HARMONIC ANALYSIS OF TIDES THROUGH LINEAR COMBINATIONS OF ORDINATES

by Vice-Admiral A. Dos Santos Franco

1. - Introduction

The best known methods of harmonic analysis of tides using linear combinations of hourly heights are due to Dr. A. T. Doodson, D. Sc., F.R.S. The latter has perfected a simple method for the use of the British Navy, and another more accurate and also more involved method which is used at the Tidal Institute of Liverpool. The author has set up the combinations in an almost empirical way. He has divided the analysis procedure into several stages, known as the daily, monthly and annual processes.

By successive filterings, we can thus isolate first the "species", i.e. long-period, diurnal, semi-diurnal or other groups of constituents, and then the constituents themselves.

Long after these methods had been perfected, Mr. Aragnol introduced symbolic polynomials [1], making it possible to look for the most desirable combinations systematically. At the end of his article, he shows the possibility of arriving at the isolation of the constituents themselves, without the need for successive filterings.

At the "Colloquy on the use of automatic computations for solving problems on tides ", which took place in Paris in November, 1961, Mrs. Coulmy, of the French Hydrographic Service, submitted a method of analysis [2] by a series of linear combinations of ordinates. This series of combinations may be replaced by a single overall combination worked out by symbolic polynomials. The author of this method does not apply the entire range of polynomials, stating that it would be tedious to look for hourly height combinations and that it would be preferable successively to combine pairs of ordinates and combinations of these ordinates. It may well be that if the analysis is made with electronic computers, the program will be more complicated by applying the polynomials integrally. However, if classical computers are used for the analysis, the very simple use of stencils, prepared in advance for each constituent, will permit a quick calculation of the harmonic constants for any constituent.

Although Mrs. Coulmy's method is a general one, its author has established combinations for computing the harmonic constants of the ten major constituents, deduced from analysis of observations taken over a period of one month, which is most interesting from the surveyor's viewpoint.

Table 2－I

E		
家		ぶ
	－	
	\％	
$\stackrel{3}{\Sigma}$		
$\stackrel{\text { van }}{ }$	ω	
\sim	c	
ั	ω	
	¢	
Σ		
	©	
	¢	
z	${ }^{\omega}$	
	¢	
\checkmark		
	¢	
	ω	
	©	
	ω	
	$\stackrel{\square}{\square}$	
	$\stackrel{\stackrel{0}{\otimes}}{\stackrel{\circ}{\dot{\circ}}}$	
	\bigcirc	

We shall now study a somewhat different version from that of Mrs. Coulmy, which in practice does not present any particular difficulty.

2. - Theory and application of the method

In the previous issue of this Review, we have shown that it is possible to eliminate a constituent or a group of constituents by a simple difference in the ordinates at instants $t=0$ and $t=\theta$, provided

$$
\theta=n 360^{\circ} / q
$$

where q is the hourly phase variation of the constituent. This means that the phase of the constituent is the same at intervals of θ hours. However, it is also possible to eliminate a constituent by adding the ordinates corresponding to phase variations of $(2 p+1) 180^{\circ}$. These conclusions can be summarized as follows:

If, in the expression

$$
\theta=p \cdot 180^{\circ} / q
$$

p is an odd number, we shall proceed with the elimination by adding the ordinates separated by θ-hour intervals, whereas if p is an even number, the ordinates should be subtracted to eliminate the constituent. We shall thus have the two symbolic binomials :

$$
\begin{align*}
& 1+z^{\theta}=0 \text { for } p \text { odd number } \tag{2b}\\
& 1-z^{\theta}=0 \text { for } p \text { even number } \tag{2c}
\end{align*}
$$

By means of expression (2a), we can set up a table (Table 2-I) for each constituent under consideration, as follows : For each constituent, the value of $180^{\circ} / q$ is computed; this value is multiplied by the round figure p and the rounded products are entered in the θ columns. The value of θ multiplied by q gives us the approximate value of $p 180^{\circ}$ appearing in the second column of the table. The difference ε between the two values is the phase difference due to the approximation of the selected θ intervals. In Table 2-I, we have underlined those values of θ which are best suited for eliminating the constituents concerned, for which ε is quite small.

