 
(the plumb line deflections) is zero.

If we imagine defining charts from our p.t. “ normal ” globe, the Sphere, 
and on them draw the iso-anomaly curves, they would all be latitude 
parallels. The zero iso-anomaly curve would depict where the two globes 
intersect. W ith the interval we choose, the other curves would depict where 
spheres (levels) with the same intervals in gravity intersect the Spheroid. 
The distance between the curves would be smallest around latitude 45° 
and depict the steepest slope to the North.

If we now consider a change from the Spheroid to the Sphere and 
allow the Spheroid to be our imaginary ideal, then all the deflecting 
vectors d change to act in the opposite direction; all the gravity anomalies 
are now | To | —  | Yo | and change their sign as well as the plumb line 
deflections q>' —  cp0.

To recapitulate :
In the spheroidic system the globe and all its potential surfaces are 

(since the adoption o f the International Reference Spheroid and the adoption 
o f the international gravity formula to match) concentric ellipsoids o f



rotation with increasing flattening with increasing height, within the range 
of interest for geodesy.

Only two forces are in action : the mass attraction and the centrifugal 
force.

All the lines of force are, within the range of interest for geodesy, 
curved lines in the meridian plane with the concavity towards the poles. 
Only at the poles and around the Equator are the lines of force straight 
lines.

Where the Spheroid intersects the Sphere with the same potential, the 
two gravity vectors have the same numerical value but not the same 
direction.

The difference of the numerical value of the two gravity vectors ÿ0 andTo» 
the gravity anomaly, represents the vertical distance between the two equi- 
potential globes. Where the gravity anomaly has its maxima or minima at 
the poles and around the Equator, the two gravity vectors have the same 
direction but not the same numerical value.

Where a potential surface is depressed by a new intervening force, the 
gravity is increased and the surface curvature is decreased. Where a 
potential surface is lifted by a new intervening force, the gravity is decreased 
and the surface curvature is increased.

The Geoid

Our Earth does not fulfill the ideal requirements put to our idealized 
globes.

It is not alone in space. The Sun and the Moon pull at it and create 
tidal waves running along its surface, being stopped ’ or deflected by the 
continents and somewhere being dammed up to considerable heights, so 
that because of the short distance they can influence gravity much more 
than the Sun and the Moon themselves.

To eliminate these periodic disturbances we have chosen mean sea level 
and its imagined continuation under the continents as our reference. This 
surface we call the Geoid or the mathematical Earth surface.

Moreover our Earth is not fluid. Only about 8/11 of its surface is 
covered with water, while 3/11 rises above the water as continents and 
islands.

The Geoid has the advantage of having nearly the greatest potential 
of all accessible levels on the Earth, as only very few places on its physical 
surface are below mean sea level (e.g. the Dead Sea).

With an extremely high degree o f approximation mean sea level can 
be considered to be a potential surface. Very quickly a fluid returns to its 
equilibrium at right angles to the resultant o f all the forces acting on it, 
in contrast to solid matter.

All the visible irregularities in the distribution o f masses on the Earth, 
continents and islands with mountains and valleys, etc., together with 
perhaps just as many irregularities in the varying density o f the masses 
below the surface, give rise to undulations in the Geoid, elevations and



depressions in relation to the Spheroid positioned concentric on the same 
axis of rotation.

Because of all these undulations (varying surface curvature), it is 
impossible to define charts from the Geoid and develop a geometry on it, 
even if we knew it in detail. W e must use an idealized globe, the Reference 
Spheroid, for that purpose.

All these elevations and depressions are in the form of a multitude 
of spherical functions or harmonics of higher and higher order and with 
smaller and smaller coefficients.

If some men build a very large house, they perform a potential work 
by heaping up solid matter where before was only thin air. By this 
potential work they make a small impression on potential surfaces in the 
near neighbourhood of the house. Just under the house the potential 
surface will be pulled up and just over the house pulled down. To the 
side of the house the horizontal component of the attraction will give rise 
to deflections of the plumb line. As the mass of the house is so small in 
relation to the mass of the Earth as a whole, the influence will only be 
active for a rather short distance, say some hundred metres. But still the 
influence of the house may dominate over the influence of much greater 
masses, e.g. a range o f high mountains hundreds of kilometres away. If 
the house is built in the middle of a continent perhaps a thousand metres 
above mean sea level, its influence will not reach down to the Geoid and 
make any elevation on it, but it will give a plumb line deflection for a 
geodesists orientating his instrument with reference to the spirit level close 
beside the house.