Taking into consideration the special 0 values of Table 2-I, we have set up Table 2-II in the same way as Table 3-I of our article in the previous issue of the I.H. Review.

The left-hand side of (2b) and (2c) may be developed as follows:

$$
\begin{equation*}
1+z^{\theta}=z^{\theta / 2}\left(z^{\theta / 2}+z^{-\theta / 2}\right) \tag{2d}
\end{equation*}
$$

and

$$
\begin{equation*}
1-z^{\theta}=-z^{\theta / 2}\left(z^{\theta / 2}-z^{-\theta / 2}\right) \tag{2e}
\end{equation*}
$$

For $z=e^{i q}$, we thus have

$$
\begin{align*}
& 1+z^{\theta}=e^{i q \theta / 2}\left(e^{i q \theta / 2}+e^{-i q \theta / 2}\right) \tag{2f}\\
& 1-z^{\theta}=-e^{i q \theta / 2}\left(e^{i q \theta / 2}-e^{-i q \theta / 2}\right) \tag{2g}
\end{align*}
$$

but since

$$
\begin{equation*}
e^{i q \theta / 2}+e^{-i q \theta / 2}=2 \cos q \theta / 2 \tag{2h}
\end{equation*}
$$

$$
\begin{equation*}
e^{i \theta \theta / 2}-e^{-i q \theta / 2}=2 i \sin q \theta / 2 \tag{2i}
\end{equation*}
$$

Table 2-II

$\mathrm{N}^{\text {o }}$	Polyn.	k	ω	E	$\mathrm{R}^{(\text {c) }}$
(1)	$1+2^{3}$	$2 \cos 1,5 \mathrm{q}$	$1,5 \mathrm{q}$	Q. D.	
(2)	$1 \cdots z^{3}$	$2 \cos \left(1,5 \mathrm{q}+90^{\circ}\right.$)	$1,5 \mathrm{q}+90^{\circ}$		Q. D.
(3)	$1+z^{6}$	$2 \cos 3 \mathrm{q}$	3 q	S. D.	.
(4)	$1-z^{6}$	$2 \cos (3 q+90)$	$3 \mathrm{q}+90^{\circ}$	Q. D.	S. D.
(5)	$1+2^{12}$	$2 \cos 6 \mathrm{q}$	6 q	D.	S. D.
(6)	$1-2^{12}$	$2 \cos \left(6 q+90^{\circ}\right)$	$6 \mathrm{q}+90^{\circ}$	S. D.	D.
(7)	$1+z^{13}$	$2 \cos 6,5 \mathrm{q}$	6,5 ¢	$\mathrm{O}_{1}, \mathrm{Q}_{1}$	
(8)	$1-z^{13}$	$2 \cos \left(6,5 \mathrm{q}+90^{\circ}\right)$	$6,5 \mathrm{q}+90^{\circ}$	N_{2}, μ_{2}	
(9)	$1+z^{94}$	$2 \cos 47 \mathrm{q}$	47 q	Q_{1}	
(10)	$1+z^{108}$	$2 \cos 54 \mathrm{q}$	54 q	K_{1}	
(11)	$1+2^{142}$	$2 \cos 71 \mathrm{q}$	71 q	O_{1}	
(12)	$1-2^{144}$	$2 \cos \left(72 q+90^{\circ}\right.$)	$72 \mathrm{q}+90^{\circ}$	K1	
(13)	$1+z^{284}$	$2 \cos 142 \mathrm{q}$	142 q	O1	
(14)	$1+z^{309}$	$2 \cos 154,5 \mathrm{q}$	154, 5 q	Q_{1}	
(15)	$1-z^{31}$	$2 \cos \left(15,5 q+90{ }^{\circ}\right.$)	$15.5 \mathrm{q}+90^{\circ}$	M_{2}	L_{2}
(16)	$1+2^{51}$	$2 \cos 28,5 \mathrm{q}$	28,5 q	N_{2}	
(17)	$1-2^{61}$	$2 \cos (30.5 \mathrm{q}+909$	$30.5 \mathrm{q}+90^{\circ}$	\mathbf{L}_{2}	
(18)	$1-z^{76}$	$2 \cos (38 \mathrm{q}+90)$	$38 \mathrm{q}+90^{\circ}$	N_{2}	
(19)	$1+z^{90}$	$2 \cos 45 \mathrm{q}$	45 q	S_{2}	
(20)	$1-z^{90}$	$2 \cos \left(45 \mathrm{q}+90^{\circ}\right)$	$45 \mathrm{q}+90^{\circ}$	μ_{2}	S_{2}
(21)	$1-z^{103}$	$2 \cos \left(51.5 q+90^{\circ}\right)$	$51,5 \mathrm{q}+90^{\circ}$	μ_{2}	L_{2}
(22)	$1+z^{118}$	$2 \cos 59 \mathrm{q}$	59 q	M_{2}	
(23)	$1+z^{228}$	$2 \cos 64 \mathrm{q}$	64 q	L_{2}	
(24)	$1+z^{148}$	$2 \cos 74 \mathrm{q}$	74 q	H_{2}	
(25)	$1-z^{180}$	$2 \cos \left(90 q+90^{\circ}\right)$	$90 \mathrm{q}+90^{\circ}$	S_{2}	
(26)	$1-z^{190}$	$2 \cos \left(95 q+90^{\circ}\right.$)	$95 \mathrm{q}+90^{\circ}$	N_{2}	
(27)	$1-z^{177}$	$2 \cos \left(88,5 q+90^{\circ}\right)$	$88.5 \mathrm{q}+90^{\circ}$	MS_{4}	M_{4}
(28)	$1+z^{17}$	$2 \cos 88,5 \mathrm{q}$	$88,5 \mathrm{q}$	M_{4}	MS_{4}
(29)	$1-z^{71}$	$2 \cos \left(38,5 \mathrm{q}+90^{\circ}\right)$	$38,5 \mathrm{q}+90^{\circ}$	SN_{4}	
(30)	$1+z^{163}$	$2 \cos 81,5 \mathrm{q}$	81,5 q	MN	

and

$$
\begin{equation*}
i e^{i q \theta / 2}=e^{i\left(q \theta / 2+90^{\circ}\right)} \tag{2j}
\end{equation*}
$$

it follows from (2f) and (2h)

$$
\begin{equation*}
1+z^{\theta}=e^{i q \theta / 2} \cdot 2 \cos q \theta / 2 \tag{2k}
\end{equation*}
$$

and from ($2 g$), (2i) and (2j)
$1-z^{\theta}=-e^{i\left(q \theta / 2+90^{\circ}\right)} \cdot 2 \sin q \theta / 2$
(*) Reinforced constituents.
or

$$
\begin{equation*}
1-z^{\theta}=e^{i\left(q \theta / 2+80^{\circ}\right)} \cdot 2 \cos \left(q \theta / 2+90^{\circ}\right) \tag{2I}
\end{equation*}
$$

If a similar expansion is made for $z=e^{-i q}$, we shall see that expressions ($2 k$) and (2l) may be written in a general form : -

$$
\begin{align*}
& 1+z^{\theta}=e^{ \pm i q \theta / 2} \cdot 2 \cos q \theta / 2 \\
& 1-z^{\theta}=e^{ \pm i(q \theta / 2+800)} \cdot 2 \cos \left(q \theta+90^{\circ}\right) \tag{2n}
\end{align*}
$$

$$
(2 m)
$$

Hence we have, still in Table 2-II

$$
\begin{equation*}
k=2 \cos q \theta / 2 \text { and } \omega=q \theta / 2 \tag{2o}
\end{equation*}
$$

for combinations expressed by ($2 b$), and

$$
\begin{equation*}
k=2 \cos \left(q \theta / 2+90^{\circ}\right) \text { and } \omega=q \theta / 2+90^{\circ} \tag{2p}
\end{equation*}
$$

for combinations expressed by (2c).
In order to isolate the various constituents, a suitable product of binomials $1 \pm z^{\theta}$ of Table 2 -II should be obtained, so as to have a complete polynomial for isolating one of the constituents.