Trained observers should therefore try to avoid making observations 
in the close vicinity o f irregular mass distributions, just as a navigator 
should ensure that the helmsman has no knife or keys or other magnetic 
material in his pockets.

Because of his close proximity to the magnetic compass it might have 
a dominating influence over the disturbing influence o f the ship’s magnetism 
and the correcting magnets, while it does no harm when it is down in his 
cabin.

Perhaps some day we might be able to compensate for the deflection of 
the plumb line by heavy weights close to the instrument, creating a little 
local minimum or maximum in the gravity anomaly. This might not be 
o f interest to practical geodesy, but perhaps for astronomical observatories.

A fluid, the sea as well as the liquid in a spirit level, registers the 
direction of the resultant of all forces acting on it, with no exception. The 
dominating influence is the mass attraction of the Earth as a whole, but 
then comes a multitude of other influences: the centrifugal force, the 
attraction from distant continents, mountains and valleys, invisible 
subterranean irregularities in the densities of matter, nearby houses, etc., 
perhaps even the observer himself, if the spirit level is sufficiently 
sensitive.

All these forces, except the mass attraction from the Earth as a whole, 
and the centrifugal force caused by the rotation of the Earth, comprise 
what in ref. 2 I called the deflecting vector d. It is of course quite impossible



to try to compute its direction and numerical value; it is only used as a 
means to show that all the disturbing forces act as one force varying 
continuously in direction and numerical value from point to point in 
space.

The resultant of the mass attraction o f the Earth as a whole, the 
centrifugal force created by the rotation o f the Earth and the deflecting 
force is the real gravity vector g at any point in space.

Its direction is registered by the spirit level; its numerical value can 
be measured by an absolute gravity observation (ref. 1, page 33) with an 
uncertainty o f some milligals.

When you have such a “ gravity datum” , you can easily “ transport” 
numerical gravity (measure the difference in numerical gravity) to any 
other place with portable relative gravimeters.

Though modern gravimeters are so sensitive that they can register 
small gravity differences corresponding to the 2nd decimal of a milligal, 
they can o f course not yield higher absolute accuracy than the datum. 
At present, I believe, three different gravity datum systems are in use 
(ref. 1, page 35), which might give rise to future discrepancies.

As the deflecting vector H0 can act in any direction, and not as the 
centrifugal force always in the meridian plane, it is evident that the real 
gravity vector g need not be contained in the meridian plane or its direction 
intersect the axis of rotation. The actual gravity g0 is not a function of 
one variable (cpo) as yo> but o f two variables cp0 and Xo- The Geoid is not 
a body of rotation.

If we superimpose the Spheroid and the Geoid concentrically and 
coaxially, the Geoid will as mentioned show elevations and depressions in 
relation to the Spheroid.

As the idealized gravity vector ÿo is composed o f the mass attraction 
force and the centrifugal force, and as the real gravity vector g0 is composed 
of the mass attraction force, the centrifugal force and the deflecting force, 
it follows that d0 is the vector field between the globes, transforming the 
Spheroid into the Geoid, i.e. ÿ0 -(- d0 =  g0.

As both the Spheroid and the Geoid are potential functions and as the 
difference between two potential functions is again a potential function, 
and as the potentials o f the Geoid and the Spheroid by definition are equal, 
it follows that the integral o f deflecting vector d over the whole surface 
of the globe is zero. This again will imply that the integral of all the vertical 
components (the gravity anomalies) and o f all the horizontal components 
(the plumb line deflections) is zero.

As the deflecting vector d is a function o f the position (q?0. Ao) and is 
a potential function, it also follows that its vertical component, the gravity 
anomaly | g0 | —  | y0 f =  G (tp0, Xo)> is a continuous and differentiable function 
of the two independent variables cp0 and Xo-

In all the positions where g0 and y0 have the same numerical value 
C| | —  | Yo |) =  G (<p«> Xo) =  0» the two globes intersect, but their normals 
have not the same direction.



Fig. 4. —  The deflecting vector d in a random point.
Its vertical component 0 represents the gravity anomaly | g„ | —  | y0 | =  G («po, Xo). 

Its two horizontal components : Ç in the direction N and i) *n the direction E cannot 
be observed directly but computed if  the gravity-anomalies have been observed in a 

small neighbourhood of the points as
(<po, Xo) and G^ (¢¢, )« ) .