Table 2-III

Combinaisons	J	7	t^{\prime}	qt ${ }^{\prime}$	$\Delta=\eta+\frac{1}{2} \mathrm{qt}^{\prime}$	10%	$-10 \% \mathrm{~b}$
Q_{1} (1) (8) (6) ${ }^{2}$ (10) (13)	56,83	14. ${ }^{\circ} 12$	7	$93^{\circ}, 79$	$61^{\circ}, 02$	12871	-12052
O1 (1) (8) (6) ${ }^{2}$ (12) (14)	- 57,03	196.95	6	83.66	238,78	. 11767	13146
$\mathrm{K}_{1}\left[(1)(8)(6)^{2}(6)(9)(11)\right] \times 2$	223,12	5,91	6	90,25	51,04	3176	- 3163
μ_{2} (1) (7) (4) ${ }^{2}$ (5) (17) (19) (22) (26)	- 169,91	48, 07	3	83,90	90,02	- 3955	4400
N_{2} (1) (7) (4) ${ }^{2}$ (5) (19) (22) (23) (24)	97,71	71,20	3	85,32	113,86	6959	- 7550
M_{2} (1) (7) (4) ${ }^{2}$ (5) (19) (21) (23) (26)	95,65	65, 12	3	86,95	108,60	7202	- 7598
L_{2} (1) (7) (4) ${ }^{2}$ (5) (15) (18) (21) (22) (25)	169,23	170, 81	3	88,59	215,10	4128	- 4230
S_{2} (1) (7) (4) ${ }^{2}(5)(16)(18)(20)(22)(23)$	- 185,46	75, 00	3	90,00	120,00	- 3813	3813
$\mathrm{M}_{4} \quad(5)^{2}(3)^{4}(2)^{2}(27)^{2}$	953,69	305, 51	11	277,65	84,34	696	- 815
$\mathrm{MS}_{4}(5)^{2}(3)^{4}(2)^{2}(28){ }^{2}$	1005,95	332,76	11	288,83	117,17	611	- 854

Note : $a=2 J \cos 1 / 2 q t^{\prime} ; b=-2 J \sin 1 / 2 q t^{\prime}$

Table 2-III shows the products chosen by Mrs. Coulmy. A brief explanation in this regard is in order. In the group of diurnal constituents, we see that polynomials (1) and (8) are common to all constituents. Actually, Table 2-II shows that polynomial (1) eliminates the contribution of the fourth-diurnal constituents, that polynomial (8) specifically eliminates constituents N_{2} and μ_{2}, and that (6) eliminates M_{2}, S_{2} and L_{2}; it also approximately doubles the contribution of the diurnal constituents. Polynomial (6) is therefore used twice, as indicated by (6) ${ }^{2}$. The formation of products of binomials common to all constituents with the same subscript can be similarly explained.

In order to isolate a constituent, the product of the binomials should be completed with the binomials isolating each constituent of the group, except the constituent to be isolated.

For groups of fourth-diurnal constituents, the author of the method has used higher powers further to improve the isolation of the constituents.

The values of J and η as seen in Table 2-III are obtained by the following expressions :

$$
\begin{aligned}
\mathbf{J} & =\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2} \cdot \boldsymbol{k}_{3} \cdot \ldots \ldots \\
\eta & =\omega_{1}+\omega_{2}+\omega_{3}+\ldots \ldots
\end{aligned}
$$

by introducing speed q of the constituent to be isolated into the expressions of k and ω of Table 2-II, corresponding to the polynomials of the proposed combination. Column $q t^{\prime}$ gives us the phase variation of the constituent for interval t, which is equal to the rounded number of hours in which $q t^{2} \approx(2 m+1) \pi / 2$. In order to isolate the constituents, we suggest setting

Table 2-IV

up two exactly equal combinations, one starting with the first ordinate of the series corresponding to $t=0$, which we shall call X, and the other which we shall name Y, the first ordinate of which corresponds to instant t^{\prime}.

In order to draw stencils, we must find those particular polynomials that are the results of the product of the various binomials indicated in parentheses by the figures of the second column of Table 2-III. These figures correspond to the binomials in Table 2-II. Although this operation is lengthy, it will only have to be carried out once so as to set up tables similar to Table 2-IV drawn for the diurnal constituents. In that table, columns D_{t} represent the coefficients of z in the final polynomial and the columns of t for X are the powers of z in this polynomial. As to the values of t corresponding to Y, they are equal to $t+t^{\prime}$, t^{\prime} being given by Table 2-III.

In the columns of Table 2 -IV corresponding to constituent K_{1}, it shall be noticed that the same combination reoccurs from $t=359$ hours, which is almost exactly the time needed for the constituent to accomplish 15 cycles ($p / 2$). Since we have 696 observation hours available for a 29-day observation period, it will be possible to have the contribution of K_{1} twice during this period, giving us a double value of this contribution.

Figure 2A shows the stencil which has been set up with figures giving combination X corresponding to constituent Q_{1}. In practice, it is sufficient to add up the products of the visible ordinates by the multipliers appearing above these ordinates.

fig. 2 A

Once the numerical values of X and Y for each constituent have been found, their phases - r_{o} at zero hour of the first day and their respective amplitudes R should be computed. As both X and Y are obtained by means of combinations which are equal but shifted t^{\prime} hours, we may write
and

$$
\mathbf{X}=\mathbf{J R} \cos \left(\eta-\boldsymbol{r}_{o}\right)
$$

$$
\mathbf{Y}=\mathbf{J R} \cos \left(\eta+q t^{\prime}-r_{o}\right)
$$

- r_{0} being the phase of the constituent at zero hour of the first observation day. If we now put down
and

$$
\begin{aligned}
& \mathbf{X}+\mathbf{Y}=\mathbf{A} \\
& \mathbf{X}-\mathbf{Y}=\mathbf{B}
\end{aligned}
$$

we shall have

$$
\mathbf{A}=\mathbf{J} \cos \mathbf{R}\left[\cos \left(\eta-r_{o}\right)+\cos \left(\eta+q l^{\prime}-r_{o}\right)\right]
$$

and

$$
\mathbf{B}=\mathbf{J} \cos \mathbf{R}\left[\cos \left(\eta-r_{o}\right)-\cos \left(\eta+q t^{\prime}-r_{o}\right)\right]
$$

Hence

$$
\mathbf{A}=2 \mathrm{JR} \cos 1 / 2 q t^{\prime} \cos \left(\eta+\frac{1}{2} q t^{\prime}-r_{o}\right)
$$

and

$$
\mathbf{B}=2 \mathrm{JR} \sin 1 / 2 q t^{\prime} \sin \left(\eta+\frac{1}{2} q t^{\prime}-r_{o}\right)
$$

If we put down

$$
\left.\begin{array}{l}
\eta+q t^{\prime} / 2=\Delta \tag{2p}\\
2 J \cos 1 / 2 q t^{\prime}=a \\
2 \mathrm{~J} \sin 1 / 2 q t^{\prime}=b
\end{array}\right\}
$$

We shall have
and

$$
\left.\begin{array}{l}
\mathrm{A}=a \mathrm{R} \cos \left(\Delta-r_{0}\right) \tag{2q}\\
\mathrm{B}=b \mathrm{R} \sin \left(\Delta-r_{o}\right)
\end{array}\right\}
$$

However, we note that

$$
-r_{o}=V_{o}+u-g
$$

Hence

$$
\begin{equation*}
\Delta-r_{o}=\mathrm{V}_{o}+u-\boldsymbol{g}+\Delta \tag{2r}
\end{equation*}
$$

If we put

$$
\begin{equation*}
\Delta-\boldsymbol{r}_{0}=-\boldsymbol{r} \tag{2s}
\end{equation*}
$$

we obtain from (2r)

$$
\begin{equation*}
\boldsymbol{g}=\mathbf{V}_{o}+\boldsymbol{u}+\mathbf{r}+\Delta \tag{2t}
\end{equation*}
$$

Expressions (2q) and (2s) will give

$$
A=a R \cos r
$$

$$
\begin{equation*}
\mathrm{B}=-b \mathrm{R} \sin r \tag{2u}
\end{equation*}
$$

Consequently

$$
\left.\begin{array}{l}
\mathbf{R} \cos r=\mathrm{A} / a \tag{2D}\\
\mathbf{R} \sin r=-\mathrm{B} / b
\end{array}\right\}
$$

The values of $\Delta, 10^{6} / a$ and - $10^{6} / b$, computed by means of expressions (2p), are given in Table 2-III.