The horizontal component o f c7 is in the same way a continuous and 
differentiable function of the position (cp0, \0),

3 <| 9o I —  I Yo P 3  d  tfo I —  I Yo P
d \ o — G^o (cp<j, Xo) “ I-  ((fo, Xo)dG =

3  <f>c 3  Xo
the two parts representing the components £ and y] o f the deflection of the 
plumb line in directions North and East.

At all the points where the gravity anomaly | g0 | —  | y0 | =  G (cp^, Xo) 
has a minimum or maximum, i.e. where both G 'o (<p0, Xo) and G'xo (tp0. Xo) =  0, 
the two gravity vectors go and f 0 have the same direction, as the deflecting 
vector d is acting in the same or opposite direction to yo-

This condition is sufficient as both the Geoid and the Spheroid always 
and everywhere have elliptic surface curvature (the centres of curvature 
on the same side).

Only at the very few positions where both the gravity anomaly and 
its two first derivatives in NS- and EW-direction are all zero, are the two 
gravity vectors identical (same value and direction), and the surface elements 
o f the two globes coincide.

Our present knowledge of the shape of our Geoid is sparse.



H e l m e r t  [ 1 ]  computed the elevations under the continents and 
depressions under the sea to be of a magnitude of some hundred metres. 
The latest investigations utilizing artificial satellites, whose orbits have 
proved very sensitive to the Earth’s gravitational field, show much smaller 
undulations (about 30 m) [8 ].

H e l m e r t  [1] estimated the maximum deflection of the plumb line to 
be about 1.5 minute o f arc and often to reach 10" (seconds o f arc) or more 
near the coasts.

To recapitulate :
The Geoid is influenced at each point by three forces : (1) the mass 

attraction from  the Earth as a whole, (2) the centrifugal force created by 
the rotation o f the Earth, (3) the deflecting force; in fact a multitude of 
forces from  all the irregularities in the crust of the Earth, which at each 
point can be treated as one force.

It is in my opinion an impossible task to try to compute the undulations 
o f the Geoid or irregularities in its lines o f force, as it is impossible to find 
the necessary information. The reduction o f | g | to | g0 | at mean sea level 
can only be an approximation as the densities are not known below the 
physical surface o f the Earth. The form  o f the Geoid itself is o f minor 
importance except where base-measurements are made. W hat really matters 
for the surveyor are the plumb line deflections, especially for all astrono
mical observations, where they are of dominating importance (ref. 1, page 
28).

As the physical surface o f the Earth is cut by a multitude of real 
potential surfaces (levels), shown by the spirit level or by hydrostatic 
levelling, and a multitude o f idealized, imagined, potential surfaces o f which 
the gravity of only one, the Spheroid, is known, I should prefer to have 
gravity formulae at suitable intervals, so I could interpolate the correct 
coefficients and find the variation o f the idealized gravity y in a NS-direction 
by differentiation in the level, where I am operating. Supplied with sufficient 
information about the densities in the upper layers of our idealized 
Spheroid, able mathematicians could provide this in the form  o f a critical 
table.

From a random point o f observation in a higher level, the variation of 
the idealized gravity y in relation to a parameter s in a N-direction could

d  Y dipthen be determined with great accuracy as — -— • — —  . The variation o f <p0
dtp ds

in relation to s0 could be taken from the Meridian tables.
In Denmark quite a number o f gravimetrical maps have been published. 

They may be of interest to prospectors and geophysicists, but they have had 
no influence on our geographical coordinates, and the latitudes (p0 used for 
their reduction have been taken from our present charts defined from  our 
old reference ellipsoid with a flattening o f 1/300. They are only maps, not 
charts.

It is my firm conviction that when the Reference Spheroid is oriented 
with its centre coinciding with the centre o f gravity of the Earth and with 
the same axis o f rotation, then the zero iso-anomaly curves show where 
the Geoid and Reference Spheroid intersect, and that the plumb line



deflection is then absolute and is zero at all the positions where the gravity 
anomaly has a minimum or maximum.

I am not alone in this conviction.
Since I wrote ref. 1 and 2 my attention has been drawn to a paper 

by Walter D. L a m b e r t , USC & GS (retired), published in Transactions 
American Geophysical Union, Vol. 28, Number 2, April 1947, “ Deflections 
o f the Vertical from Gravity Anomalies ” , of which I take the liberty of 
quoting a part <*> :

“ W ith the increasing number of surveys based on astronomical coordi
nates and with Loran stations established on oceanic islands far from the 
mainland and its geodetic control, there has been an increasing interest in 
deflections o f the vertical.