3. - Various considerations on the practical use of the method

If a classical computer is used to carry out the operations some simplifications should be made. Firstly, it should be considered that when the effect of shallow water is negligible, constituent μ_{2}, which merges into $\mathbf{2 S M} \mathbf{2}_{2}$, will have an amplitude of similar size to that of $2 \mathbf{N}_{2}$. Since the hourly phase shift of these two constituents is equal to $0^{\circ} .0728$, they cannot be directly isolated by means of the 30 -day observation analysis. Thus, in order to obtain μ_{2}, it will be necessary to correct the values of $R \cos r$ and

Form 3-1

Date centrale : 3/8/1947
Port : Aratu (Brésil)

	So	Q_{1}	O_{1}	K_{1}	N_{2}	M_{2}	S_{2}	M	MS_{4}
X		- 153	33	1065	-1608	-7459	-2487	- 20	- 190
Y		13	416	207	-1235	2039	-2029	257	- 11
$A=X+Y$		- 140	449	1272	-2843	-5420	-4516	- 237	- 201
$B=X-Y$		- 166	- 383	858	- 373	-9498	- 458	277	- 179
10\% ${ }^{6}$		12871	-11767	3176	6959	7202	6604	-6454	4656
-10% b		-12052	13145	-3163	-7567	-7596	-6604	-7381	6507
$R \cos r=A / a$		-1, 802	$-5,283$	4,040	$-19,784$	-39,035	-29,824	-1,530	-0,941
$R \sin r=B / b$		2,001	-5, 035	-2,714	2,816	72,166	3,025	2, 045	$-1,165$
R^{2}		7,27	53,26	23,69	391,55	6731,66	898,62	6,52	2,24
tgr		1,110	0,9.14	-0,672	-0,143	-1, 8i9	-0, 101	-1,337	1,238

$R \sin r$ corresponding to this constituent, taking into account the effect of $2 \mathrm{~N}_{2}$, computed according to M_{2} and N_{2}, as indicated by Doodson [3]. Even though the action of shallow water may be sufficient for $2 \mathrm{SM}_{2}$ to be more important than μ_{2}, it should not be neglected to correct the disturbance due to $2 \mathbf{N}_{2}$. Under these circumstances, we feel that in an abridged method, computation of the harmonic constants of μ_{2}, the amplitude of which is usually slight, may be deleted.

It will suffice to keep those combinations which eliminate the effect of group ($\mu_{2}, \mathbf{2} \mathbf{N}_{2}$) among the combinations for isolating the other constituents.

In fact, the harmonic constants of μ_{2}, computed without taking $2 \mathbf{N}_{\mathbf{2}}$ into account, may be completely wrong.

Constituent L_{2} may also be ignored, provided the perturbations it causes on other constituents are eliminated by the combinations.

Anyway, L_{2} is also a small constituent, the constants of which are usually ignored in simplified predictions.

There now remains to be studied a simplification for constituent $\mathbf{S}_{\mathbf{2}}$, which is perfectly possible. Actually, we see in Table 2-III that the influence of N_{2} on S_{2} is eliminated by means of binomials (16) and (18). The combination expressed by binomial (18) may be abandoned, and whatever precision is lost is largely made up by the resulting simplification. Indeed, the complexity and extension of the stencils increase according to the number of constituents to be isolated in each species. Thus even with the envisaged simplifications, the stencils for isolating the semi-diurnal constituents are more complicated than those for diurnal constituents, whose number of constituents under consideration is very small. In fact, even if μ_{2} and L_{2} are not computed, their effect on M_{2}, S_{2} and N_{2} are eliminated.