“ Some of those who have a professional interest in deflections of the 
vertical but who have not analyzed the underlying conceptions seem to have 
the vague idea that there is something in nature that might properly be 
called the deflection o f the vertical. In the present state o f geodesy there 
is nothing that may properly be called the deflection o f the vertical at a 
given point. All existing numerical values of the deflection depend on the 
assumed geodetic datum, and the geodetic datum might conceivably be 
anything whatever, though in practice the choice is confined within rather 
narrow limits.

“ The usual geodetic datum is essentially arbitrary. Two geodesists 
with the same general background and the same mass o f geodetic material 
before them might hit upon approximately the same choice o f a datum and 
then again they might not. And since the choice of a datum is arbitrary, 
the deflections, dependent as they are on the datum, are arbitrary also.

“ W e diminish the arbitrariness o f choice and, what is more important, 
we get an intrinsically better geodetic datum, if we require that the center 
of the ellipsoid o f reference shall coincide with the center o f gravity of 
the Earth and that the axis of the ellipsoid shall coincide with the axis o f 
rotation o f the Earth.

“ As a matter o f fact, our United States Datum, the predecessor of the 
North American Datum, was not adopted as the result of any special study. 
At first it just grew. Geodetic positions based on a supposedly temporary 
datum used in the eastern part o f the country were found to agree 
satisfactorily with the astronomical positions further west, so the geodetic 
positions based on the eastern datum were accepted and the United States 
Datum was redefined in terms o f a geodetic station in Kansas. Indeed, two 
o f the items mentioned above were not explicitly considered when the 
decision was made; the position o f the center of the ellipsoid of reference, 
and the direction o f its axis. These are undetermined to this day. It is 
precisely these two items that will be emphasized in this paper.

“ The word ‘ellipsoid’ is used throughout this note in the sense o f an 
ellipsoid o f revolution. The more general term ‘spheroid’ is avoided. It is 
not difficult to adapt the formula for theoretical gravity to a predetermined

(*) The italics are mine.



spheroid that is not an exact ellipsoid o f revolution but the computation 
o f triangulation on anything except an ellipsoid of revolution requires 
intricate numerical calculations; whereas this note implies throughout a 
comparison between astronomico-geodetic deflections and gravimetric 
deflections. Hence, for convenience, we are obliged to stick to the ellipsoid 
and base our gravity anomalies on an appropriate formula for theoretical 
gravity.

“ About 100 years ago St o k e s  ( . . . )  did some pioneer theoretical work 
that may eventually enable us to refer our geodetic measurements to an 
ellipsoid thus ideally situated; its center at the center o f gravity of the 
Earth and its axis coincident with the Earth’s axis o f rotation. If we insist 
that our geodetic datum shall be based on an ideally situated ellipsoid of 
this sort, the only elements of our datum left undetermined are the size 
and shape o f the ellipsoid. If we specify these, then everything is determin
ate and we may properly speak o f the deflection of the vertical at a given 
point. The problem then becomes one o f computation.

“ St o k e s ’ mathematical developments in their original form  do not 
give the deflections directly. The formula that he gave enables us to express 
the elevation o f the geoid at a given point above the ellipsoid o f reference 
in terms of the gravity anomalies. A gravity anomaly and a deflection may 
seem rather different in kind, but the gravity anomaly is an anomaly in 
the vertical com ponent o f the gravitational attraction; a deflection is an 
anomaly in the horizontal component. The nature of the force o f which 
both are manifestations and the ingenuity of the mathematician make the 
connection between them. The ellipsoid is the particular ellipsoid already 
referred to, properly centered and properly oriented. The formula for the 
elevation o f the geoid above this ellipsoid looks complicated, not to say 
perverse. No term of it has any obvious physical meaning. St o k e s  would 
probably have said that he was summing a series o f spherical harmonics 
by an ingenious device. The more modern mathematician might say that 
he was solving an integral equation. (. . .).

“ In practical application we need a contour map o f gravity anomalies. 
From it we can deduce the elevation of the geoid at various points. From  
enough such elevations we could draw contour lines of the geoid elevations 
referred to our chosen ellipsoid. These would be height contours, exactly 
similar to ordinary topographic contours. If we have enough such height 
contours, we can estimate the slope from the distance between neighboring 
contour lines. The slope of the geoid is simply another term for  the 
deflection o f the vertical in a direction perpendicular to the contours. 
STOKES himself suggested this.

“ It is interesting to consider how we might use gravity data to improve 
current processes for the computation o f ordinary geodetic triangulation. 
If we knew the elevations o f the geoid above the ellipsoid o f reference, we 
could reduce the length o f our measured bases to the level o f that ellipsoid. 
At present, for lack of adequate information, they are reduced to the level 
o f the geoid, which, for the various bases, has various positions with respect



to the ellipsoid. Again, if we knew the deflections of the vertical, we could 
apply the proper corrections to our observed horizontal directions. These 
corrections may be quite appreciable, especially for inclined lines o f sight 
at stations where the deflection is large, but for the present these correc
tions are almost universally ignored because the necessary data is lacking.

“ The method of gravimetric deflections can be applied anywhere in 
the world, provided the gravity observations are available. W e could 
determine from gravity observations a proper datum for South America 
and it would be on the same basis as a datum similarly determined for 
North America, even before those two continents are connected by triangula
tion. Gravimetric data could also be used to great advantage in the proposed 
readjustment of the triangulation of Europe. As mentioned in a preceding 
paragraph, the bases could be reduced to the ellipsoid, the observed 
directions could be corrected for deflection and perhaps the dimensions of 
the adopted ellipsoid could be improved. ”

It is seen that in principle I am fully in agreement with W alter D. 
L a m b e r t  and with St o k e s .

Only in respect o f  details concerning the application o f the principle 
are we not fully in agreement.

W alter D. L a m b e r t  proposes using St o k e s ’ complicated “ not to say 
perverse” formula on a much greater area (several hundred km ), and with 
m uch greater spacing o f the gravity observations, to find a correct geodetic 
datum. This has been tried out in the U.S.A. and is o f course a considerable 
step forward.

I propose using gravimetric observations spaced much closer, say with 
an interval o f one second o f arc ( ~  about 30 metres), in a much smaller 
area to position “bridge piers” (see ref. 1, page 42), where astronomical 
observations (both in latitude, longitude and azimuth) have been carried 
out to correct these observations for absolute plumb line deflection (devia
tion) from the actual potential surface on the Earth through the point of 
observation to the corresponding position on the surface o f the idealized 
International Spheroid.

In this connection it must be borne in mind that at St o k e s ’ time 
gravimetric observations were very labour- and time-consuming (m ajor 
operations), while today gravimetric observations are carried out easily 
and quickly in a few minutes. Also the technique of numerical differentia
tion has made considerable progress.

This is only a very short and rough explanation of the principle and 
its application. Much work is needed to carry it out in practical form. 
This needs team-work and a lot o f discussion by very skilled mathematicians 
and surveyors.

Someone may wonder why I waste so much o f the precious space in 
this august journal on geodesy.

It is quite right that geodesy does not come within the tasks of most 
hydrographic offices; generally they get their data in the form  of coordinates



from the geodetic institutes. The United States Coast and Geodetic Survey 
is an exception.

But it is the purpose o f the International Hydrographic Bureau to 
obtain uniformity as far as possible in hydrographic documents, so that 
mariners may use publications issued by other countries.

This uniformity is lacking in the wide field of nautical charts today. 
Every country is at present basing its surveys on its own globe as there 
are so many different geodetic datums. The geographic coordinates, which 
ought to be universal and absolute, are all relative (in relation to the 
country issuing the charts or the geodetic datum used).

In my opinion a chart can never be made more accurate than the 
accuracy with which you can determine the position o f a single point 
(latitude ep0, longitude Ao and azimuth a) on the globe from  which you 
define your charts.

The position can be determined on the Geoid to within an uncertainty 
of the second decimal of a second of arc (1" about 30 m, O'.'Ol about 0.3 m), 
which is sufficient for large scale charts. But when the position is changed 
from  one globe (Geoid) to the other (International Spheroid), from which 
the charts are defined without respect to the deflection or deviation o f the 
plumb line between the two globes, one-sided errors o f several seconds 
of arc (hundreds o f metres) are introduced.

So far geodesy has not taken into account that we are all situated on 
the same globe, containing the same masses and revolving with the same 
speed on the same axis.

As the Danish Geodetic Institute considers it absurd to discuss the 
problem, I hope the IHB can persuade the IUGG, the USC&GS or the 
Hydrographic Department of the U.K. to investigate the problem.

IHB Note

The Bureau will be pleased to publish in future editions o f the Review 
any comments of the IUGG, the USC&GS, the Hydrographic Department of 
the U.K., or any other geodesists on the two articles by Commodore (Ret.) 
S c h m id t  of Denmark.
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