To get an idea of the effect of all these constituents on S_{2}, we have computed them leaving out binomial (18) and the results (multiplied by 10^{4}) appear on the following table :

S_{2}	Q_{1}	O_{1}	$\mathrm{~K}_{1}$	μ_{2}	$\mathrm{~N}_{2}$	M_{2}	$\mathrm{~L}_{2}$	M_{4}	MS_{4}
1	30	4	1	163	54	4	7	0	0

This table shows us that the effect of μ_{2} is preponderant, but if $\mathrm{S}_{2}=$ $\mu_{2}=100 \mathrm{~cm}$ (which would be really exceptional), we have a perturbation of S_{2} equal to 1.6 cm . For normal values of μ_{2}, elimination is therefore perfectly acceptable. The analysis of the Port of Aratu (Brazil) which was carried out by this method, has confirmed the theoretic conclusions, since the constants which were found for S_{2} are practically the same as those obtained by the method of the Tidal Institute. In form 3-1, the values of $10^{6} / a$ and - $10^{6} / b$, which correspond to this modification, appear in the S_{2} column.

In the case of fourth-diurnal constituents, the polynomial resulting from the combinations of Table 2 -III is not practical for manual computing.

We therefore suggest the following combinations :

$$
\begin{aligned}
& \text { For } \mathrm{M}_{4} \text { : (3) }{ }^{3} \text { (5) (7) (2) (27) (29) (30) } \\
& \text { For } \mathrm{MS}_{4} \text { : (3) }{ }^{3} \text { (5) (7) (2) (28) (29) (30) }
\end{aligned}
$$

(29) and (30) being the combinations which enable us to rid M_{4} and MS_{4} of the contributions of MN_{4} and SN_{4} (see Table 2-II). The values of $10^{6} / a$ and $-10^{6} / b$ are those appearing in form 3-1

The residual perturbations (multiplied by 10^{4}) of the other constituents considered are :

	Q_{1}	O_{1}	$\mathrm{~K}_{1}$	μ_{2}	$\mathrm{~N}_{2}$	M_{2}	$\mathrm{~L}_{2}$	\mathbf{M}_{4}	$\mathbf{M S}_{4}$	$\mathbf{M N}_{4}$	$\mathbf{S N}_{4}$
M_{4}	10	3	2	24	0	1	0	-	22	$\mathbf{1 1}$	39
MS_{4}	30	2	2	13	1	3	0	0	-	12	35

All these values are perfectly acceptable; in our opinion, isolation should not be carried too far.

What the values of Δ^{\prime} mean within the proposed form still remains to be explained.

In order to compute the values of w and W for constituents S_{2}, K_{1} and N_{2}, the arguments which w and W are functions of should correspond to the central date of the analysis, the latter being the same for all the constituents. Thus the stencils should have an arrow (fig. 2A) pointing towards that date. Moreover, the phases -r of the constituents are rendered by the combinations for zero hours on zero day. This corresponds to :

9	days	before	the	central	day	for	Q
10		"	"	"	"	"	O_{1}
13	"	"	"	"	"	"	K_{1}
11	"	"	"	"	"	"	N_{2}
11	"	"	"	"	"	"	M_{2}
9	"	"	"	"	"		M_{4}
9	"	"	"	"	"	${ }^{n}$	MS_{4}

If ρ is the daily speed of any constituent whatever and d is the number of days comprised between the initial date and the central date, the astronomical arguments computed for that date shall be decreased by $p d$, which can be subtracted from Δ to give Δ^{\prime}. For $S_{2}, \rho d=0$, since $\rho=0$.

We are convinced that without the assistance of electronic computers, the use of stencils is much more economical than successive combinations carried out binomial by binomial. We are in a position to furnish interested parties with tables for constructing stencils for $\mathbf{M}_{2}, \mathbf{S}_{2}, \mathbf{N}_{2}, \mathbf{M}_{4}$ and $\mathbf{M S}_{\mathbf{4}}$. For constituents S_{2}, M_{4} and M_{4}, these tables have been constructed in view of the combinations which we have set up.

Finally, we may note that Mrs. Coulmy has prepared a very interesting schedule for curve smoothing by means of electronic computers. Although it can also be applied with conventional computers, in practice it would be too time consuming.

References

[1] Aragnol, A.: The Use of Algebraic Methods in the Harmonic Analysis of Tidal Observations, Int. Hydr. Review, Vol. XXX, No. 2, November 1953.
[2] Coulmy, G. : Nouvelle méthode de combinaisons linéaires d'ordonnées pour l'analyse des marées.
[3] Doodson, A. T. : The Analysis of Tidal Observations for 29 Days, Int. Hydr. Review, Vol. XXXI, No. 1, May 1954.

